
An Experimental Comparison of Block- and File-Access Protocols
for IP-Networked Storage

Abstract

IP-networked storage has become increasingly com-
mon in today’s LAN environments. There are two fun-
damentally different abstractions—files and blocks—
for accessing remote data in IP-networked storage. In
this paper, we conduct an experimental study to de-
termine whether a file-level or a block-level abstrac-
tion is better suited for IP-networked storage. We
use NFS and iSCSI as representative examples of the
file- and block-access protocols, and compare their
performance using a variety of micro- and macro-
benchmarks. Our results show that block- and file-
access protocols are comparable for data-intensive
workloads, while the former outperforms the latter by
a factor of 2 or more for meta-data-intensive work-
loads. We identify aggressive meta-data caching and
update aggregation in iSCSI to be the primary rea-
sons for this performance difference and propose two
enhancements to NFS to overcome these limitations.

1 Introduction
1.1 Motivation
With the advent of high-speed LAN technologies such as
Gigabit Ethernet, IP-networked storage has become increas-
ingly common in client-server environments. The availability
of 10 Gb/s Ethernet in the near future is likely to further ac-
celerate this trend. IP-networked storage is broadly defined to
be any storage technology that permits access to remote data
over IP. The traditional method for networking storage over
IP is to simply employ a network file system such as NFS [3].
In this approach, the server makes a subset of its local names-
pace available to clients; clients access meta-data and files on
the server using a RPC-based protocol (see Figure 1(a)).
In contrast to this widely used approach, an alternate ap-

proach for accessing remote data is to use an IP-based stor-
age area networking (SAN) protocol such as iSCSI [26]. In
this approach, a remote disk exports a portion of its storage
space to a client. The client handles the remote disk no dif-
ferently than its local disks—it runs a local file system that
reads and writes data blocks to the remote disk. Rather than
accessing blocks from a local disk, the I/O operations are car-
ried out over a network using a block access protocol (see

Figure1(b)). In case of iSCSI, remote blocks are accessed by
encapsulating SCSI commands into TCP/IP packets [26].
The two techniques for accessing remote data employ fun-

damentally different abstractions. Whereas a network file
system accesses remote data at granularity of files, SAN pro-
tocols access remote data at the granularity of disk blocks. We
refer to these techniques as file-access and block-access pro-
tocols, respectively. In essence, a file-access protocol makes
remote files appear local, whereas a block-access protocol
makes remote disk blocks appear local. In the former ap-
proach, the file system resides at the server, whereas in the
latter approach it resides at the client (see Figure 1). Con-
sequently, the network I/O consists of file operations (file
and meta-data reads and writes) for file-access protocols and
block operations (block reads and writes) for block-access
protocols. Furthermore, the implications of caching are dif-
ferent in the two scenarios. Since the file system resides at
the client in block access protocols, the file system cache is
local, enabling applications to benefit from cached files and
meta-data. In a file-access protocol, the corresponding file
system cache is located at the server. However, the network
file system may employ its own cache at the client to enhance
application performance.
File-access protocols have been widely studied over the

past two decades in the context of network file systems
[3, 10, 15] In contrast, since SAN technologies such as iSCSI
are emerging, the design and performance of block access
protocols is less well studied. Furthermore, given the above
tradeoffs, it is not a priori evident whether a file-level or a
block-level abstraction is better suited for IP-networked stor-
age. There is no study that systematically compares block-
and file-access protocols for IP-networked storage, and this is
the focus of the present work.

1.2 Research Contributions of This Paper
In this paper, we experimentally compare file- and block-
access protocols using NFS and iSCSI as representative ex-
amples of the two approaches. Our experimental study at-
tempts to answer the following research questions:

Is a file-level or a block-level abstraction better suited
for IP-networked storage?

Under what circumstances does a block-access proto-

1

(a) File-access Protocol (NFS) (b) Block-access Protocol (iSCSI)

Figure 1: An overview of file- and block-access protocols.

col outperform a file-access protocol and vice versa?
Specifically, what are the network overheads and
caching benefits of the two approaches, and what is their
impact on application performance?

What are the limitations of the two approaches, if any,
and how can they be overcome?

We answer these questions by conducting an experimen-
tal study on a storage system testbed. Our study involves
careful micro-benchmarking of three generations of the NFS
protocols—NFS versions 2, 3 and 4, and iSCSI.We thenmea-
sure application performance using a suite of data-intensive
and meta-data intensive benchmarks such as PostMark, IO-
Zone, TPC-C and TPC-H on the two systems.
Our results show that iSCSI and NFS are comparable for

data-intensive workloads, while the former outperforms the
latter by a factor of 2-12 for meta-data intensive workloads.
We identify aggressive meta-data caching and update aggre-
gation in iSCSI as the primary reasons for this performance
difference. We propose two enhancements to NFS to extract
these benefits of meta-data caching and update aggregation.
The rest of this paper is structured as follows. Section

2 provides a brief overview of NFS and iSCSI. Sections 3,
4, and 5 present our experimental comparison of NFS and
iSCSI. Implications of our results are discussed in Section 6.
Section 7 discusses our observed limitations of NFS and pro-
pose two enhancements. Section 8 discusses related work,
and we present our conclusions in Section 9.

2 Overview of Block- and File-access Pro-
tocols

Since our experimental study uses NFS and iSCSI as repre-
sentative examples of file- and block-access protocols respec-
tively, we provide a brief overview of NFS and iSCSI.

2.1 NFS Overview
NFS was first proposed as a stateless file access protocol by
Sun Microsystems Inc., and later revised by the IETF [24].
This version of NFS was referred to as NFS version 2 (or
simply “NFS v2”) and consists of four distinct protocols: (i)
the base nfs protocol, which is used for file creation, access,
reading, writing, authentication and statistics; (ii) the mountd
protocol, which is used to mount server-exportedfile systems;
(iii) the nsm protocol, which monitors the status of servers

and clients; and (iv) the nlm protocol, which provides lock-
ing services. In NFS v2, the client and the server commu-
nicate via remote procedure calls (RPCs) over UDP. A key
design feature of NFS version 2 is its stateless nature—the
NFS server does not maintain any state about its clients, and
consequently, no state information is lost if the server crashes.
The next version of NFS—NFS version 3—focuses on im-

proving performance and scalability [3, 22]. The key en-
hancement in NFS version 3 are as follows: (i) support for
a variable length file handle of up to 64 bytes, instead of 32
byte files handles; (ii) eliminates the 8 KB limit on the maxi-
mum data transfer size; (iii) support for 64 bit offsets for file
operations, up from 32 bits; (iv) reduces the number of fetch
attribute calls by returning the file attributes on any call that
modifies them; (v) supports asynchronous writes to improve
performance; and (vi) adds support for TCP as a transport
protocol in addition to UDP.
The latest version of NFS—NFS version 4—focuses on

enhancing performance over wide area networks such as the
Internet, strong security and protocol extensibility [8]. An-
other goal is to improve the locking and performance for nar-
row data sharing applications [27]. Some of the key features
of NFS version 4 are as follows: (i) it integrates the suite
of protocols (nfs, mountd, nlm, nsm) into one single proto-
col for ease of access across firewalls; (ii) it supports com-
pound operations to coalesce multiple operations into one
single message; (iii) it is stateful when compared to the pre-
vious incarnations of NFS — NFS v4 clients use OPEN and
CLOSE calls for stateful interaction with the server; (iv) it
introduces the concept of delegation to allow clients to ag-
gressively cache file data; and (v) it mandates strong security
using the GSS API.

2.2 iSCSI Overview
In contrast to NFS, iSCSI is a relatively new protocol that was
standardized recently by the IETF. iSCSI is a block-level pro-
tocol that encapsulates SCSI commands into TCP/IP packets,
and thereby leverages the investment in existing IP networks.
SCSI is a popular block transport command protocol that

is used for high bandwidth transport of data between hosts
and storage systems (e.g., disk, tape). Traditionally, SCSI
commands have been transported over dedicated networks
such as SCSI buses and Fiber Channel. With the emergence
of Gigabit and 10 Gb/s Ethernet LANs, it is now feasible to
transport SCSI commands over commodity networks and yet
provide high throughput to bandwidth-intensive storage ap-
plications. To do so, iSCSI connects a SCSI initiator port on

2

a host to a SCSI target port on a storage subsystem. For the
sake of uniformity with NFS, we will refer to the initiator and
the target as an iSCSI client and server, respectively.
Some of the salient features of iSCSI are as follows: (i) it

uses the notion of a session between the client and the server
to identify a communication stream between the two; (ii) it
allows multiple connections to be multiplexed into a session;
(iii) it supports advanced data integrity, authentication pro-
tocols as well as encryption (IPSEC)—these features are ne-
gotiated at session-startup time; and (iv) it supports advanced
error recovery using explicit retransmission requests, markers
and connection allegiance switching [26].

2.3 Caching in NFS and iSCSI
In NFS, the file system is located on the server and so is the
file system cache. NFS clients also employ a cache that can
hold both data and meta-data. To ensure consistency across
clients, NFS v2 and v3 require that client perform consis-
tency checks with the server on cached data and meta-data.
The validity of cached data at the client is implementation-
dependent—in Linux, cached meta-data is treated as poten-
tially stale after 3 seconds and cached data after 30 seconds.
Thus, meta-data and data reads may trigger a message ex-
change (i.e., a consistency check) with the server even in the
event of a cache hit. NFS v4 can avoid this message exchange
for data reads if the server supports file delegation. From
the perspective of writes, both data and meta-data writes in
NFS v2 are synchronous. NFS v3 and v4 supports asyn-
chronous data writes, but meta-data updates continue to be
synchronous. Thus, depending on the version, NFS has dif-
ferent degrees of write-through caching.
In iSCSI, the caching policy is governed by the file system.

Since the file system cache is located at the client, both data
and meta-data reads benefit from any cached content. Data
updates are asynchronous in most file systems. In modern
file systems, meta-data updates are also asynchronous, since
such systems use log-based journaling for faster recovery. In
the ext3 file system, for instance, meta-data is written asyn-
chronously at commit points. The asynchrony and frequency
of these commit points is a tradeoff between recovery and per-
formance (ext3 uses a commit interval of 5 seconds). Thus,
when used in conjunction with ext3, iSCSI supports a fully
write-back cache for data and meta-data updates.

3 Experimental Setup and Methodology

In this section, we first describe the storage testbed used for
our experiments and then our experimental methodology.

3.1 System Setup
The storage testbed used in our experiments consists of a
server and a client connected over an isolated Gigabit Eth-
ernet LAN (see Figure 2). Our server is a dual processor ma-
chine with two 933 MHz Pentium-III processors, 256 KB L1
cache, 1 GB of main memory and an Intel 82540EM Gigabit

Ethernet card. The server contains an Adaptec ServeRAID
adapter card that is connected to a Dell PowerVault disk pack
with fourteen SCSI disks; each disk is a 10,000 RPM Ultra-
160 SCSI drive with 18 GB storage capacity. For the pur-
pose of our experiments, we configure the storage subsystem
as two identical RAID-5 arrays, each in a 4+p configuration
(four data disks plus a parity disk). One array is used for our
NFS experiments and the other for the iSCSI experiments.
The client is a 1 GHz Pentium-III machine with 256KB L1
cache, 512 MB main memory, and an Intel 82540EMGigabit
Ethernet card.
Bothmachines run RedHat Linux 9. We use version 2.4.20

of the Linux kernel on the client for all our experiments. For
the server, we use version 2.4.20 as the default kernel, except
for the iSCSI server which requires kernel version 2.4.2 and
the NFS version 4 server which requires 2.4.18. We use the
default Linux implementation of NFS versions 2 and 3 for
our experiments. For NFS version 4, which is yet to be fully
supported in vanilla Linux, we use the University ofMichigan
implementation (release 2 for Linux 2.4).
For iSCSI, we employ the open-source SourceForge Linux

iSCSI implementation as the client (version 3.3.0.1) and a
commercial implementation as the iSCSI server (details with-
held for blind reviewing). While we found several high-
quality open-source iSCSI client implementations, we were
unable to find a stable open-source iSCSI server implemen-
tation that was compatible with our hardware setup; conse-
quently, we chose a commercial server implementation.
The default file system used in our experiments is ext3.

The file system resides at the client for iSCSI and at the server
for NFS (see Figure 2). We use TCP as the default transport
protocol for both NFS and iSCSI, except for NFS v2 where
UDP is the transport protocol.

3.2 Experimental Methodology
We experimentally compare NFS versions 2, 3 and 4 with
iSCSI using a combination of micro- and macro-benchmarks.
The objective of our micro-benchmarking experiments is to
measure the network message overhead of various file and
directory operations in the two protocols, while our macro-
benchmarks experimentally measure overall application per-
formance.
Our micro-benchmarks measure the network message

overhead (number of network messages) for a variety of sys-
tem calls that perform file and directory operations. We
first measure the network message overhead assuming a cold
cache at the client and the server and then repeat the exper-
iment for a warm cache. By using a cold and warm cache,
our experiments capture the worst and the average case, re-
spectively, for the network message overhead. Since the net-
work message overhead depends on the directory depth (path
length), we also measure these overheads for varying direc-
tory depths. In case of file reads and writes, the network mes-
sage overhead is dependent on (i) the I/O size, and (ii) the
nature of the workload (i.e., random or sequential). Conse-
quently, we measure the network message overhead for vary-

3

(a) NFS setup (b) iSCSI setup

Figure 2: Experimental setup. The figures depict the setup used for our NFS and iSCSI experiments.

ing I/O sizes as well as sequential and random requests. We
also study the impact of the network latency between the
client and the server on the two systems.
Having understood the overheads imposed by individual

file and directory operations (at the granularity of system
calls), we then turn our attention to overall application per-
formance. We measure application performance using sev-
eral popular benchmarks that impose both data- and meta-
data-intensive workloads. We use the following benchmarks
in our study:

PostMark: This is a file system benchmark that mea-
sures performance for ISP (i.e., mail, netnews) and e-
commerce workloads. This benchmarks measures sys-
tem performance for small files that are constantly be-
ing created, deleted, read and written, as is common in
email, news, and e-commerce environments. The overall
workload imposed by PostMark is meta-data intensive.

IOZone: IOZone is a file system benchmark that mea-
sures system performance for file system and database
environments. It measures I/O performance for a vari-
ety of file sizes and a variety of read and write sizes on
these files. It also emulates a variety of access patterns
(sequential, random, mixed, backward, and strided). IO-
Zone is mostly data-intensive in nature.

TPC-C: TPC-C is a widely used database benchmark
that emulates an online transaction processing (OLTP)
environment. TPC-C is a data-intensive workload that
consists of small random I/O requests. The benchmark
consists of a mix of reads and writes (approximately
two-thirds reads and one-third writes [2]).

TPC-H: TPC-H is another widely used database bench-
mark that emulates a decision support system (DSS).
TPC-H is a read-intensive workload that measures over-
all system throughput for long-running ad-hoc queries
(large I/O sizes).

Other benchmarks:We also measure the performance of
the two systems for the following operations: (i) untar,
whichmeasures the time to untar the Linux 2.4.20 kernel
source tree, (ii) kernel compilation, which measures the
time to compile the Linux 2.4.20 kernel, (iii) recursive
file listing, which uses ls -lR dev null to
recursively lists all files in the Linux kernel source tree,
and (iv) recursive delete, which deletes the Linux kernel
source tree. Observe that untar is write- and meta-data
intensive, kernel compilation is cpu-, read-, and write-
intensive, while the remaining two operations are meta-
data intensive.

We use a variety of tools to understand system behavior for
our experiments. We use Ethereal to monitor network pack-
ets, the Linux Trace toolkit and vmstat to measure protocol
processing times, and nfsstat to obtain nfs message statistics.
We also instrument the Linux kernel to measure iSCSI net-
work message overheads. Finally, we use logging in the VFS
layer to trace the generation of network traffic for NFS. While
we use these tools to obtain a detailed understanding of sys-
tem behavior, reported performance results (for instance, for
the various benchmarks) are without the various monitoring
tools (to prevent the overhead of these tools from influencing
performance results).

4 Micro-benchmarking Experiments

In this section, we compare the network message overheads
of various file and directory operations so as to understand the
impact of moving file system functionality closer the client.
Our micro-benchmark analysis primarily focuses on protocol
message counts as well as their sensitivity to file system pa-
rameters.

4.1 Overhead of System Calls
Our first experiment determines network message overheads
for common file and directory operations at the granularity
of system calls. We consider sixteen commonly-used system
calls shown in Table 1 and measure their network message
overheads using the Ethereal packet monitor. Note that this
list does not include the read and write system calls, which
are examined separately in Section 4.4.
For each system call, we first measure its network message

overhead assuming a cold cache and repeat the experiment
for a warm cache. We emulate a cold cache by unmounting
and remounting the file system at the client and restarting the
NFS server or the iSCSI server; this is done prior to each in-
vocation of a system call. The warm cache is emulated by
invoking the system call on a cold cache and then repeating
the system call with similar (though not identical) parameters.
For instance, to understand warm cache behavior, we create
two directories in the same parent directory using mkdir, we
open two files in the same directory using open, or we per-
form two different chmod operation on a file. In each case,
the network message overhead of the second invocation is as-
sumed to be the overhead in the presence of a warm cache. 1

1Depending on the exact cache contents, the warm cache network mes-
sage overhead can be different for different caches. We carefully choose the
system call parameters so as to emulate a “reasonable” warm cache. More-
over, we deliberately choose slightly different parameters across system call

4

Table 1: File and directory-related system calls.
Directory operations File operations
Directory creation (mkdir) File create (creat)
Directory change (chdir) File open (open)
Read directory contents (readdir) Hard link to a file (link)
Directory delete (rmdir) Truncate a file (truncate)
Symbolic link creation (symlink) Change access permissions (chmod)
Symbolic link read (readlink) Change ownership (chown)
Symbolic link delete (unlink) Query file permissions (access)

Query file attributes (stat)
Alter file access time (utime)

The directory structure can impact the network message
overhead for a given operation. Consequently, we report over-
heads for a directory depth of zero and a directory depth of
three. Section 4.3 reports additional results obtained by sys-
tematically varying the directory depth from 0 to 16.

Table 2: Network message overheads for a cold cache.

Directory depth 0 Directory depth 3
Operation V2 V3 V4 iSCSI V2 V3 V4 iSCSI
mkdir 2 2 4 7 5 5 10 13
chdir 1 1 3 2 4 4 9 8
readdir 2 2 4 6 5 5 10 12
symlink 3 2 4 6 6 5 10 12
readlink 2 2 3 5 5 5 9 10
unlink 2 2 4 6 5 5 10 11
rmdir 2 2 4 8 5 5 10 14
creat 3 3 10 7 6 6 16 13
open 2 2 7 3 5 5 13 9
link 4 4 7 6 10 9 16 12
rename 4 3 7 6 10 10 16 12
trunc 3 3 8 6 6 6 14 12
chmod 3 3 5 6 6 6 11 12
chown 3 3 5 6 6 6 11 11
access 2 2 5 3 5 5 11 9
stat 3 3 5 3 6 6 11 9
utime 2 2 4 6 5 5 10 12

Table 2 depicts the number of messages exchanged be-
tween the client and server for NFS versions 2, 3, 4 and iSCSI
assuming a cold cache.
We make three important observations from the table.

First, on an average, iSCSI incurs a higher network message
overhead than NFS. This is because a single message is suf-
ficient to invoke a file system operation on a path name in
case of NFS. In contrast, the path name must be completely
resolved in case of iSCSI before the operation can proceed;
this results in additional message exchanges. Second, the net-
workmessage overhead increases as we increase the directory
depth. For NFS, this is due to the additional access checks on
the pathname. In case of iSCSI, the file system fetches the
directory inode and the directory contents at each level in the
path name. Since directories and their inodes may be resident
on different disk blocks, this triggers additional block reads.
Third, NFS version 4 has a higher network message overhead

invocations; identical invocations will result in a hot cache (as opposed to a
warm cache) and result in zero network message overhead for many opera-
tions.

when compared to NFS versions 2 and 3, which have a com-
parable overhead. The higher overhead in NFS version 4 is
due to access checks performed by the client via the access
RPC call.2
We make one additional observation that is not directly re-

flected in Table 2. The average message size in iSCSI can
be higher than that of NFS. Since iSCSI is a block access
protocol, the granularity of reads and writes in iSCSI is a
disk block, whereas RPCs allow NFS to read or write smaller
chunks of data. While reading entire blocks may seem waste-
ful, a side-effect of this policy is that iSCSI benefits from ag-
gressive caching. For instance, reading an entire disk block of
inodes enable applications with meta-data locality to benefit
in iSCSI. In the absence of meta-data or data locality, how-
ever, reading entire disk blocks may hurt performance.

Table 3: Network message overheads for a warm cache.

Directory depth 0 Directory depth 3
Operation v2 v3 v4 iSCSI v2 v3 v4 iSCSI
mkdir 2 2 2 2 4 4 3 2
chdir 1 1 0 0 3 3 2 0
readdir 1 1 0 2 3 3 3 2
symlink 3 2 2 2 5 4 4 2
readlink 1 2 0 2 3 3 3 2
unlink 2 2 2 2 5 4 3 2
rmdir 2 2 2 2 4 4 3 2
open 3 2 6 2 5 5 9 2
creat 4 3 2 2 6 4 6 2
open 1 1 4 0 4 4 6 0
rename 4 3 2 2 6 6 6 2
trunc 2 2 4 2 5 5 7 2
chmod 2 2 2 2 4 5 5 2
chown 2 2 2 2 4 5 5 2
access 1 1 1 2 4 4 3 0
stat 2 2 2 2 5 5 5 0
utime 1 1 1 2 4 4 4 2

Table 3 depicts the number of messages exchanged be-
tween the client and the server for warm cache operations.
Whereas iSCSI incurred a higher network message overhead
than NFS in the presence of a cold cache, it incurs a compa-
rable or lower network message overhead than NFS in the
presence of a warm cache. Further, the network message
overhead is identical for directory depths of zero and three
for iSCSI, whereas it increases with directory depth for NFS.
Last, both iSCSI and NFS benefit from a warm cache and the
overheads for each operation are smaller than those for a cold
cache. The better performance of iSCSI can be attributed to
aggressive meta-data caching performed by the file system;
since the file system is resident at the client, many requests
can be serviced directly from the client cache. This is true
even for long path names, since all directories in the path may
be cached from a prior operation. NFS is unable to extract
these benefits despite using a client-side cache, since NFS v2

2The access RPC call was first introduced in NFS V3. Our Ethereal logs
did not reveal its use in the Linux NFS v3 implementation, other than for root
access checks. However, the NFS v4 client uses it extensively to perform
additional access checks on directories and thereby incurs a higher network
message overhead.

5

0

1

2

3

4

5

6

7

0 2 4 6 8 10

Nu
m

be
r o

f M
es

sa
ge

s

Number of Operations (log2 scale)

iSCSI Batching Effects

create
link

rename
chmod

stat
access

mkdir
write

Figure 3: Benefit of meta-data update aggregation and
caching in iSCSI. The figure shows the amortized network
message overhead per operation for varying batch sizes. The
batch size is shown on a logarithmic scale.

and v3 need to perform consistency checks on cached entries,
which triggers message exchanges with the server. Further,
meta-data update operations are necessarily synchronous in
NFS, while they can be asynchronous in iSCSI. This asyn-
chronous nature enables applications to update a dirty cache
block multiple times prior to a flush, thereby amortizing mul-
tiple meta-data updates into a single network block write.

4.2 Impact of Meta-data Caching and Update
Aggregation

Our micro-benchmark experiments revealed two impor-
tant characteristics of iSCSI—aggressive meta-data caching,
which benefits meta-data reads, and update aggregation,
which benefits meta-data writes. Recall that, update aggre-
gation enables multiple writes to the same dirty block to be
“batched” into a single asynchronous network write. We ex-
plore this behavior further by quantifying the benefits of up-
date aggregation and caching in iSCSI.
We choose eight common operations that read and update

meta-data, namely creat, link, rename, chmod, stat,
access, write and mkdir. For each operation, we issue
a batch of consecutive calls of that operation and measure
the networkmessage overhead of the entire batch. We vary
from 1 to 1024 (e.g., issue 1 mkdir, 2 mkdirs, 4 mkdirs and so
on, while starting with a cold cache prior to each batch). Fig-
ure 3 plots the amortized networkmessage overhead per oper-
ation for varying batch sizes. As shown, the amortized over-
head reduces significantly with increasing batch sizes, which
demonstrates that update aggregation can indeed significantly
reduce the number of network writes. Note that some of the
reduction in overhead can be attributed to meta-data caching
in iSCSI. Since the cache is warm after the first operation in a
batch, subsequent operations do not yield additional caching
benefits—any further reduction in overhead is solely due to
update aggregation. In general, our experiment demonstrates
applications that exhibit meta-data locality can benefit signif-
icantly from update aggregation.

4.3 Impact of Directory Depth
Our micro-benchmarking experiments gave a preliminary in-
dication of the sensitivity of the network message overhead
to the depth of the directory where the file operation was per-
formed. In this section, we examine this sensitivity in detail
by systematically varying the directory depth.
For each operation, we vary the directory depth from 0

to 16 and measure the network message overhead in NFS
and iSCSI for the cold and warm cache. A directory depth
of implies that the operation is executed in

i. Figure 4 lists the observed overhead for three
different operations. We omit results for the remaining oper-
ations due to space constraints.
In case of the cold cache, iSCSI needs two extra messages

for each increase in directory depth due to the need to access
the directory inode as well as the directory contents. In con-
trast, NFS v2 and v3 need only one extra message for each in-
crease in directory depth, since only one message is needed to
access directory contents—the directory inode lookup is done
by the server. As indicated earlier, NFS v4 performs an ex-
tra access check on each level of the directory via the access
call. Due to this extra message, it overhead matches that of
iSCSI and increases in tandem.3 Consequently, as the direc-
tory depth is increased, the iSCSI overhead increases faster
than NFS for the cold cache.
In contrast, a warm cache results in a constant number

of messages independent of directory depth due to meta-data
caching at the client for both NFS and iSCSI. The observed
messages are solely due to the need to update meta-data at the
server.

4.4 Impact of Read and Write Operations
Our experiments thus far have focused on meta-data opera-
tions. In this section, we study the efficiency of data opera-
tions in NFS and iSCSI. We consider the read and write sys-
tem calls and measure their network message overheads in
the presence of a cold and a warm cache.
To measure the read overhead, we issue reads of varying

sizes—128 bytes to 64 KB—and measure the resulting net-
work message overheads in the two systems. To emulate a
cold cache, we ensure that the cache is empty prior to each
invocation of read. For the warm cache, we first read the
entire file into the cache and then issue sequential reads of in-
creasing sizes. The write overhead is measured similarly for
varying write sizes. The cold cache is emulated by emptying
the client and server caches prior to the operation. Writes are
however not measured in warm cache mode—we use macro-
benchmarks to quantify warm cache effects.
Figure 5 plots our results. We make the following obser-

vations from our results. For read operations, iSCSI requires

3The extra overhead of access is probably an artifact of the implementa-
tion. It is well-known that the Linux NFS implementation does not correctly
implement the access call due to inadequate caching support at the client
[19]. This idiosyncrasy of Linux is the likely cause of the extra overhead in
NFS v4.

6

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

Nu
m

be
r o

f m
es

sa
ge

s

Directory Depth

Number of messages [mkdir]

iSCSI (cold)
NFSv4 (cold)
NFSv3 (cold)
NFSv2 (cold)
iSCSI (warm)

NFSv4 (warm)
NFSv3 (warm)
NFSv2 (warm)

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

Nu
m

be
r o

f m
es

sa
ge

s

Directory Depth

Number of messages [chdir]

iSCSI (cold)
NFSv4 (cold)
NFSv3 (cold)
NFSv2 (cold)
iSCSI (warm)

NFSv4 (warm)
NFSv3 (warm)
NFSv2 (warm)

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

Nu
m

be
r o

f m
es

sa
ge

s

Directory Depth

Number of messages [readdir]

iSCSI (cold)
NFSv4 (cold)
NFSv3 (cold)
NFSv2 (cold)
iSCSI (warm)

NFSv4 (warm)
NFSv3 (warm)
NFSv2 (warm)

(a) mkdir (b) chdir (c) readdir

Figure 4: Effect of the directory depth on the network message overhead.

one or two extra messages over NFS so to read or update un-
cached file meta-data (e.g., inode blocks). While NFS incurs
a smaller overhead for small cold reads, the read overhead ex-
ceeds that of iSCSI beyond 8KB requests. For NFS v2, this
is due to the maximum data transfer limit of 8KB imposed by
the protocol specification. Multiple data transfers are needed
when the read request size exceeds this limit. Although NFS
v3 eliminates this restriction, it appears that the Linux NFS
v3 implementation does not take advantage of this flexibility
and uses the same transfer limit as NFS v2. Consequently,
the cold read overhead of NFS v3 also increases beyond that
of iSCSI for large reads. In contrast, the NFS v4 implemen-
tation uses larger data transfers and incurs fewer messages.
In case of the warm cache, since the file contents are already
cached at the client, the incurred overhead in NFS is solely
due to the consistency checks performed by the client. The
observed overhead for iSCSI is due to the need to update the
access time in the inode.
Similar observations are true for write requests (see Figure

5(c)). Initially, the overhead of iSCSI is higher primarily due
to the need to access uncached meta-data blocks. For NFS,
all meta-data lookups take place at the server and the network
messages are dominated by data transfers. The network mes-
sage overhead for NFS v2 increases once the write request
size exceeds the maximum data transfer limit; the overhead
remains unchanged for NFS v4.

4.5 Impact of Sequential and Random I/O
Two key factors impact the network message overheads of
data operations—the size of read and write requests and the
access characteristics of the requests (sequential or random).
The previous section studied the impact of request sizes on
the network message overhead. In this section, we study the
effect of sequential and random access patterns on network
message overheads.
To measure the impact of reads, we create a 128MB file.

We then empty the cache and read the file sequentially in 4KB
chunks. For random reads, we create a random permutation
of the 32K blocks in the file and read the blocks in that or-
der. We perform this experiment first for NFS v3 and then for

iSCSI. We do not report NFS v2 and v4 results due to space
constraints. Table 4 depicts the completion times, network
message overheads and bytes transferred in the two systems.
As can be seen, for sequential reads, both NFS and iSCSI
yield comparable performance. For random reads, NFS is
slightly worse (by about 15%). The network message over-
heads and the bytes transfered are also comparable for iSCSI
and NFS.
Next, we repeat the above experiment for writes. We cre-

ate an empty file and write 4KB data chunks sequentially to
a file until the file size grows to 128MB. For random writes,
we generate a random permutation of the 32K blocks in the
file and write these blocks to newly created file in that or-
der. Table 4 depicts our results. Unlike reads, where NFS
and iSCSI are comparable, we find that iSCSI is significantly
faster than NFS for both sequential and random writes. The
lower completion time of iSCSI is due to the asynchronous
writes in the ext3 file system. Since NFS version 3 also sup-
ports asynchronouswrites, we expected the NFS performance
to be similar to iSCSI. However, it appears that the Linux
NFS v3 implementation can not take full advantage of asyn-
chronous writes, since it specifies a limit on the number of
pending writes in the cache. Once this limit is exceeded, the
write-back caches degenerates to a write-through cache and
application writes see a pseudo-synchronous behavior. Con-
sequently, the NFS write performance is significantly worse
than iSCSI. Note also, while the byte overhead is comparable
in the two systems, the number of messages in iSCSI is sig-
nificantly smaller than NFS. This is because iSCSI appears
to issue very large write requests to the server (mean request
size is 128KB as opposed to 4.7KB in NFS).

4.6 Impact of Network Latency

Our experiments thus far have assumed a lightly loaded Gi-
gabit Ethernet LAN. The observed round trip times on our
LAN is very small (1ms). In practice, the latency between
the client and the server can vary from a few milliseconds to
tens of milliseconds depending on the distance between the
client and the server. Consequently, in this section, we vary
the network latency between the two machines and study its

7

0

2

4

6

8

10

7 8 9 10 11 12 13 14 15 16

Nu
m

be
r o

f M
es

sa
ge

s

Read Size (bytes) (log2 scale)

Read sizes (Cold Cache)

iSCSI
NFSv4
NFSv3
NFSv2

0

2

4

6

8

10

7 8 9 10 11 12 13 14 15 16

Nu
m

be
r o

f M
es

sa
ge

s

Read Size (bytes) (log2 scale)

Read sizes (Warm Cache)

iSCSI
NFSv4
NFSv3
NFSv2

0

2

4

6

8

10

7 8 9 10 11 12 13 14 15 16

Nu
m

be
r o

f M
es

sa
ge

s

Write Size (bytes) (log2 scale)

Write sizes (Cold Cache)

iSCSI
NFSv4
NFSv3
NFSv2

(a) Cold reads (b) Warm reads (c) Cold Writes

Figure 5: Network message overheads of read and write operations of varying sizes.

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90

Se
co

nd
s

RTT (msec)

Read Performance : Effect of Latency

NFS [sequential]
NFS [random]

iSCSI [sequential]
iSCSI [random]

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90

Se
co

nd
s

RTT (msec)

Write Performance : Effect of Latency

NFS [sequential]
NFS [random]

iSCSI [sequential]
iSCSI [random]

(a) Reads (b) Writes

Figure 6: Impact of network latency on read and write performance.

Table 4: Sequential and Random reads and writes: com-
pletion times, number of messages and bytes transferred for
reading and writing a 128MB file.

Performance Messages Bytes
NFS v3 iSCSI NFS v3 iSCSI NFS v3 iSCSI

Seq. reads 35s 35s 33,362 32,790 153MB 148MB
Rnd. reads 64s 55s 32,860 32,827 153MB 148MB
Seq. writes 17s 2s 32,990 1135 151MB 143MB
Rnd. writes 21s 5s 33,015 1150 151MB 143MB

impact on performance.
We use the NISTNet package to introduce a latency be-

tween the client and the server. NISTNet introduces a pre-
configured delay for each outgoing and incoming packet so
as to simulate wide-area conditions. We vary the round-trip
network latency from 10ms to 90ms and study its impact on
the sequential and random reads and writes. The experimen-
tal setup is identical to that outlined in the previous section.
Figure 6 plots the completion times for reading and writing
a 128 MB file for NFS and iSCSI. As shown in Figure 6(a),
the completion time increases with the network latency for
both systems. However, the increase is greater in NFS than in
iSCSI—the two systems are comparable at low latencies (

10ms) and the NFS performance degrades faster than iSCSI
for higher latencies. Even though NFS v3 runs over TCP, an
Ethereal trace reveals an increasing number of RPC retrans-
missions at higher latencies. The Linux NFS client appears
to time-out more frequently at higher latencies and reissues
the RPC request, even though the data is in transit, which in
turn dregrades performance. An implementation of NFS that
exploits the error recovery at the TCP layer will not have this
drawback.
In case of writes, the iSCSI completion times are not

affected by the network latency due to their asynchronous
nature. The NFS performance is impacted by the pseudo-
synchronous nature of writes in the Linux NFS implementa-
tion (see Section 4.5) and increases with the latency.

5 Macro-benchmarking Experiments

Having examined the behavior of NFS and iSCSI for individ-
ual file and directory operations, in this section, we measure
overall application performance in the two systems using a
number of benchmarks. Our benchmarks have different ac-
cess profiles with respect to data and meta-data (e.g., meta-
data-intensive, data-intensive, read-intensive, mixed, etc.).
Consequently, these benchmarks should provide important

8

Table 5: PostMark Results. Completion times and message
counts are reported for 100,000 operations on 1,000, 5,000
and 25,000 files.

Completion time (s) Messages
Files NFS v3 iSCSI NFS v3 iSCSI
1,000 146 12 371,963 101
5,000 201 35 451,415 276
25,000 516 208 639,128 66,965

insights into the fundamental behavior of block- and file-
access protocols. Due to space constraints, we only compare
NFS v3 with iSCSI and omit NFS v2 and v4 results. We also
note that NFS v4 support on Linux is not fully mature and
less optimized than NFS v3.

5.1 PostMark Results
As explained earlier, PostMark is a benchmark that demon-
strates system performance for short-lived small files seen
typically in Internet applications such as electronic mail, net-
news and web-based commerce. The benchmark creates an
initial pool of random text files of varying size. Once the
pool has been created, the benchmark performs two types of
transactions on the pool: (i) create or delete a file; (ii) read
from or append to a file. The incidence of each transaction
and its subtype are chosen randomly to eliminate the effect of
caching and read-ahead.
In this particular setup, we maintained a equal predisposi-

tion to each type of transaction as well as each subtype within
a transaction. We performed 100,000 transactions on a pool
of files whose size was varied from 1,000 to 25,000 in multi-
ples of 5.
Table 5 depicts our results. As shown in the table, iSCSI

generally outperforms NFS v3 due to the meta-data intensive
nature of this benchmark. An analysis of the NFS v3 protocol
messages exchanged between the server and the client shows
that 65% of the messages are meta-data related. Meta-data
update aggregation as well as aggressivemeta-data caching in
iSCSI enables it to have a significantly lower message count
than NFS.
As the pool of files is increased, we noted that the ben-

efits of meta-data caching and meta-data update aggregation
starts to diminish due to the random nature of the transaction
selection. As can be seen in Table 5, the number of mes-
sages relative to the file pool size increases faster in iSCSI
than that in NFS v3. Consequently, the performance differ-
ence between the two decreases. However, as a side effect,
the benchmark also reduces the effectiveness of meta-data
caching on the NFS server, leading to higher server CPU uti-
lization (see Section 5.5).

5.2 IOZone Results
IOZone is a file system benchmark that analyzes overall sys-
tem performance. The benchmark tests I/O performance for a

variety of file system operations such as read, write, re-read,
re-write, read backwards, read strided, fread, fwrite, random
read, pread, mmap, aio read and aio write. Although, we ex-
perimented with all permissible operations in Linux, we re-
port only the sequential read and write performance due to
space constraints. Our observation also apply to other access
patterns and detailed results can be found in an extended tech-
nical report.
Figure 7 depicts IOZone performance for sequential reads

and writes of different sizes. IOZone also varied the file size
from 8KB to 512MB; since the read and write behavior was
similar across entire spectrum of file sizes, we report results
only for two file sizes—16MB and 256MB.
As shown in Figure 7(a), there is little difference between

iSCSI and NFS v3 for sequential reads. This is because an
analysis of the NFS v3 protocol traffic shows predominantly
read data messages being exchanged between the server and
the client. For such a traffic profile, there is little difference
in protocol behavior between NFS v3 and iSCSI, and conse-
quently, the IOZone performances of both iSCSI and NFS v3
are identical.
Note that, these results do not reveal any inefficiency in

iSCSI for a pure data-intensive application. A read request
requires iSCSI to fetch the corresponding file meta-data be-
fore the read can be issued. In the case of NFS, a client can
immediately issue a read since meta-data lookups take place
at the server. Meta-data caching in iSCSI seems to outweigh
the inefficiency of this extra meta-data read.
Figure 7(b) shows a significant difference between iSCSI

and NFS v3 for sequential writes. An analysis of the NFS v3
protocol traffic shows predominantly write data messages be-
ing exchanged between the client and the server. Since both
iSCSI and NFS v3 support asynchronous writes, one would
have expected the two systems to exhibit similar write perfor-
mance.
However, as explained in Section 4.5, the Linux NFS

client imposes a maximum limit on pending asynchronous
writes [19]. Once this limit is exceeded, the write-back cache
at the client degenerates to a write-through cache due to the
need to flush pending writes. Consequently, write-intensive
workloads see a pseudo-synchronous write behavior, and a
corresponding degradation in performance. No such limita-
tion is imposed by the ext3 file system in iSCSI, and conse-
quently, write-intensive applications benefit from a true write-
back cache and asynchronous writes.

5.3 TPC-C and TPC-H Results
TPC-C is an On-Line Transaction Processing (OLTP) bench-
mark that issues small random I/Os. The benchmark con-
sists of highly-multithreaded4 KB block transfers where two-
thirds of the transfers are reads. We set up TPC-C with 300
warehouses and 30 clients. We use IBM’s DB2 database for
Linux (version 8.1 Enterprise Edition). The metric for evalu-
ating TPC-C performance is the number of transactions com-
pleted per minute (tpmC).
Table 6 shows the TPC-C performance and the network

9

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 2 4 6 8 10 12 14

Th
ro

ug
hp

ut
 [K

B/
s]

Record Size [KB] (log2 scale)

iozone : Read Performance

iSCSI (16M file)
iSCSI (256M file)

NFS (16M file)
NFS (256M file)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 2 4 6 8 10 12 14

Th
ro

ug
hp

ut
 [K

B/
s]

Record Size [KB] (log2 scale)

iozone : Write Performance

iSCSI (16M file)
iSCSI (256M file)
NFS (16M file)
NFS (256M file)

(a) Read throughput (b) Write throughput

Figure 7: Throughput of read and write operations in IOZone

Table 6: TPC-C Results. Reported throughput (tpmC) is nor-
malized by a factor equivalent to the throughput obtained
with NFS v3.

Peak Throughput (TpmC) Messages
NFS v3 iSCSI NFS v3 iSCSI

1.08 517,219 530,745

message overhead for NFS and iSCSI. Since these are results
from an unaudited run, we withhold the actual results and in-
stead report normalized throughput for the two systems. 4 As
shown in the table, there is a marginal difference between
NFS v3 and iSCSI. This is not surprising since TPC-C is
primarily data-intensive and as shown in earlier experiments,
iSCSI and NFS are comparable for data-intensive workloads.
An analysis of the message count shows that the vast majority
of the NFS v3 protocol traffic (99%) is either a data read or
a data write. The two systems are comparable for read op-
erations. Since data writes are 4KB each and less-intensive
than in other benchmarks, NFS is able to benefit from asyn-
chronous write support and is comparable to iSCSI.
The TPC-H benchmark emulates a decision support sys-

tems that examines large volumes of data, executes queries
with a high degree of complexity, and gives answers to critical
business questions. Our TPC-H experiments use a database
scale factor of 1 (implying a 1 GB database). The page size
and the extent size for the database were chosen to be 4 KB
and 32 KB, respectively. We run the benchmark for iSCSI
and NFS and report the observed throughout and network
message overheads in Table 7. Again, we report normal-
ized throughputs since our results are unaudited. The reported
throughput for TPC-H is the number of queries per hour for a
given database size (QphH@1GB in our case).
We find the performance of NFS and iSCSI is comparable

for TPC-H. Since the benchmark is dominated by large read
requests—an analysis of the traffic shows that the vast major-

4The Transaction Processing Council does not allow unaudited results to
be reported.

Table 7: TPC-H Results. Reported throughput
(QphH@1GB) is normalized by a factor equivalent
to the throughput obtained in NFS v3.

Throughput (QphH@1GB) Messages
NFS v3 iSCSI NFS v3 iSCSI

1.07 261,769 62,686

Table 8: Completion times for other benchmarks.

Benchmark NFS v3 iSCSI
tar -xzf 60s 5s
ls -lR /dev/null 12s 6s
kernel compile 222s 193s
rm -rf 40s 22s

ity of the messages are data reads—this result is consistent
with prior experiments where iSCSI and NFS were shown to
have comparable performance for read-intensive workloads.

5.4 Other Benchmarks
We also used several simple macro-benchmarks to character-
ize the performance of iSCSI and NFS. As explained earlier,
these benchmarks include extracting the Linux kernel source
tree from a compressed archive (tar xfz), listing the contents
(ls -lR), compiling the source tree (make) and finally remov-
ing the entire source tree (rm -rf). The first, second and fourth
benchmarks are met-data intensive and amenable to meta-
data caching as well as meta-data update aggregation. Con-
sequently, in these benchmarks, iSCSI performs better than
NFS v3. The third benchmark, which involves compiling
the Linux kernel, is CPU-intensive, and consequently there is
parity between iSCSI and NFS v3. The marginal difference
between the two can be attributed to the impact of the iSCSI
protocol’s reduced processing length on the single-threaded
compiling process.

10

Table 9: Server CPU utilization for various benchmarks. The
percentile of the CPU utilization at the server is reported

for each benchmark.

NFS v3 iSCSI
PostMark 77% 13%
IOZone 34% 15%
TPC-C 13% 7%
TPC-H 20% 11%

5.5 Server CPU utilization
A key performance attribute of a protocol is its scalability
with respect to the number of clients that can be supported by
the server. If the network paths or I/O channels are not the
bottleneck, the scalability is determined by the server CPU
utilization for a particular benchmark.
Table 9 depicts the percentile of the server CPU uti-

lization reported every 2 seconds by vmstat for the various
benchmarks. The table shows that, the server utilization for
iSCSI is lower than that of NFS. The server utilization is gov-
erned by the processing path and the amount of processing for
each request. The lower utilization of iSCSI can be attributed
to the smaller processing path seen by iSCSI requests. In
case of iSCSI, a block read or write request at the server tra-
verses through the network layer, the SCSI server layer, and
the low-level block device driver. In case of NFS, an RPC call
received by the server traverses through the network layer,
the NFS server layer, the VFS layer, the local file system, the
block layer, and the low-level block device driver. Our mea-
surements indicate that the server processing path for NFS
requests is twice that of iSCSI requests. This is confirmed
by the server CPU utilization measurements for data inten-
sive TPC-C and TPC-H benchmarks. In these benchmarks,
the server CPU utilization in for NFS is twice that of iSCSI.
A similar observation holds for the IOZone benchmark
The difference is exacerbated for meta-data intensive

workloads. A NFS request that triggers a meta-data lookup
at the server can greatly increase the processing path—meta-
data reads require multiple traversals of the VFS layer, the file
system, the block layer and the block device driver. The num-
ber of traversals depends on the degree of meta-data caching
in the NFS server. The increased processing path explains
the large disparity in the observed CPU utilizations for Post-
Mark. The PostMark benchmark tends to defeat the meta-
data caching on the NFS server because of the random nature
of transaction selection. This causes the server CPU utiliza-
tion to increase significantly since multiple block reads may
be needed to satisfy a single NFS data read.

6 Summary and Discussion of Our Re-
sults

In this section, we summarize our micro- and macro-
benchmarking results and discuss their implications for IP-
networked storage.

6.1 Data-intensive applications
Overall, we find that iSCSI and NFS yield comparable per-
formance for data-intensive applications. Whereas this result
is broadly true for read-intensive workloads, it is true with a
few caveats for write-intensive or mixed workloads.
In particular, we find that any application that generates

predominantly read-oriented network traffic will see compa-
rable performance in iSCSI and NFS v3. Since NFS v4 does
not make significant changes to those portions of the proto-
col that deal with data transfers, we do not expect this situa-
tion to change in the future. Furthermore, the introduction of
hardware protocol acceleration is likely to improve the data
transfer part of both iSCSI and NFS in comparable ways.
In principle, we expect iSCSI and NFS to yield compara-

ble performance for write-intensive workloads as well. How-
ever, due to the idiosyncrasies of the Linux NFS implemen-
tation, we find that iSCSI significantly outperforms NFS v3
for such workloads. We believe this is primarily due to the
limit on the number of pending asynchronous writes at the
NFS client. We find that this limit is quickly reached for very
write-intensive workloads, causing the write-back cache at
the NFS client to degenerate into a write-through cache. The
resulting pseudo-synchronous write behavior causes a sub-
stantial performance degradation (by up to an order of mag-
nitude) in NFS. We speculate that an increase in the pending
writes limit and optimizations such as spatial write aggrega-
tion in NFS can eliminate the gap between the two protocols.
Although the two protocols yield comparable application

performance, we find that they result in different server CPU
utilizations. In particular, we find that the server utilization is
twice as high in NFS than in iSCSI. We attribute this increase
primarily due to the increased processing path in NFS when
compared to iSCSI. An implication of the lower utilization in
iSCSI is that the server is more scalable (i.e., it can service
twice as many clients with the caveat that there is no sharing
between client machines).

6.2 Meta-data intensive applications
NFS and iSCSI show their greatest differences in their
handling of meta-data intensive applications. Overall, we
find that iSCSI outperforms NFS for meta-data intensive
workloads—workloads where the network traffic is domi-
nated by meta-data accesses.
The better performance of iSCSI can be attributed to two

factors. First, NFS requires clients to update meta-data syn-
chronously to the server. In contrast, iSCSI, when used
in conjunction with modern file systems, updates meta-data
asynchronously. An additional benefit of asynchronousmeta-
data updates is that it enables update aggregation—multiple
meta-data updates to the same cached cached block are aggre-
gated into a single networkwrite, yielding significant savings.
Such optimizations are not possible in NFS v2 or v3 due to
their synchronous meta-data update requirement.
Second, iSCSI also benefits from aggressive meta-data

caching by the file system. Since iSCSI reads are in gran-
ularity of disk blocks, the file system reads and caches entire

11

blocks containing meta-data; applications with meta-data lo-
cality benefit from such caching. Although the NFS client can
also cache meta-data, NFS clients need to perform periodic
consistency checks with the server to provide weak consis-
tency guarantees across client machines that share the same
NFS namespace. Since the concept of sharing does not exist
in the SCSI architectural model, the iSCSI protocol also does
not pay the overhead of such a consistency protocol.

6.3 Applicability to Other File Access Proto-
cols

An interesting question is the applicability of our results to
other protocols such as NFS v4, DAFS [4] and SMB.
The SMB protocol is similar to NFS v4 in that both pro-

vide support for strong consistency. Consistency is ensured in
SMB by the use of opportunistic locks or oplockswhich allow
clients to have exclusive access over a file object. The DAFS
protocol specification is based on NFS v4 with additional ex-
tensions for hardware-accelerated performance, locking and
failover. These extensions do not affect the basic protocol
exchanges that we observed in our performance analysis.
NFS v4, DAFS and SMB do not allow a client to update

meta-data asynchronously. NFS v4 and DAFS allow the use
of compound RPCs to aggregate related meta-data requests
and reduce network traffic. This can improve performance
in meta-data intensive benchmarks such as PostMark. How-
ever, it is not possible to speculate on the actual performance
benefits, since it depends on the degree of compounding.
Thus, we believe that our results are generally applica-

ble to these other widely used file protocols with the above
caveats.

6.4 Implications
Extrapolating from our NFS and iSCSI results, it appears
that block- and file-access protocols are comparable on data-
intensive benchmarks and the former outperforms the latter
on the meta-data intensive benchmarks. From the perspec-
tive of IP-networked storage, this result favors a block-access
protocol over a file-access protocol. This is especially true
when sharing data across multiple machines is not an im-
portant consideration. When server data needs to be shared
across client machines, two possibilities exist. One is to use
a block protocol between a local “proxy” and the server and
have the proxy rexport the data to clients via a protocol that
permits sharing (e.g., NFS). A second option is to employ a
file-access protocol that somehow eliminates the limitations
on the meta-data path and yet permits sharing. We propose
two enhancements to NFS in Section 7 to achieve such the
latter goal.

7 Potential Enhancements for NFS

Our previous experiments identified three factors that affect
NFS performance for meta-data-intensive applications: (i)

consistency related messages (ii) synchronous meta-data up-
date messages and (iii) non-aggregated meta-data updates.In
this section, we seek to explore enhancements that eliminate
these overheads and measure the impact of the enhancements.

7.1 Impact of aggressive caching on NFS v3
performance

The first enhancement for NFS examines whether aggressive
caching of file system meta-data would reduce the number of
consistency related messages in NFS v3 and thereby improve
performance. To verify this hypothesis, we modify the de-
fault NFS client parameters so that the client checks for con-
sistency of data and meta-data only every 60 seconds or more.
Then, we run the four macro-benchmarks: PostMark, IO-
Zone, TPC-C and TPC-H on this version of NFS v3 with ag-
gressive caching. As shown in Table 10, the results show that
there is a small reduction in number of consistency messages,
particularly in the meta-data intensive PostMark benchmark
where the number of messages drops by 6%. However, the
performance impact of this reduction is negligible. This im-
plies that asynchronous meta-data updates as well as meta-
data update aggregation are more important in getting perfor-
mance improvements.

Table 10: Impact of aggressive caching in NFS v3. The table
shows the ratio of performance and messages of NFS v3 with
aggressive caching compared to NFS.

Benchmark Ratio (NFS aggressive/NFS)
Performance Messages

PostMark 1.01 .94
IOZone 0.97 1
TPC-C 1.01 0.97
TPC-H 1 1

7.2 Directory Delegation
The second enhancement we consider is directory delega-
tion, where a NFS client holds a lease on meta-data and can
read and update the cached copy without server interaction.
Since NFS v4 only supports file delegation, directory dele-
gation would be an extension to the NFS v4 protocol speci-
fication. Observe that directory delegation allows a client to
asynchronously update meta-data in an aggregated fashion.
This in turn would allow NFS clients to have comparable per-
formance with respect to iSCSI clients even for meta-data in-
tensive benchmarks. A strongly-consistent meta-data client
cache can be implemented using leases and callbacks [9, 12].
Since only one client can hold a lease on a directory at

any one time, the effectiveness of this approach depends on
the amount of meta-data sharing across client machines. We
determine the characteristics of meta-data sharing in NFS by
analyzing two real-world NFS workload traces from Harvard
University [5]. We randomly choose one day (09/20/2001)

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

No
rm

al
ize

d
Nu

m
 o

f D
ire

ct
or

ie
s

Ac
ce

ss
ed

 P
er

 In
te

rv
al

Interval T

Read By One Client
Written By One Client

Read By Multiple Client
Written By Multiple Client

(a) EECS Trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

No
rm

al
ize

d
Nu

m
 o

f D
ire

ct
or

ie
s

Ac
ce

ss
ed

 P
er

 In
te

rv
al

Interval T

Read By One Client
Written By One Client

Read By Multiple Client
Written By Multiple Client

(b) Campus Trace

Figure 8: Sharing Characteristics of Directories

trace from the EECS traces (which represents a research,
software development, and course-based workload) and the
home02 trace from the Campus traces (which represents a
email and web workload). Roughly 40,000 file system ob-
jects were accessed for the EECS traces and about 100,000
file system objects were visited for the Campus traces.
Figure 8 demonstrates that the read sharing of directories

is much higher than write sharing in the EECS trace. In Cam-
pus trace, we find that although the read-sharing is higher at
smaller time-scales, it is less than the read-write sharing at
larger time-scales. However, in both the traces, a relatively
small percentage of directories are both read and written by
multiple clients. For example, at time-scale of seconds
only 4% and 3.5% percentage of directories are read-write
shared in EECS and Campus traces, respectively. This sug-
gests that contention for leases should not be significant, and
it should be possible to implement strongly consistent meta-
data caching with low overhead.
Strongly-consistent meta-data caching comes at the cost

of network message overhead due to callback messages. For-
tunately, this cost of network overhead messages is not sig-
nificant for the EECS and campus traces and would not be
adversely affect performance. The callback ratio, defined as
ratio of callbackmessages and number of meta-datamessages
for different cache sizes, is less than for a directory

cache size of (details omitted due to space constraints).
The above preliminary results indicate that implementing

a strongly consistent meta-data cache is feasible and would
enable a NFS v4 client with directory delegation extensions
to have comparable performance with respect to an iSCSI
client even for meta-data intensive benchmarks. A detailed
design of directory delegation policies and their performance
is beyond the scope of this paper and is the subject of future
research.

8 Related Work
Numerous studies have focused on the performance of net-
work file-access protocols[12, 13, 14, 22, 24], as well as stud-
ies on cache consistency for such protocols[20, 29]. In par-
ticular, the benefits of meta-data caching in a distributed file
system for a decade old workload were evaluated in [28].
The concept of block storage over IP was initially pro-

posed in [11, 18]. Around the same time, a parallel effort
from CMU also proposed two innovative architectures for ex-
posing block storage devices over a network for scalability
and performance [6, 7]. A distributed block storage architec-
ture was proposed and evaluated in [16].
Several studies have focused in the performance of the

iSCSI protocol from the perspective of on data path over-
heads and latency[1, 17, 25]. The feasibility of deploying
block storage as a service in WAN environments was demon-
strated in [21]. With the exception of [17], which compares
iSCSI to SMB, most of these efforts focus solely on iSCSI
performance. Our focus is different in that we examine the
suitability of block- and file-level abstractions for designing
IP-networked storage. Consequently, we compare iSCSI and
NFS along several dimensions such as protocol interactions,
network latency and sensitivity to different application work-
loads.
A comparison of block- and file-access protocols was first

carried out in the late eighties [23]. This study predated both
NFS and iSCSI and used analytical modeling to compare the
two protocols for DEC’s VAX systems. Their models cor-
rectly predicted higher server CPU utilizations for file access
protocols as well as the need for data and meta-data caching
in the client for both protocols. Despite Moore’s Law and nu-
merous technological improvements in the ensuing decade,
we find that these analytical results are still applicable today.
Our experimental study complements and corroborates these
analytical results for modern storage systems.

9 Concluding Remarks
In this paper, we considered two fundamentally different
abstractions—files and blocks—for designing IP-networked
storage. We conducted an experimental study to determine
whether a file-level or a block-level abstraction if better
suited for IP-networked storage. Using NFS and iSCSI as
representative examples of the file- and block-access proto-
cols, we compared their performance using a various micro-
and macro-benchmarks. Our results showed that block- and

13

file-access protocols are comparable for data-intensive work-
loads, while the former outperforms the latter by a factor of 2
or more for meta-data intensive workloads. We identified ag-
gressive meta-data caching and update aggregation in iSCSI
to be the primary reasons for this performance difference. We
proposed two enhancements—aggressive caching and direc-
tory delegation—to improve meta-data performance of the
NFS protocol. Our preliminary results for directory delega-
tion are promising, and a detailed design of delegation poli-
cies and their performance is the subject of future research.

References
[1] S Aiken, D. Grunwald, A. Pleszkun, and J. Willeke. A Perfor-

mance Analysis of the iSCSI Protocol. In Proceedings of the
20th IEEE Symposium on Mass Storage Systems, San Diego,
CA, April 2003.

[2] G. Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-Szendy,
R. Golding, A. Merchant, M. Spasojevic, A. Veitch, and
J. Wilkes. Minerva: An Automated Resource Provisioning
Tool for Large-scale Storage Systems. ACM Transactions on
Computer Systems, 2002.

[3] Brent Callaghan. NFS Illustrated. Addison Wesley, 1999.
[4] Direct Access File System Protocol, Version 1.0.

http://www.dafscollaborative.org, September 2001.
[5] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS

Tracing of Email and Research Workloads. In Proceedings of
USENIX FAST’03, San Francisco, CA, March 2003.

[6] G A. Gibson et. al. File Server Scaling with Network-Attached
Secure Disks. In Proceedings of the ACM Sigmetrics’97, Seat-
tle, WA, pages 272–284, June 1997.

[7] G A. Gibson et. al. A Cost-Effective, High-Bandwidth Stor-
age Architecture. In Proceedings of the 8th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VIII), San Jose, CA, pages
92–103, Oct 1998.

[8] S. Shepler et. al. Network File System Protocol (NFS) Version
4 Specification. IETF Request for Comments, RFC 3530, April
2003.

[9] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. In Pro-
ceedings of the Twelfth ACM Symposium on Operating Systems
Principles, pages 202–210, 1989.

[10] J. Hartman and J. Ousterhout. The Zebra Striped Network
File System. ACM Transactions on Computer Systems, Au-
gust 1995.

[11] S. Hotz, R. Van Meter, and G. Finn. Internet Protocols for
Network Attached Peripherals. In Proceedings of the Sixth
IEEE/NASA Conference on Mass Storage Systems and Tech-
nologies, 1998.

[12] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Perfor-
mance in a Distributed File System. ACM Transactions on
Computer Systems, 6(1):51–81, February 1988.

[13] C. Juszczak. Improving the Performance and Correctness of
an NFS Server. In Proceedings of the Winter USENIX Confer-
ence, San Diego, CA, pages 53–63, 1989.

[14] C. Juszczak. Improving the Write Performance of an NFS
Server. In Proceedings of the Winter USENIX Conference, San
Francisco, CA, pages 247–259, 1994.

[15] J. Kistler and M. Satyanarayanan. Disconnected Operation in
the Coda File System. ACM Transactions on Computer Sys-
tems, 10(1):3–25, February 1992.

[16] E. K.Lee and C. A.Thekkath. Petal Distributed Virtual
Disks. In Proceedings of the Conference on Architectural For
Programming Languages and Operating Systems (ASPLOS),
pages 84–92, 1996.

[17] Y. Lu and D. Du. Performance Study of iSCSI-Based Storage
Subsystems. IEEE Communications Magazine, August 2003.

[18] R. Van Meter, G. Finn, and S. Hotz. VISA: Netstation’s Virtual
Internet SCSI Adapter. In Proceedings of ASPLOS-VIII, San
Jose, CA, pages 71–80, 1998.

[19] T. Myklebust. Status of the Linux NFS Client. Pre-
sentation at Sun Microsystems Connectathon 2002,
http://www.connectathon.org/talks02, 2002.

[20] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite
Network File System. ACM Transactions on Computer Sys-
tems, 6(1), February 1988.

[21] W. Ng, B. Hillyer, E. Shriver, E. Gabber, and B. Ozden. Ob-
taining High Performance for Storage Outsourcing. In Pro-
ceedings of Usenix Symposium on File and Storage Technolo-
gies (FAST), Monterrey, CA, pages 144–158, January 2002.

[22] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz. NFS Version 3 Design and Implementation. In
Proceedings of the Summer 1994 USENIX Conference, June
1994.

[23] K K. Ramakrishnan and J Emer. Performance Analysis of
MAss Storage Service Alternatives for Distributed Systems.
IEEE Trans. on Software Engineering, 15(2):120–134, Febru-
ary 1989.

[24] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.
Design and Implementation of the Sun Network Filesystem. In
Proceedings of the Summer 1985 USENIX Conference, pages
119–130, June 1985.

[25] P Sarkar and K Voruganti. IP Storage: The Challenge Ahead.
In Proceedings of the 19th IEEE Symposium on Mass Storage
Systems, College Park, MD, April 2002.

[26] J. Satran, K. Meth, C. Mallikarjun, C. Sapuntzakis, and E. Zei-
dner. iSCSI Internet Draft. IETF Work in Progress, 2003.

[27] S. Shepler. NFS Version 4 Design Considerations. IETF Re-
quest for Comments, RFC 2624, June 1999.

[28] K. Shirriff and J. Ousterhout. A Trace-Driven Analysis of
Name and Attribute Caching in a Distributed System. In Pro-
ceedings of the Winter 1992 USENIX Conference, pages 315–
331, January 1992.

[29] V. Srinivasan and J. Mogul. Spritely NFS: Experiments with
Cache Consistency Protocols. In Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, pages 45–
57, December 1989.

14

