
ANALYSIS OF MPI PROGRAMS

STEPHEN F. SIEGEL AND GEORGE S. AVRUNIN

Abstract. We investigate the application of formal verification techniques to
parallel programs that employ the Message Passing Interface (MPI). We de-
velop a formal model of a subset of MPI, and then prove a number of theorems
about that model that ameliorate or eliminate altogether the state explosion
problem. As an example, we show that if one wishes to verify freedom from
deadlock, it suffices to consider only synchronous executions.

1. Introduction

Message Passing is a widely-used paradigm for the communication between pro-
cesses in a parallel or distributed system. The basic ideas have been around since
the late 1960s, and by the early 1990s, several different and incompatible message-
passing systems were being used to develop significant applications. The desire for
portability and a recognized standard led to the creation of the Message Passing
Interface (MPI), which defines the precise syntax and semantics for a library of
functions for writing message-passing programs in a language such as C or Fortran
(see [2] and [4]). Since that time, MPI has become widely adapted, with proprietary
and open-source implementations available on almost any platform.

Developers of programs that use MPI have run into many of the problems typ-
ically encountered with concurrent programs. Programs deadlock; they behave
non-deterministically due to scheduling or buffering choices made by the MPI im-
plementation; bugs are extremely difficult to pin down or even reproduce. For this
reason, formal analysis and verification techniques could prove very useful to MPI
programmers.

In this paper we are interested in applying the techniques of Finite State Verifi-
cation (FSV) to MPI programs. While FSV has been applied to many domains—
including various protocols, programming languages, hardware, and other message-
passing situations—we have not found in the literature any specific application of
it to MPI programs. (See, however, [3] for an attempt to apply FSV to a parallel
system that is used in implementing MPI.)

In fact, we will restrict our attention to a small subset of MPI. The advantage
of this approach is that one can optimize techniques for the specific domain. Some
FSV tools, such as the model checker Spin ([1]), have very general constructs for
modeling a wide range of synchronous and asynchronous communication mecha-
nisms. It is not too difficult to translate, in a straightforward way, our subset of
MPI into Promela (the input language for Spin). The problem is that, for any
realistic MPI program, the state space that Spin must explore is so large as to

Key words and phrases. MPI, Message Passing Interface, parallel computation, formal meth-
ods, verification, analysis, finite-state verification, model checking, deadlock, concurrent systems,
INCA, SPIN.

Version 1.40 of 2003/11/12.
1

render the analysis infeasible. This “state-space explosion” is a familiar problem in
the FSV literature, and many different approaches have been explored to combat
it.

One of the primary sources of state-explosion is the use of buffered message
passing. When messages can be buffered, as they can in MPI, the state of the
system must include not only the state of each local process, but also the state
of the buffer(s) holding the messages. Moreover, as MPI does not specify any
bounds on the sizes of the buffers, a finite-state model must impose an arbitrary
upper bound on the number of messages in the buffers. In general it is difficult
or impossible to know if the imposition of this bound is conservative: if one has
verified that a property holds as long as the buffer size never exceeds, say, 4, how
does one know that the property is not violated in an execution in which the buffer
reaches size 5? This question, which in general is very difficult to answer, is an
example of the kind of question that motivates our inquiry.

In this paper, we first develop a precise, formal model for programs that use a
particular subset of MPI, and then prove a number of theorems about that model
that ameliorate the state-explosion problem, or that show that certain properties
follow automatically or can be verified in a very simple way. Our strategy is to
take advantage of features that are peculiar to (our subset of) MPI, and to focus
on specific properties or kinds of properties.

Our subset of MPI consists of the following functions: MPI_SEND, MPI_RECV,
MPI_SENDRECV, and MPI_BARRIER (Of course, the actual MPI programs will
almost certainly use such innocuous functions as MPI_INIT, MPI_FINALIZE, MPI_-
COMM_SIZE, and MPI_COMM_RANK as well, but these pose no serious problems
to model-creation or analysis.) The precise semantics of these functions are dis-
cussed in Section 2. It will become clear in the subsequent sections that much of the
complexity of the model derives from including MPI_SENDRECV in this list. This
function allows a send and receive operation to happen concurrently; we model this
by allowing the two operations to occur in either order, which adds another layer
of non-determinism to the model. This requires us to develop a language in which
we can talk about two paths being essentially the same if they differ only in the
order in which they perform the two events within each send-receive.

In Section 3 we define precisely our notion of a model of an MPI program.
Our model is suitable for representing the subset of MPI discussed above (though
the representation of barriers is deferred until Section 9). In essence, our model
consists of a state-machine for each process in the system, and these communicate
via buffered channels that have fixed sending and receiving processes.

In Section 4 we give the execution semantics for the model. An execution is
represented as a sequence of transitions in the state machines. Sections 5 and 6
establish some technical results that will allow us to construct new executions from
old; these will be used repeatedly in the proofs of the real applications, which begin
in Section 7 with an application to the verification of freedom from deadlock.

If the property of concern is freedom from deadlock, and the program satisfies
suitable restrictions, then Theorem 7.4 answers precisely the question on buffer
depth mentioned above. The Theorem states that, if there exists a deadlocking
execution of the program, then there must also exist a deadlocking execution in
which all communication is synchronous. This means that if we are using Spin, for
example, to verify freedom from deadlock, we may let all the channels in our model

2

have depth 0. This confirms the intuition underlying a common practice among
developers of MPI software: that a good way to check a program for deadlocks is to
replace all the sends with synchronized sends, execute the resulting program, and
see if that deadlocks.

The “suitable restrictions” required by Theorem 7.4 essentially amount to the
requirement that the program contain no wildcard receives, i.e., that it uses neither
MPI_ANY_SOURCE nor MPI_ANY_TAG. In fact, we give a simple counterexample
to the conclusion of the Theorem with a program that uses a wildcard receive. This
program can not deadlock if all communication is synchronous, but may deadlock
if messages are buffered. This demonstrates that considerable complexity is added
to the analysis by the use of wildcard receives. In fact, almost all of the results
presented here require their absence; we hope, in future work, to develop techniques
to handle the additional complexity introduced by wildcard receives.

We also prove a similar result for partial deadlock : this is where some subset of
the processes becomes permanently blocked, though other processes may continue
to execute forever. Again, we show that it suffices to check only synchronous
executions.

In Section 8, we consider properties such as assertions on whether certain states
are reachable. We show one way to obtain an upper bound on channel depths for
checking these properties, if certain conditions are met.

In Section 9, we show how one can represent barriers in our formal model. One
of the common problems plaguing developers is the question “Is a barrier necessary
at this point in the code?”. Adding barriers certainly limits the amount of process
interleaving that can take place; but it also can take a huge toll on performance.
Thus a technique that could tell developers whether or not the removal of a barrier
could possibly lead to the violation of some correctness property would be very
useful. While we certainly are not able to answer this question in general, we will
take a step in that direction in Section 10. There, we give conditions under which
the removal of all barriers from a program cannot possibly introduce deadlocks or
partial deadlocks. In Section 11 we also show that if the program with barriers is
deadlock-free, then in any execution all the channel buffers must be empty whenever
all the processes are “inside” a barrier.

Section 12 deals with a particularly simple class of models of MPI programs,
which we call locally deterministic. These are models in which there are not only
no wildcard receives, but no non-deterministic local choices in the state machine for
any process. The only possible states in one of these state machines with multiple
departing transitions are those just before a receive (or send-receive) operation,
and the different transitions correspond to the various possible values that could
be received.

If one begins with an MPI program with no wildcard receives and no non-
deterministic functions (we call this a locally deterministic program), and if one
fixes a choice of inputs and execution platform for the program, then one can al-
ways build a locally-deterministic model of that program. In some cases, it may
also be possible to build a locally deterministic model of the program that is inde-
pendent of the choices of inputs or platform.

In any case, given a locally deterministic model, we show that the analysis is
greatly simplified. For, even though there may still exist many possible executions
of the model—due to the interleaving and buffering choices allowed by MPI—these

3

executions cannot differ by much. In particular, the same messages will always be
sent on each channel, and the same paths will be followed in each state machine
(except possibly for the order in which the send and receive operations take place
within a send-receive call). The questions concerning deadlock are shown to be
easily answered for locally deterministic models: one need only examine a single
execution of the model to verify freedom from deadlock on all executions of that
model.

These last results have enormous practical implications. They imply, for exam-
ple, that given a locally deterministic program, and a fixed platform, that one may
check that the program is, say, deadlock-free on given input by executing it only
once on that input, making any buffering and interleaving choices one likes. There
is no need to explore the space of all possible program executions. Moreover, the
values of any variables calculated and the control path taken by any process on
that single execution will be the same on any execution (again, this is for a fixed
choice of input). Hence for verification purposes, a locally deterministic program
may be treated much like a sequential program.

2. Modeling Issues

2.1. Memory Model. Section 2.6 of the MPI specification ([2]) states that

[a]n MPI program consists of autonomous processes, executing their
own code, in an MIMD style. The codes executed by each process
need not be identical. The processes communicate via calls to MPI
communication primitives. Typically, each process executes in its
own address space, although shared-memory implementations of
MPI are possible. This document specifies the behavior of a parallel
program assuming that only MPI calls are used for communication.
The interaction of an MPI program with other possible means of
communication (e.g., shared memory) is not specified.

We will therefore take this as our definition of an MPI program, and just assume
throughout that there is no shared memory between any processes in the program.
Hence the only way one process can affect another is by invoking one of the MPI
functions.

Although the specification does allow for a process to be multi-threaded, to sim-
plify matters, we will also assume throughout that each process is single-threaded.

2.2. Communicators. Each of the MPI functions described here takes, as one of
its arguments, an MPI communicator. A communicator specifies a set of processes
which may communicate with each other through MPI functions. Given a commu-
nicator with n processes, the processes are numbered 0 to n − 1; this number is
referred to as the rank of the process in the communicator.

MPI provides a pre-defined communicator, MPI_COMM_WORLD, which repre-
sents the set of all processes. For simplicity, in this paper we will consider MPI
programs that use only this communicator, though in the future we hope to expand
our results to deal with arbitrary communicators.

2.3. Send and Receive. The semantics of the point-to-point communication func-
tions are described in [2, Chapter 3]. We summarize here the facts that we will
need.

4

MPI provides many ways to send a message from one process to another. Perhaps
the simplest is the standard mode, blocking send function, which has the form

MPI_SEND(buf, count, datatype, dest, tag, comm).

Here buf is the address of the first element in the sequence of data to be sent;
count is the number of elements in the sequence, datatype indicates the type of each
element in the sequence; dest is the rank of the process to which the data is to be
sent; tag is an integer that may be used to distinguish the message; and comm is
a handle representing the communicator in which this communication is to take
place.

One may think of the message data as being bundled up inside an “envelope.”
The envelope includes the rank of the sending process (the source), the rank of the
receiving process (the destination), the tag, and the communicator.

Likewise, there are different functions to receive a message that has been sent;
the simplest is probably the MPI blocking receive, which has the form

MPI_RECV(buf, count, datatype, source, tag, comm, status).

Here, buf is the address for the beginning of the segment of memory into which
the incoming message is to be stored. The integer count specifies an upper bound
on the number of elements of type datatype to be received. (At runtime, an over-
flow error will be generated if the length of the message received is longer than
count.) The integer source is the rank of the sending process and the integer tag
is the tag identifier. However, unlike the case of MPI_SEND, these last two pa-
rameters may take the wildcard values MPI_ANY_SOURCE and MPI_ANY_TAG,
respectively. The parameter comm represents the communicator, while status is
an “out” parameter used by the function to return information about the message
that has been received.

An MPI receive operation will only select a message for reception if the message
envelope matches the receive parameters in the following sense: of course, the
destination of the message must equal the rank of the process invoking the receive,
the source of the message must match the value of source (i.e., either the two
integers are equal, or source is MPI_ANY_SOURCE), the tag of the message must
match the value of tag (either the two integers are equal, or tag is MPI_ANY_TAG),
and the communicator of the message must equal comm. It is up to the user to
make sure that the data-type of the message sent matches the data-type specified
in the receive. (In fact, the message tag is often used to facilitate this.)

2.4. Blocking and Buffering. The MPI implementation may decide to buffer an
outgoing message. This means a send may complete before the receiving process
has received the message. Between the time the message is sent, and the time it
is received, the message may be thought of as existing in a system buffer. On the
other hand, the implementation may decide to block the sending process, perhaps
until the size of the system buffer becomes sufficiently small, before sending out the
message. Finally, the system may decide to block the sending process until both of
the following conditions are met: (a) the receiving process is at a matching receive,
and (b) there is no pending message in the system buffer that also matches that
receive. If the implementation chooses this last option, we say that it forces this
particular send to be synchronous.

5

In fact, this last scenario is the only time the specification guarantees that a
send that has been initiated will complete. We can also describe precisely the only
situation in which a receive that has been initiated is guaranteed to complete. Here
the situation is complicated by the fact that the specification allows for multiple
threads to run simultaneously within a single process, so that it is possible for a
single process to be in a state in which more than one receive has been initiated. If
we ignore this situation, then a receive that has been initiated must complete if (a)
there exists a matching message in the system buffer, or (b) there is no matching
message in the system buffer, but another process initiates a matching send (and
so the send and receive may execute synchronously).

2.5. Order. Section 3.5 of the specification imposes certain restrictions concerning
the order in which messages may be received:

Messages are non-overtaking: If a sender sends two messages in
succession to the same destination, and both match the same re-
ceive, then this operation cannot receive the second message if the
first one is still pending. If a receiver posts two receives in succes-
sion, and both match the same message, then the second receive
operation cannot be satisfied by this message, if the first one is still
pending. This requirement facilitates matching of sends to receives.

These are the only guarantees made concerning order. So, for example, if two
different processes send messages to the same receiver, the messages may be received
in the order opposite that in which they were sent.

The order restrictions suggest natural ways to model process communication.
For example, for each triple

(sender, receiver, tag)

we may create a message channel that behaves as a queue. (We are assuming here
that the only communicator used is MPI_COMM_WORLD.) A send simply places
the message into the appropriate queue. The modeling of a receive is a bit more
complicated because of the non-determinism introduced by the wildcards. Without
wildcards, a receive simply removes a message from the queue specified by the
receive parameters. If the receive uses only the wildcard MPI_ANY_SOURCE, then
it is free to choose non-deterministically among the queues for the various senders.
However, if it uses the wildcard MPI_ANY_TAG, the situation is more complicated,
since the specification prescribes that for a fixed sender, the receive choose the
oldest matching message from among those with different tags. Hence if we allow
the use of MPI_ANY_TAG, the queues alone may not contain enough information
to model the state of the system buffer precisely.

One way to get around this would be to instead create a channel for each pair

(sender, receiver).

Now a receive must be able to pull out the oldest item in the channel with a match-
ing tag. While this is certainly possible (and easily expressed in modeling languages
such as Promela), it does complicate the modeling of the state enormously. For this
reason, we have chosen—in this paper—to ignore the possibility of MPI_ANY_TAG.
In fact, while our model can deal precisely with MPI_ANY_SOURCE, almost all of
the results presented here require that one does not use either wildcard.

6

2.6. Variations. The send and receive operations described above are called block-
ing for the following reason: after the return of a call to MPI_SEND, one is guaran-
teed that all the data has been copied out of the send buffer—either to the system
buffer or directly to the receiving process. Therefore it is safe to reuse the memory
in the send buffer, as this can no longer affect the message in any way. Likewise,
upon the return of an invocation of MPI_RECV, one is guaranteed that the in-
coming message has been completely copied into the receive buffer. Therefore it is
safe to immediately read the message from that buffer. Hence MPI_SEND “blocks”
until the system has completed copying the message out of the send buffer, and
MPI_RECV “blocks” until the system has completed copying the message into the
receive buffer.

MPI also provides non-blocking send and receive operations. A non-blocking send
may return immediately—even before the message has been completely copied out
of the send buffer. A non-blocking send operation returns a “request handle”; a
second function (MPI_WAIT) is invoked on the handle, and this will block until the
system has completed copying the message out of the buffer. By decomposing the
send operation in this way, one may achieve a greater overlap between computation
and communication, by placing computational code between the send and the wait.
The non-blocking receive is similar.

In addition, both the blocking and non-blocking sends come in several modes.
We have described the standard mode, but there are also the synchronous mode,
buffered mode, and ready mode variants. The synchronous mode forces the send to
block until it can execute synchronously with a matching receive, the buffered mode
always chooses to buffer the outgoing message (as long as sufficient space is available
in the system buffer), and the ready mode can be used as long as a matching receive
will be invoked before the send is (else a runtime error is generated).

In this paper we are concerned only with the blocking operations and the stan-
dard mode send; we hope to extend these results to the more general non-blocking
operations and the other send modes in future work. Nevertheless, the results here
may still have some bearing on MPI programs that use the buffered and synchro-
nous mode blocking sends. For any MPI program that satisfies a property P on
all possible executions must necessarily satisfy P on all possible executions after
any or all of the MPI_SEND statements are replaced with their synchronous or
buffered mode variants. This is because the specification always allows an MPI
implementation to choose between buffering or synchronizing an MPI_SEND. In
fact, a program that depends upon specifying the buffered or synchronous mode
for correctness should probably be considered “unsafe,” and it may be reasonable to
expect programmers to design and verify their programs using the standard mode,
and only after that change to one of the other two modes (perhaps for reasons of
performance).

The ready mode is special: it is possible that a correct program will break if a
standard mode send is replaced with a ready mode send, so the results of this paper
will not directly apply to this case.

2.7. Send-Receive. One often wishes to have two processors exchange data: pro-
cess 0 sends a message to process 1 and receives from process 1, while process 1
sends to 0 and receives from 0. More generally, one may wish to have a set of
processors exchange data in a cyclical way: process 0 sends to 1 and receives from
n, 1 sends to 2 and receives from 0, . . ., n receives from n − 1 and sends to 0.

7

In both cases, each process must execute one send and one receive. One must be
careful, however: if this is coded so that each process first sends, then receives,
the program will deadlock if the MPI implementation chooses to synchronize all
the sends. While there are ways to get around this, the situation occurs frequently
enough that MPI provides a special function that executes a send and a receive in
one invocation, without specifying the order in which the send and receive are to
occur. The semantics are defined so that execution of this function is equivalent to
having the process fork off two independent threads—one executing the send, the
other the receive. The function returns when both have completed.

This function has the form

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag, comm, status)

The first 5 parameters are the usual ones for send, the next 5 together with status
are the usual ones for receive, and comm specifies the communicator for both the
send and receive.

2.8. Barriers. The function

MPI_BARRIER(comm)

is used to force all processes in the communicator comm to synchronize at a certain
point. Upon invocation, we say that a process has entered the barrier. That process
is then blocked until all the processes (in the communicator) are “inside” the barrier
(i.e., have invoked but not yet returned from a call to the barrier function). Once
this happens, the function may return, and we say that the process exits the barrier.

3. Models

In this section, we describe precisely what we mean by a model of an MPI
program.

3.1. Context. First, we describe what we call a context. This is a tuple

C = (Proc,Chan, sender, receiver,msg, loc, com).

We describe each of these components in turn.
First, Proc is a finite set. It represents the set of processes in the MPI program.
Second, Chan is also a finite set, representing the set of communication channels.

Next, sender and receiver are functions from Chan to Proc. The idea is that each
channel is used exclusively to transfer messages from its sender process to its receiver
process. (Recall from Section 2 that, in creating a model from code, we intend to
make one channel for each triple (sender, receiver, tag). It is because of the tags
that we allow the possibility of having more than one channel from one process to
another.)

Next, msg is a function that assigns, to each c ∈ Chan, a (possibly infinite)
nonempty set msg(c), representing the set of messages that can be sent over channel
c.

Now loc is a function that assigns, to each p ∈ Proc, a (possibly infinite) set
loc(p), representing the set of local events for process p. We require that

p 6= q ⇒ loc(p) ∩ loc(q) = ∅.

Finally, com is the function that assigns, to each p ∈ Proc, the set consisting of
all triples (c, send, x), where c ∈ Chan and sender(c) = p, and x ∈ msg(c), together

8

with all triples (d, receive, y), where d ∈ Chan and receiver(d) = p, and y ∈ msg(d).
This is the set of all communication events for p. We abbreviate (c, send, x) as c!x
and (d, receive, y) as d?y. The first represents the event in which process p inserts
message x into channel c, and the second represents the event in which p removes
message y from d.

We also require that loc(p) ∩ com(q) = ∅ for all p, q ∈ Proc, and we define

event(p) = loc(p) ∪ com(p).

That completes the definition of a context C.

3.2. MPI State Machines. Suppose we are given a context C as above and a
p ∈ Proc. We will define what we mean by an MPI state machine for p under C.
This is a tuple

M = (States,Trans, src, des, label, start,End).

We define the components of M in order.
First, States is a (possibly infinite) set. It represents the set of possible states in

which process p may be during execution.
Second, Trans is a (possibly infinite) set, representing the set of possible transi-

tions from one state of p to another during execution. Now, src and des are just
functions from Trans to States. These are interpreted as giving the source state and
destination state, respectively, for a transition.

Next, label is a function from Trans to event(p).
Finally, start is an element of States, and End is a (possibly empty) subset of

States. The former represents the initial state of process p, and elements of the latter
represent the state of p after process termination. We allow the possibility that
start ∈ End. Furthermore, we require that there is no t ∈ Trans with src(t) ∈ End.

We are not quite finished with the definition of MPI state machine. We also
require that for each u ∈ States, exactly one of the following hold:

(i) The state u ∈ End. We call this a final state.
(ii) The state u 6∈ End, there is at least one t ∈ Trans with src(t) = u, and, for

all such t, label(t) ∈ loc(p). In this case we say u is a local-event state.
(iii) There is exactly one t ∈ Trans such that src(t) = u, and label(t) is a

communication event of the form c!x. We say u is a sending state.
(iv) There is a nonempty subset R of Chan with receiver(d) = p for all d ∈ R,

such that the restriction of label to the set of transitions departing from u

is a 1-1 correspondence onto the set of events of the form d?y, where d ∈ R

and y ∈ msg(d). We say u is a receiving state.
(v) (See Figure 1.) There is a c ∈ Chan, a nonempty subset R of Chan, an

x ∈ msg(c), a state u′, and states v(d, y), and v′(d, y), for all pairs (d, y)
with d ∈ R and y ∈ msg(d), such that the following all hold:

– For all d ∈ R, sender(c) = p and receiver(d) = p.
– The states u, u′, and the v(d, y) and v′(d, y) are all distinct.
– The set of transitions departing from u consists of one transition to u′

whose label is c!x, and, for each (d, y), one transition labeled d?y to
v(d, y). Furthermore, these are the only transitions terminating in u′

or v(d, y).
– For each (d, y), there is precisely one transition departing from v(d, y),

it is labeled c!x, and it terminates in v′(d, y).
9

?>=<89:;u

c!x

����
��

��
��

��
��

d?y1

��
44

44
44

44
4

d?y2

''OOOOOOOOOOOOOOOOOOOO

d?y3

&&
?>=<89:;u′

d?y1

��

d?y2

��
??

??
??

??
??

?? d?y3

((QQQQQQQQQQQQQQQQQQQQQQQ ?>=<89:;v1

c!x

yyrrrrrrrrrrrrrrrrr
?>=<89:;v2

c!x

wwoooooooooooooooooooo
?>=<89:;v3

c!x

yyrrrrrrrrrrrrrrrrr

?>=<89:;v′1
?>=<89:;v′2

?>=<89:;v′3

Figure 1. A send-receive state u with one receiving channel d.

– For each (d, y), there is a transition from u′ to v′(d, y), it is labeled
d?y, and these make up all the transitions departing from u′.

– For each (d, y), the only transitions terminating in v′(d, y) are the two
already mentioned: one from u′ and one from v(d, y).

We call u a send-receive state. Notice that u′ is a receiving state, and each
v(d, y) is a sending state.

This completes the definition of an MPI state machine for p under C.
Finally, a model of an MPI program is a pair M = (C,M), where C is a context

and M is a function that assigns, to each p ∈ Proc, an MPI state machine

Mp = (Statesp,Transp, srcp, desp, labelp, startp,Endp)

for p under C, such that

Statesp ∩ Statesq = ∅ = Transp ∩ Transq

for p 6= q. We will leave off the subscript “p” for the maps srcp, desp, and labelp,
since each transition is in precisely one Mp so there is no need to specify p.

A global state of M is a map U that assigns to each p ∈ Proc an element
Up ∈ Statesp.

We say that M has no wildcard receives if, in each Mp, the sets R for the
receiving or send-receive states all have cardinality one.

3.3. Building Models From Code. Let us briefly describe how our model relates
to actual program code. The idea of representing an ordinary sequential program
as a finite state machine goes back to the dawn of computer science. The basic idea
is that one creates a state for every possible combination of values of all variables,
including the program counter, which represents a position in the program code.
If there are functions then the call stack must also be included in the state, and if
there is a heap then this may also have to be represented. On the other hand, by
means of abstraction, one may include less information in the state and therefore
reduce the total number of states in the model.

In creating a model from code, one usually wishes to employ abstraction in
such a way that the resulting model is still conservative. This means that every
execution of the actual program is represented by an execution of the model, though
there may be additional executions of the model that do not correspond to actual
executions of the program. If one proves that a property holds on every execution

10

in a conservative model, then one is guaranteed that the property holds on every
execution of the program. On the other hand, if an execution of the model is found
that violates the property, there is the possibility that that execution is spurious,
i.e., it does not correspond to an actual execution of the program.

A state in an MPI state machine Mp represents the local state of process p—
the values of its variables and position counter, etc. A local transition represents a
change in state in p that does not involve any communication with other processes—
for example, the assignment of a new value to a variable. The labels on the local
transitions do not play a significant role in this paper. One could, for example, just
use a single label for all the local transitions in a process. On the other hand, if one
wishes to reason about particular local transitions in a correctness property, one
could use different local labels for those transitions so that they could be referenced
in the property specification.

There are several reasons why we allow local non-determinism in our models, i.e.,
a local-event state with more than one departing transition. One of these is the
result of abstraction. Suppose, for example, that we have chosen to abstract away
a variable x from the state, i.e., the local state no longer contains a component for
the value of x. Suppose now that there is a local state s, which represents a point
in the code just before a statement of the following form:

if (x == 0) then {...} else {...}.

If we want our model to be conservative then we must allow two transitions to
depart from s—one for each branch in this conditional statement—since this local-
event state does not “know” the value of x.

Other cases in which we might have multiple local transitions departing from
a state include the case where we wish the model to simultaneously represent the
same program operating on various inputs, and the case where the program code
uses an actual non-deterministic function, such as a function that returns a random
value.

All of this is standard, and so we concentrate now on what is particular to the
representation of MPI communication in our model.

As we have already pointed out, we create one channel in the model for each
triple

(sender, receiver, tag),

where sender and receiver are any processes for which the former might possibly
send a message to the latter, and tag is any tag that might be used in such a
communication. The order restrictions imposed by the MPI specification imply
that this channel should behave like a queue: the messages enter and exit it in
first-in, first-out order.

The sets msg(c) are likely candidates for abstraction. A typical MPI program
might send blocks of 100 floating point numbers across c. In this case we could, in
theory, use no abstraction at all, and take msg(c) to be the set of all vectors of length
100 of floating point numbers. We would then have a fully precise representation
of the messages being sent along c. While it might be useful to reason theoretically
about such a model, the size of the state space would probably make the model
intractable for automated finite-state verification. On the other end of the abstrac-
tion spectrum, we could take msg(c) to contain a single element, say msg(c) = {1}.
If the property we wish to verify cannot be influenced by the actual data in the
messages, this may be a perfectly reasonable abstraction. Of course, there are many

11

choices between these two extremes, and finding appropriate abstractions for the
program and property of interest is part of the art of model creation.

A sending state represents a point in code just before a send operation. At that
point, the local state of the process invoking the send contains all the information
needed to specify the send exactly: the value to be sent, the process to which the
information is to be sent, and the tag. After the send has completed, the state
of this process is exactly as it was before, except for the program counter, which
has now moved to the position just after the send statement. That is why there is
precisely one transition departing from the sending state.

A receiving state represents a point in code just before a receive operation.
Unlike the case for send, this process does not know, at that point, what value will
be received. The value received will of course change the state of this process—the
variable or buffer into which the data is stored will take on a new value or values.
Hence a transition to a different state must be included for every possible value
that could be received. If this is a wildcard receive (because MPI_ANY_SOURCE is
used as the source parameter in the code), then we must also allow a different set
of transitions for each of the possible senders.

A send-receive state represents a point in code just before a send-receive state-
ment. According to the MPI specification, the send and receive operations may be
thought of as taking place in two concurrent threads; we model this by allowing the
send and receive to happen in either order. If the send happens first, this process
then moves to a receiving state, whereas if the receive happens first, the process
moves to one of the sending states. After the second of these two operations oc-
curs, the process moves to a state that represents the completion of the send-receive
statement. Notice that there is always a “dual path” to this state, in which the
same two operations occur in the opposite order.

4. Execution Semantics

We will represent executions of a model of an MPI program as sequences of
transitions. For simplicity, our representation will not distinguish between the case
where a send and receive happen synchronously, and the case where the receive
happens immediately after the send, with no intervening events. It is clear that in
the latter case, the send and receive could have happened synchronously, as long
as the sending and receiving processes are distinct.

4.1. Basic Definitions. A sequence S = (x1, x2, . . .) may be either infinite or
finite. We write |S| for the length of S; we allow |S| = ∞ if S is infinite. By the
domain of S, we mean the set of all integers that are greater than or equal to 1 and
less than or equal to |S|. For i in the domain of S, define S|i = xi.

If S and T are sequences, and S is a prefix of T , we write S ⊆ T ; this allows the
possibility that S = T . If S is a proper prefix of T , we write S ⊂ T .

We also say T is an extension of S if S ⊆ T , and T is a proper extension of S
if S ⊂ T .

If S ⊆ T then we define a sequence T \ S as follows: if S = T then we let T \ S
be the empty sequence. Otherwise, S must be finite, and if T = (x1, x2, . . .), we let

T \ S = (x|S|+1, x|S|+2, . . .).
12

If A is a subset of a set ¡B, and S is a sequence of elements of B, then the
projection of S onto A is the sequence that results by deleting from S all elements
that are not in A.

If S is any sequence and n is a non-negative integer, then Sn denotes the sequence
obtained by truncating S after the nth element. In other words, if |S| ≤ n, then
Sn = S, otherwise, Sn consists of the first n elements of S.

We now define the execution semantics of a model of an MPI program. Fix a
model M = (C,M) as in Section 3.

Let S = (t1, t2, . . .) be a (finite or infinite) sequence of transitions (i.e., the
elements of S are in

⋃

p∈Proc
Transp), and let c ∈ Chan. Let (c!x1, c!x2, . . .) denote

the projection of
(label(t1), label(t2), . . .)

onto the set of events that are sends on c. Then define

Sentc(S) = (x1, x2, . . .).

This is the sequence of messages that are sent on c in S. The sequence Receivedc(S)
is defined similarly as the sequence of messages that are received on c in S.

We say that S is c-legal if for all n in the domain of S,

Receivedc(S
n) ⊆ Sentc(S

n).

This is exactly what it means to say that the channel c behaves like a queue. If S
is c-legal, we define

Queuec(S) = Sentc(S) \ Receivedc(S).

This represents the messages remaining in the queue after the last step of execution
in S.

Suppose next that we are given a sequence π = (t1, t2, . . .) in Transp for some
p ∈ Proc. We say that π is a path through Mp if π is empty, or if src(t1) = startp,
and des(ti) = src(ti+1) for all i ≥ 1 for which i+ 1 is in the domain of π.

Given any sequence S of transitions, and p ∈ Proc, we let S↓p denote the projec-
tion of S onto Transp. Now we may finally define precisely the notion of execution
prefix :

Definition 4.1. An execution prefix of M is a sequence S of transitions such that
(i) for each p ∈ Proc, S↓p is a path through Mp, and (ii) for each c ∈ Chan, S is
c-legal.

If π = (t1, . . . , tn) is a finite path through Mp, we let

terminus(π) =

{

des(tn) if n ≥ 1

startp otherwise.

Definition 4.2. Let S be a finite execution prefix of M. The terminal state of S
is the global state terminus(S) defined by terminus(S)p = terminus(S↓p).

4.2. Synchronous Executions.

Definition 4.3. Let S = (t1, t2, . . .) be an execution prefix and c ∈ Chan. We say
that S is c-synchronous if, for all i in the domain of S for which label(ti) is a send,
say c!x, the following all hold:

• i+ 1 is in the domain of S.
• label(ti+1) = c?x.

13

• sender(c) 6= receiver(c) or src(ti) is a send-receive state.

We say that S is synchronous if S is c-synchronous for all c ∈ Chan.

The idea is the following: we are representing executions of a model of an MPI
program as sequences of transitions. For simplicity, our representation does not
distinguish between the case where a send and receive happen synchronously, and
the case where the receive happens immediately after the send, with no intervening
events. In general, in the latter case, the send and receive could have happened syn-
chronously. The exception to this rule is the somewhat pathological case in which
a process sends a message to itself and then receives the message. If this is done
with an MPI_SEND followed by an MPI_RECEIVE, then that send can never happen
synchronously, as it is impossible for the process to be at two positions at once.
However, if it is done with an MPI_SENDRECV, it may happen synchronously since
the send and receive are thought of as taking place in two independent processes.
This is the reason for the third item in the list above.

4.3. SRC Equivalence and Associated Synchronous Prefixes. Let M be a
model of an MPI program, p ∈ Proc, and π = (t1, t2, . . .) a path through Mp.

Suppose that k and k+ 1 are in the domain of π and that u = src(tk) is a send-
receive state. Then one of tk, tk+1 is labeled by a send and the other by a receive.
Assume also that the sending and receiving channels are distinct. (If the sending
and receiving channels are the same, then we are in the case where a process is
sending a message to itself using the same sending and receiving tag.) We define
the dual path t̄k+1, t̄k by

u = src(t̄k+1)

des(t̄k+1) = src(t̄k)

label(t̄i) = label(ti) (i ∈ {k, k + 1}).

This is just the path around the send-receive diamond that performs the same send
and receive, but in the opposite order. Now let π′ be the sequence obtained from
π by replacing the subsequence (tk, tk+1) with the dual path (t̄k+1, t̄k). Then π′

is also a path, since the two subsequences start at the same state, and end at the
same state.

Definition 4.4. Let π and ρ be paths through Mp. If ρ can be obtained from π

by applying a (possibly infinite) set of transformations such as the one above, we
say that π and ρ are equivalent up to send-receive commutation, or src-equivalent,
for short, and we write π ∼ ρ.

Clearly, src-equivalence is an equivalence relation on the set of paths through
Mp. It is also clear that, if π ∼ ρ, then terminus(π) = terminus(ρ).

Lemma 4.5. Let S and T be execution prefixes for M. Let c ∈ Chan, p = sender(c),
and q = receiver(c). Suppose S↓p ∼ T ↓p and S↓q ∼ T ↓q. Then Sentc(S) =
Sentc(T), Receivedc(S) = Receivedc(T), and Queuec(S) = Queuec(T).

Proof. The definition of src-equivalence does not allow one to transpose a send and
receive that use the same channel. Hence for any fixed channel c, the transforma-
tions can not change the projections of the event-sequences onto c. �

We now define some relations on the set of paths through Mp.
14

Definition 4.6. If π and ρ are paths through Mp, we say π � ρ if π is a prefix of
a sequence that is src-equivalent to ρ. We write π ≺ ρ if π � ρ but π 6∼ ρ.

The following is easily verified:

Lemma 4.7. Let π, π′, ρ, ρ′, and σ be paths through Mp. Then

(1) If π ∼ π′ and ρ ∼ ρ′ then π � ρ ⇐⇒ π′ � ρ′.
(2) π � π.
(3) If π � ρ and ρ � σ then π � σ.
(4) If π � ρ and ρ � π then π ∼ ρ.

In other words, � induces a partial order on the set of src-equivalence classes of
paths through Mp.

Definition 4.8. If π and ρ are paths through Mp, we say that π and ρ are compa-
rable if π � ρ or ρ � π.

Suppose S is any finite execution prefix of M. Consider the set consisting of
all synchronous execution prefixes S′ with S′↓p � S↓p for all p ∈ Proc. This set
is finite, and it is not empty, as it contains the empty sequence as a member. Let
T be an element of this set of maximal length. We say that T is an associated
synchronous prefix for S.

5. Compatible Prefixes

Let M be a model of an MPI program.

Definition 5.1. Let ρ and σ be paths through Mp for some p ∈ Proc. We say
ρ and σ are compatible if there exists a path π through Mp such that ρ � π and
σ � π. We say that two execution prefixes S and T of M are compatible if S↓p is
compatible with T ↓p for all p ∈ Proc.

The following is not hard to verify:

Lemma 5.2. Suppose ρ = (s1, s2, . . .) and σ = (t1, t2, . . .) are compatible paths
through Mp. If |ρ| 6= |σ|, then ρ ≺ σ or σ ≺ ρ. If |ρ| = |σ| then either ρ ∼ σ or ρ
is finite, say |ρ| = n, and all of the following hold:

(i) terminus(ρn−1) = terminus(σn−1) is a send-receive state.
(ii) ρn−1 ∼ σn−1.
(iii) One of sn, tn is a send, and the other a receive.
(iv) If π = (s1, . . . , sn, t̄n) or π = (t1, . . . , tn, s̄n), where s̄n and t̄n are chosen

so that (sn, t̄n) is the dual path to (tn, s̄n), then ρ � π and σ � π.

See Figure 2 for an illustration of the different cases of compatibility described
in the Lemma. The last case (|ρ| = |σ| but ρ 6∼ σ) describes precisely the non-
comparable compatible paths.

Lemma 5.3. Let M be a model of an MPI program with no wildcard receives. Let
S = (s1, . . . , sn) be a finite execution prefix and T an arbitrary execution prefix for
M. Suppose Sn−1 is compatible with T and sn is a send or receive. Then S is
compatible with T .

15

��������

c!x

��		
		

		 d?y

��
55

55
55

��������

d?y
��

55
55

55
��������

c!x
��		

		
		

��������

��������

c!x

��		
		

		 d?y

��
55

55
55

��������

d?y
��

��������

c!x
��		

		
		

��������

��������

c!x

��		
		

		 d?y

��
55

55
55

��������

d?y
��

��������

c!x
����������

(a) (b) (c)

Figure 2. Compatible paths from a send-receive state. In each
case, ρ, the path on the left (excluding the dotted arrows), is com-
patible with σ, the path on the right. In (a), ρ ∼ σ. In (b), ρ ≺ σ.
In (c), ρ and σ are non-comparable compatible paths. In all cases,
π may be taken to be either of the paths from the top node to the
bottom node of the diamond.

Proof. Let s = sn. Say s ∈ Transp. Clearly T ↓r and S↓r are compatible for all
r 6= p. Write

S↓p = (sp
1, . . . , s

p
j , s)

T ↓p = (tp1, t
p
2, . . .).

Let σ = (sp
1, . . . , s

p
j).

By hypothesis, σ is compatible with T ↓p. If T ↓p � σ then T ↓p � σ � S↓p and
so T ↓p and S↓p are compatible and we are done. So there remain two possibilities
to consider: (a) σ ≺ T ↓p, and (b) σ and T ↓p are non-comparable compatible paths.

Consider first case (a). Then there is a proper extension τ of σ that is src-
equivalent to T ↓p. Let t = τ |j+1 and v = src(t). Then v = src(s) as well, since
if j = 0 then both s and t must depart from the start state, while if j > 0 then
either of these transitions may follow s

p
j . It suffices to show that S↓p and τ are

compatible. As this is certainly the case if s = t, we will assume s 6= t, and we have
the following configuration:

s
p

j
��◦v

s
����

��
�

t
��

??
??

?

◦ ◦

Suppose now that s and t are both receives. Since there are no wildcard receives,
s and tmust be receives on the same channel c; say label(s) = c?x and label(t) = c?y,
where c ∈ Chan and x, y ∈ msg(c). Say that s is the ith receive on c in S. Then t

is also the ith receive on c in τ . Hence

y = Receivedc(τ)|i = Receivedc(T)|i = Sentc(T)|i,

Similarly, x = Sentc(S
n−1)|i. However, Sn−1↓q and T ↓q are compatible, where

q = sender(c). So Sentc(S
n−1) and Sentc(T) are prefixes of a common sequence.

This means x = y, and so s = t, a contradiction.
Suppose instead that v is a send-receive state and that s is a receive and t a

send. If |τ | = j + 1 then S↓p and τ are non-comparable compatible paths, and we
are done. So suppose |τ | ≥ j + 2. Then label(τ |j+2) = c?y and label(s) = c?x for

16

some c ∈ Chan and x, y ∈ msg(c):

s
p

j
��◦v

s
c?x

����
��

�
t ��

??
??

?

◦ ◦

c?y����
��

�

◦

If s is the ith receive on c in S then τ |j+2 is the ith receive on c in τ , and, arguing
as in the paragraph above, we arrive at x = y. This means S↓p � τ and hence that
S↓p and τ are compatible.

Suppose instead that s is a send and t a receive. If |τ | = j + 1 then S↓p and τ

are non-comparable compatible paths and we are done. If not, then τ |j+2 is labeled
c!x and so S↓p � τ and again we are done.

We now turn to case (b). By Lemma 5.2, src(sp
j) = src(tpj) is a send-receive state

and |T ↓p| = j:

��◦s
p

j

����
��

� t
p

j

��
??

??
?

◦

s ��
??

??
? ◦

◦

Suppose first that sp
j is the send and tpj the receive. Then we must have label(s) =

c?x and label(tpj) = c?y for some c ∈ Chan and x, y ∈ msg(c). Arguing as before,

we have x = y, whence T ↓p � S↓p. If instead s
p
j is the receive and t

p
j is the send

then label(s) = label(tpj) and T ↓p � S↓p in this case as well. In either case, we have
shown that T ↓p and S↓p are compatible, completing the proof. �

6. Universally Permitted Extensions

Definition 6.1. Let S = (s1, . . . , sm) be a finite execution prefix for M. A finite
execution prefix T = (s1, . . . , sm, . . . , sn) extending S is said to be universally
permitted if for all i such that m < i ≤ n and si is a send, say label(si) = c!x, then
Queuec(T

i−1) is empty and label(si+1) = c?x.

The idea is that the universally permitted extensions are precisely the ones that
must be allowed by any legal MPI implementation, no matter how strict its buffering
policy.

Note that S is a universally permitted extension of itself. Notice also that if S
is synchronous, then a universally permitted extension of S is the same thing as a
synchronous extension of S.

We also observe that the set of sequences that may be appended to S to create
universally permitted extensions depends only on the states terminus(S)p and the
sequences Queuec(S) (and not on the history of how one arrived at those states and
queues). From this observation, it follows that if S and S′ are two finite execution
prefixes such that S↓p ∼ S′↓p for all p ∈ Proc, then there is a 1-1 correspondence
between the universally permitted extensions of S and those of S′, with the property
that if T corresponds to T ′ under this correspondence, then T \ S = T ′ \ S′.

Suppose now that we are given a fixed, finite, execution prefix T , and a second
execution prefix S that is compatible with T . We will often have a need to extend

17

����������

1

����
��

��
�

2 ,,���������������� ��������

3

c!1
ll

����������

5

����
��

��
�

6
��

::
::

::
:

��������

c?1

4

\\ ��������

d?1

7

\\

����������

8

����
��

��
�

9 ,,���������������� ��������

10

d!1
ll

Figure 3. A Model of an MPI Program with 3 Processes. Edges
with no label are local. Process 0 (left) chooses to either terminate,
or to move to a state from which it will send a message to Process
1 on channel c, then return to its start state and repeat. Process
2 (right) does the same for channel d. Process 1 (middle) chooses,
once and for all, whether to move to a state from which it will loop
forever receiving messages on c, or to do that for d.

S, in a universally permitted way, so that it maintains compatibility with T . The
following Proposition shows that, if we extend S far enough in this way, then we
reach a point where any further universally permitted extension must be compatible
with T . An even stronger statement can be made if T is synchronous. Like most
of the results in this paper, we require that there are no wildcard receives.

Proposition 6.2. Let M be a model of an MPI program with no wildcard receives.
Let S and T be compatible finite execution prefixes for M. Then there is a uni-
versally permitted finite extension S′ of S, with the property that any universally
permitted extension of S′ is compatible with T . Moreover, if T is synchronous, then
S′ may be chosen so that T ↓p � S′↓p for all p ∈ Proc.

Let us look at an example using the model illustrated in Figure 3. We will take

T = (2, 3, 2, 3, 1, 9, 10, 9, 10, 8, 6, 7).

To summarize T , first Process 0 sends two messages on c and terminates, then
Process 2 sends two messages on d and terminates, then Process 1 chooses the d
branch and receives one message on d. Suppose that

S = (2, 3, 9, 10).

Clearly, S is compatible with T , as S↓p ≺ T ↓p for all p. Now, there are many
universally permitted extensions of S that are not compatible with T , for example

(2, 3, 9, 10, 5, 4).

This cannot be compatible with T since the projection onto Process 1 begins with
local transition 5, while the projection of T onto that process begins with local
transition 6.

Let us consider however the following universally permitted extension of S:

S′ = (2, 3, 9, 10, 6, 7, 9, 10, 7, 2, 8).

We have S′↓0 ≺ T ↓0, T ↓1 ≺ S′↓1, and S′↓2 = T ↓2. Clearly, no extension of S′

could receive any messages on c, and therefore no universally permitted extension
18

|ρ|

dσ(ρ)

Figure 4. dσ(ρ) as a function of |ρ|

of S′ could send any more messages on c. This means that no universally permitted
extension of S′ can have any additional transitions in Process 0. Since in the other
two processes, S′ has already “covered” T , any universally permitted extension of S′

will be compatible with T . So S′ is the sort of prefix whose existence is guaranteed
by the Proposition.

The second part of the Proposition says that if T were synchronous, then there
would exist an S′ that “covers” T on every process.

The idea behind the proof of Proposition 6.2 will be to choose an S′ that maxi-
mizes its “coverage” of T . To make this precise, we introduce the following function.
Suppose ρ and σ are compatible paths through some Mp and ρ is finite. We want
to measure the part of σ that is not “covered” by ρ. Recall from Lemma 5.2 that if
|σ| > |ρ| we must have π ≺ σ, while if |σ| 6= |ρ|, are src-equivalent except possibly
for the last transition in each. Define

dσ(ρ) =











max(0, |σ| − |ρ|) if |σ| 6= |ρ|

1 if |σ| = |ρ| but σ ≁ ρ

0 if σ ∼ ρ.

Figure 4 shows the graph of dσ(ρ) as a function of the length of ρ for the case where
|σ| = 4. Note that dσ(ρ) is a non-increasing function of |ρ|.

It follows from this that if ρ′ is also compatible with σ, and ρ � ρ′, then dσ(ρ) ≥
dσ(ρ′).

We now turn to the proof of Proposition 6.2. Let S and T be as in the statement
of the Proposition. For any execution prefix R that is compatible with T , and
p ∈ Proc, define

dp(R) = dσ(p)(R↓p),

where σ(p) = T ↓p. Define

d(R) =
∑

p∈Proc

dp(R).

Next, consider the set of all universally permitted finite extensions of S that are
compatible with T , and let S′ be an element of that set that minimizes the function
d. (The set of such extensions is non-empty, as S is a universally permitted exten-
sion of itself.) It follows from the previous paragraph that if R is any extension of

19

S′ that is compatible with T then dp(R) ≤ dp(S
′) for all p ∈ Proc; so if R is also

universally permitted then in fact we must have dp(R) = dp(S
′) for all p.

Let S̃ = (s1, s2, . . .) be a universally permitted extension of S′. We will assume

S̃ is not compatible with T and arrive at a contradiction.
Let n be the greatest integer such that S̃n is compatible with T . Let σ = S̃n↓p,

where sn+1 ∈ Transp. By definition, σ and T ↓p are compatible. Moreover, n ≥
|S′| since S′ is compatible with T . Finally, by Lemma 5.3, sn+1 must be a local
transition.

Now precisely one of the following must hold: (i) T ↓p � σ, (ii) σ ≺ T ↓p, or (iii)
T ↓p and σ are non-comparable. However, (i) cannot be the case, for it would imply

that T ↓p � S̃n+1↓p, which in turn implies that T is compatible with S̃n+1, which
contradicts the maximality of n.

Nor can (iii) be the case. For then σ and T ↓p would be non-comparable com-
patible paths, and Lemma 5.2 would imply that terminus(σ) is either a sending or
receiving state. But since sn+1 is a local transition, terminus(σ) must be a local-
event state.

Hence σ ≺ T ↓p, i.e., σ is a proper prefix of a sequence τ that is src-equivalent to
T ↓p. Now let t = τ ||σ|+1, so that sn+1 and t are distinct local transitions departing
from the same state.

Consider the sequence R = (s1, . . . , sn, t). Then R is an execution prefix, it is
a universally permitted extension of S′, and it is compatible with T . However,
dp(R) ≤ dp(S

′) − 1, a contradiction, completing the proof of the first part of the
Proposition.

Now suppose that T is synchronous. By replacing S with S′, we may assume
that S and T are compatible and that any universally permitted extension R of
S is compatible with T and satisfies dp(R) = dp(S) for all p ∈ Proc. Write S =
(s1, . . . , sn) and T = (t1, t2, . . .).

We wish to show T ↓p � S↓p for all p. So suppose this is not the case, and let k

be the greatest integer such that T k↓p � S↓p for all p. Now let t = tk+1 and let p

be the element of Proc for which t ∈ Transp, and we have T k+1↓p 6� S↓p. We will
arrive at a contradiction by showing there exists a universally permitted extension
R of S with dp(R) < dp(S).

For each r ∈ Proc there is a path

σr = (sr
1, . . . , s

r
n(r))

through Mr that is src-equivalent to S↓r such that for all r 6= p,

T k↓r = T k+1↓r = (sr
1, . . . , s

r
m(r))

for some m(r) ≤ n(r), and such that

T k+1↓p = (sp
1, . . . , s

p

m(p), t).

We will consider first the case that m(p) = n(p).
Suppose t is a send, say label(t) = c!x. Then label(tk+2) = c?x, as T is synchro-

nous. Moreover, Queuec(T
k) is empty. Let q = receiver(c). If p = q then src(t) is a

send-receive state with the same sending and receiving channel, but let us assume
for now that p 6= q. Let u = src(tk+2), so that u = terminus(T k)q. Say that t is the
ith send on c in T k+1. Then there are i− 1 sends on c in S, and therefore no more
than i− 1 receives on c in S. This implies m(q) = n(q): if not, there would be at

20

least i receives on c in S. Hence Queuec(S
n) is empty. Now, whether or not p = q,

let
R = (s1, . . . , sn, t, tk+2).

Then R is a universally permitted extension of S with dp(R) < dp(S).
If t is local, we may take R = (s1, . . . , sn, t).
Suppose t is a receive, say label(t) = c?x, and say t is the ith receive on c in T .

Then tk must be the matching send, i.e., tk must be the ith send on c in T and
label(tk) = c!x. Let q = sender(c). Since T k↓q � S↓q, there must be at least i sends
on c in S, and Sentc(S)|i = x. As there are i − 1 receives on c in S↓p, we may
conclude that Queuec(S

n) begins with x. So

R = (s1, . . . , sn, t),

will suffice.
Now we turn to the case where m(p) < n(p). Since T k+1↓p and S↓p are

compatible and neither T k+1↓p � S↓p nor S↓p � T k+1↓p, Lemma 5.2 implies

n(p) = m(p) + 1 and one of s = s
p

m(p)+1, t is a send, and the other, a receive.

Suppose s is the send and t the receive. Then there is a receive transition t̄ with
label(t̄) = label(t) and src(t̄) = des(s). Arguing as in the case in which n(p) = m(p),
we see that the extension R = (s1, . . . , sn, t̄) is universally permitted, and satisfies
dp(R) < dp(S).

If, on the other hand, s is the receive and t the send, then tk+2 must be the receive
matching t. Let t̄ be the transition departing from des(s) (so label(t̄) = label(t)).
Arguing just as in the m(p) = n(p) case we see that we may take

R = (s1, . . . , sn, t̄, tk+2
),

completing the proof of Proposition 6.2.

Corollary 6.3. Let M be a model of an MPI program with no wildcard receives,
and let T be a finite execution prefix for M. Then there exists a finite synchronous
execution prefix S for M, with the property that any synchronous extension of S is
compatible with T .

Proof. Apply Proposition 6.2 to the empty sequence and T , and recall that for
a synchronous prefix, an extension is universally permitted if, and only if, it is
synchronous. �

7. Deadlock

The main result of this section is Theorem 7.4, which implies that, under cer-
tain hypotheses on the MPI program, to verify that the program is deadlock-free
it suffices to consider only synchronous executions. We also describe a stronger
property, which in essence says that no subset of the processes in the program can
ever deadlock, and prove an analogous theorem (Theorem 7.7) for that property.

7.1. Definitions. Let M = (C,M) be a model of an MPI program, Σ ⊆ Proc, and
let S be a finite execution prefix.

Definition 7.1. We say that S is potentially Σ-deadlocked if terminus(S)p 6∈ Endp

for some p ∈ Σ and S has no universally permitted proper extension.

It is not hard to see that S is potentially Σ-deadlocked if, and only if, all of the
following hold:

21

(i) For some p ∈ Σ, terminus(S)p 6∈ Endp.
(ii) For all p ∈ Proc, terminus(S)p is not a local-event state.
(iii) For each p ∈ Proc for which terminus(S)p is a receiving or a send-receive

state: for all c ∈ Chan for which there is a transition departing from
terminus(S)p labeled by a receive on c: Queuec(S) is empty, and, letting
q = sender(c), no transition departing from terminus(S)q is labeled by a
send on channel c.

We use the word “potentially” because it is not necessarily the case that a
program that has followed such a path will deadlock. It is only a possibility—
whether or not an actual deadlock occurs depends on the buffering choices made
by the MPI implementation at the point just after the end of the prefix. For
example, if the MPI implementation decides (for whatever reason) to force all
sends to synchronize at this point, then the program will deadlock. On the other
hand, if the implementation decides to buffer one or more sends, the program may
not deadlock. Hence the potentially deadlocked prefixes are precisely the ones for
which some choice by a legal MPI implementation would lead to deadlock. Since
our motivation is to write programs that will perform correctly under any legal MPI
implementation, and independently of the choices made by that implementation, we
most likely want to write programs that have no potentially deadlocked execution
prefixes. This observation motivates the following definition:

Definition 7.2. We say that M is Σ-deadlock-free if it has no potentially Σ-
deadlocked execution prefix. We say that M is synchronously Σ-deadlock-free if it
has no potentially Σ-deadlocked synchronous execution prefix.

We will also have occasion to talk about execution prefixes that must necessarily
result in deadlock, though the concept will not be as important to us as the one
above.

Definition 7.3. We say that S is absolutely Σ-deadlocked if terminus(S)p 6∈ Endp

for some p ∈ Σ and there is no proper extension of S to an execution prefix.

It is not hard to see that S is absolutely Σ-deadlocked if, and only if, statements
(i)–(iii) above and

(iv) For all p ∈ Proc, Up is not a sending or send-receive state.

all hold. We use the word “absolutely” here because a program that has followed
such a path must deadlock at this point—no matter the choices made by the MPI
implementation. For, at the end of the prefix, no process is at a point where it can
send a message or perform a local operation, and those processes ready to perform
a receive have no pending messages that they can receive.

We remark that both definitions of deadlock (potential and absolute) depend
only on knowing the src-equivalence class of S↓p for each p ∈ Proc. For we have
already observed, in Section 5, that the universally permitted extensions of an
execution prefix depend only on that information. It is clear that the set of arbitrary
extensions also depends only on that information.

The role of the set Σ in these definitions arises from the fact that, for some
systems, we may not wish to consider certain potentially deadlocked prefixes as
problematic. For example, if one process p represents a server, then often p is
designed to never terminate, but instead to always be ready to accept requests
from clients. In this case we probably would not want to consider an execution in

22

which every process other than p terminates normally to be a deadlock. For such
a system, Σ might be taken to be all processes other than the server.

7.2. The Deadlock Theorem. Our main result concerning deadlock is the fol-
lowing:

Theorem 7.4. Let M be a model of an MPI program with no wildcard receives.
Let Σ be a subset of Proc. Then M is Σ-deadlock-free if, and only if, M is syn-
chronously Σ-deadlock-free.

Proof. If M is Σ-deadlock-free then, by definition, it has no execution prefix that
is potentially Σ-deadlocked. So it suffices to prove the opposite direction.

So suppose M is synchronously Σ-deadlock-free, and that T is a finite execution
prefix with terminus(T)p 6∈ Endp for some p ∈ Σ. We must show there exists a
universally permitted proper extension T ′ of T .

By Corollary 6.3, there is a synchronous finite execution prefix S with the prop-
erty that any synchronous extension of S is compatible with T .

By hypothesis, either S↓p ∈ Endp for all p ∈ Σ, or there exists a synchronous
proper extension S′ of S. If the former is the case then we must have |S↓p| > |T ↓p|
for some p ∈ Σ, by compatibility. If the latter is the case, then replace S with S′

and repeat this process, until |S↓r| > |T ↓r| for some r ∈ Proc; this must eventually
be the case as the length of S is increased by at least 1 in each step.

Hence there is a finite synchronous execution prefix S, compatible with T , and
an r ∈ Proc for which |S↓r| > |T ↓r|. Now apply Proposition 6.2 to conclude
there exists a finite, universally permitted extension T ′ of T with the property that
S↓p � T ′↓p for all p ∈ Proc. We have

|T ↓r| < |S↓r| ≤ |T ′↓r|,

so T ′ must be a proper extension of T . �

7.3. Counterexample with Wildcard Receive. Theorem 7.4 fails if we allow
M to have wildcard receives. Consider the example with three processes illustrated
in Figure 5. It is not hard to see that the synchronous execution prefixes for this
model are all prefixes of the sequence {4, 1, 5, 6, 7, 3}, and none of these is poten-
tially deadlocked. However, the non-synchronous execution prefix {4, 5, 6, 7, 2} is
potentially deadlocked.

7.4. Partial Deadlock. Let M = (C,M) be a model of an MPI program, and let
S be a finite execution prefix. Let Σ be a subset of Proc.

Definition 7.5. We say S is potentially partially Σ-deadlocked (or Σ-ppd, for short)
if for some p ∈ Σ, terminus(S)p 6∈ Endp and there is no universally permitted proper
extension S′ of S with |S′↓p| > |S↓p|.

The idea here is that a program that has followed the path of S may now be in a
state in which process p will never be able to progress (though other processes may
continue to progress indefinitely). Again, p may be able to progress, depending
on the choices made by the MPI implementation. If the implementation allows
buffering of messages then p may be able to execute, but if the implementation
chooses, from this point on, to force all sends to synchronize, then p will become
permanently blocked.

23

��
/.-,()*+

1

c?1

��

2

d?1

��
/.-,()*+

3

d?1

��
/.-,()*+��������

��
/.-,()*+

4

c!1

��
/.-,()*+

5

e!1

��
/.-,()*+��������

��
/.-,()*+

6

e?1

��
/.-,()*+

7

d!1

��
/.-,()*+��������

Figure 5. Counterexample to Deadlock Theorem with wildcard receive

Definition 7.6. We say that M is free of partial Σ-deadlock if it has no execution
prefix that is Σ-ppd. We say that M is synchronously free of partial Σ-deadlock if
it has no synchronous execution prefix that is Σ-ppd.

It follows directly from the definitions that if M is free of partial Σ-deadlock
then it is Σ-deadlock-free. In other words, this new property is stronger than the
old. And although the weaker property is probably more familiar, it is often the
case that one expects the stronger version to hold for a large subset Σ of the set of
processes. In fact, quite often one expects most or all of the processes in an MPI
program to terminate normally on every execution, which certainly implies that
the program should be free of partial deadlock for that set of processes.

We will prove the following analogue of Theorem 7.4 for partial deadlock:

Theorem 7.7. Let M be a model of an MPI program with no wildcard receives.
Let Σ be a subset of Proc. Then M is free of partial Σ-deadlock if, and only if, M
is synchronously free of partial Σ-deadlock.

The proof of Theorem 7.7 will require the following, which will also come in
useful elsewhere:

Lemma 7.8. Let M be a model of an MPI program with no wildcard receives and
Σ ⊆ Proc. Assume M is synchronously free of partial Σ-deadlock. Then given any
finite execution prefix T for M, there exists a finite synchronous execution prefix S
satisfying all of the following:

(i) S is compatible with T .
(ii) T ↓p � S↓p for all p ∈ Σ.
(iii) T ↓p ≺ S↓p if p ∈ Σ and terminus(T) 6∈ Endp.

Proof. By Corollary 6.3, there is a synchronous finite execution prefix S with the
property that any synchronous extension of S is compatible with T . Fix p ∈ Σ.

By hypothesis, either terminus(S)p ∈ Endp, or there exists a synchronous proper
extension S′ of S satisfying |S↓p| < |S′↓p|. Replace S with S′ and repeat, until
terminus(S)p ∈ Endp or |S↓p| > |T ↓p|. At least one of those two conditions must

24

become true after a finite number of iterations, since in each iteration |S↓p| is
increased by at least 1.

Now we repeat the paragraph above for each p ∈ Σ. The result is a finite
synchronous prefix S that is compatible with T . Again, let p ∈ Σ.

If terminus(S)p ∈ Endp then by Lemma 5.2, S↓p and T ↓p must be comparable.
Since there are no transitions departing from final states, we must have T ↓p � S↓p,
with T ↓p ∼ S↓p if, and only if, terminus(T)p ∈ Endp. So both (ii) and (iii) hold.

If terminus(S)p 6∈ Endp then by construction, |S↓p| > |T ↓p|. Again by Lemma 5.2,
S and T must be comparable, whence T ↓p ≺ S↓p, and so (ii) and (iii) hold in this
case as well. �

Proof of Theorem 7.7. If M is free of partial Σ-deadlock then, by definition, it has
no execution prefix that is Σ-ppd. So it suffices to prove the opposite direction.

So suppose T is a finite execution prefix, p ∈ Σ, and terminus(T)p 6∈ Endp.
We must show there exists a universally permitted proper extension T ′ of T with
|T ↓p| < |T ′↓p|.

By Lemma 7.8, there is a finite synchronous execution prefix S that is compatible
with T and satisfies |S↓p| > |T ↓p|. Now apply Proposition 6.2 to conclude there
exists a finite, universally permitted extension T ′ of T with the property that
S↓r � T ′↓r for all r ∈ Proc. We have

|T ↓p| < |S↓p| ≤ |T ′↓p|,

which completes the proof. �

8. Application to Channel Depths

As we have seen, one of the important questions facing the analyst of an MPI
program is the upper bound to be placed on the depth of the communication chan-
nels. If a property has been verified under the assumption that the size of the
message buffers never exceeds, say, 4, how do we know that a violation will not be
found with 5?

The results on deadlock show that, in certain circumstances, we are justified in
assuming all communication is synchronous. For a model checker such as Spin,
that means we may use channels of depth 0, which may greatly reduce the size of
the state space that Spin will explore. In this section we attempt to gain some
control on the channel depths for other kinds of properties. The following result
could be applicable to a property that is an assertion on what types of states are
reachable.

Theorem 8.1. Let M be a model of an MPI program with no wildcard receives,
and Σ ⊆ Proc. Suppose M is free of partial Σ-deadlock. Let T be a finite execution
prefix of M such that, for all p ∈ Proc, terminus(T)p is not an immediate successor
to a send-receive state. Then there exists an execution prefix S of M satisfying all
of the following:

(1) S↓p ∼ T ↓p for all p ∈ Σ.
(2) S↓p � T ↓p for all p ∈ Proc \ Σ.
(3) For all c ∈ Chan for which receiver(c) ∈ Σ, if |Queuec(T)| = 0 then S is

c-synchronous, while if |Queuec(T)| > 0 then

|Queuec(S
i)| ≤ |Queuec(T)|

for all i in the domain of S.
25

Proof. By Lemma 7.8, there exists a finite synchronous execution prefix S̃ that
is compatible with T and satisfies T ↓p � S̃↓p for all p ∈ Σ. Moreover, for any
p ∈ Proc, since terminus(T)p is not an immediate successor to a send-receive state,

Lemma 5.2 implies that T ↓p � S̃↓p or S̃↓p � T ↓p.
We construct the sequence S as follows. We will begin by letting S be a copy of

S̃, and we will then delete certain transitions from S. Specifically, for each p ∈ Proc,
let

m(p) = min{|S̃↓p|, |T ↓p|},

and then delete from S all the transitions that are in Transp but that occur after the
m(p)th transition in Transp. Hence the resulting sequence S will have exactly m(p)
transitions in Transp for each p ∈ Proc. We will show that S has the properties
listed in the statement of the Theorem.

First we must show that S is indeed an execution prefix. It is clear that S↓p is
a path through Mp for each p, and that, if p ∈ Σ, S↓p ∼ T ↓p. Now fix a c ∈ Chan
and we must show that S is c-legal. To do this we argue as follows: let

r = |Receivedc(T)|

s = | Sentc(T)|

m = |Receivedc(S̃)| = | Sentc(S̃)|.

Now, if we project the sequence of labels of elements of S̃ onto the set of events
involving c, the result is a sequence of the form

C̃ = (c!x1, c?x1, c!x2, c?x2, . . . , c!xm, c?xm),

as S̃ is synchronous. Now let

r′ = min{r,m}

s′ = min{s,m}.

If we project the sequence of labels of elements of S onto the set of events involving
c, the result is the sequence C obtained from C̃ by deleting all the receive events
after the r′-th such event, and deleting all the send events after the s′-th such event.
But since r ≤ s, we have r′ ≤ s′. This means that

C = (c!x1, c?x1, . . . , c!xr′ , c?xr′ , c!xr′+1, . . . , c!xs′),

i.e., C begins with r′ send-receive pairs, followed by a sequence of s′ − r′ sends,
which is clearly c-legal. Moreover, if s′ = r′ then S is c-synchronous, while if not
then

|Queuec(S
i)| ≤ s′ − r′

for all i in the domain of S.
Now if receiver(c) ∈ Σ, then r′ = r, whence

s′ − r′ ≤ s− r = |Queuec(T)|.

So if |Queuec(T)| = 0 then s′ = r′ and, as we have seen, this implies that S is
c-synchronous. If |Queuec(T)| > 0, then for all i in the domain of S we have

|Queuec(S
i)| ≤ s′ − r′ ≤ |Queuec(T)|,

as claimed. �

26

We outline here one way Theorem 8.1 could prove useful. Suppose that R is a
set of global states, and one wishes to verify the property P that says that no state
in R is reachable. One could prove P in a series of steps. In the first step, one
should show that the model is free of partial deadlock (perhaps using Theorem 7.7
to reduce to the synchronous case). Next, one must somehow show that, if there
exists a violation to P , then there exists a violating execution prefix T in which, at
the end of execution of T , all the queues have size no greater than some fixed integer
d. Finally, one may verify P while bounding the channel depths by d. Theorem 8.1
justifies this last step, for, if there were a violation to P , then by the Theorem there
would have to be one for which the channel depths never exceed d at any stage.

9. Barriers

In this section, we will describe how the statement

MPI_BARRIER(MPI_COMM_WORLD)

in program code can be represented in our model. We will present this by starting
with a model of the program without barriers, then identifying those states that
correspond to a position in code just after a barrier statement, and then showing
how to modify the state machines to incorporate the barrier before those states.

Let M = (C,M) be a model of an MPI program. Suppose B is a set of states in
M, and we wish to insert “barriers” before each of these states. We assume that
B does not contain any startp. Also, we assume that B contains no immediate suc-
cessors of send-receive states, nor the immediate successors of those states. (These
are the u′, v, and v′ states of part (v) in the definition of MPI State Machine,
Section 3.2.) We exclude such states because we do not allow a barrier statement
before the process begins, nor “inside” an MPI_SENDRECV statement. We call
such a set B a barrier-acceptable state set for M.

Given M and B as above, we now describe how to create a new model MB =
(CB,MB) which represents the model M with barriers added just before the states
in B. Write

CB = (ProcB,ChanB , senderB , receiverB,msgB, locB, comB).

We define ProcB = Proc ∪ {β}, where β is some object not in Proc. We call β the
barrier process. The precise definition of CB is given in Figure 6(a), but the basic
idea is as follows: for all p ∈ Proc, we add two new channels ǫp and ξp to Chan, to

form ChanB. Channel ǫp sends a bit from p to β signifying that p is ready to enter
the barrier, and ξp sends a bit from β to p telling p it may exit the barrier.

Now we modify each state machine Mp to produce the state machine MB
p . The

precise definition of MB
p is given in Figure 6(b), and Figure 7 gives a graphical

representation of the transformation. The idea is simply to add, for each state v ∈
B, two new states b1(v), b2(v), and two new transitions t1(v), t2(v). The functions

srcB and desB are defined so that t1(v) leads from b1(v) to b2(v), and t2(v) leads
from b2(v) to v, and so that any transition in Mp that terminates in v is redirected
to terminate in b1(v) in MB

p . Transition t1(v) is labeled by ǫp!1 and t2(v) is labeled
by ξp?1. The state b2(v) will be referred to as a barrier state.

Now we describe the state machine MB
β for the barrier process, which is depicted

in Figure 8. We let Mβ = MB
β to simplify the notation. First, choose a total order

for Proc, say Proc = {p1, . . . , pN}, and let ǫi = ǫp and ξi = ξp, where p = pi. Now
27

(a) ProcB = Proc ∪ {β}

ChanB = Chan ∪
⋃

p∈Proc

{ǫp, ξp}

senderB(c) =











p if c = ǫp for some p ∈ Proc

β if c = ξp for some p ∈ Proc

sender(c) otherwise

receiverB(c) =











β if c = ǫp for some p ∈ Proc

p if c = ξp for some p ∈ Proc

receiver(c) otherwise

msgB(c) =

{

{1} if c = ǫp or c = ξp for some p ∈ Proc

msg(c) otherwise

locB(p) =

{

∅ if c = β

loc(p) otherwise

comB(p) =

{

{ǫp?1, ξp!1} if c = β

com(p) ∪ {ǫp!1, ξp?1} otherwise

(b) StatesB
p = Statesp ∪

⋃

v∈B

{b1(v), b2(v)}

TransB
p = Transp ∪

⋃

v∈B

{t1(v), t2(v)}

srcB
p (t) =











b1(v) if t = t1(v) for some v ∈ B

b2(v) if t = t2(v) for some v ∈ B

srcp(t) otherwise

desBp (t) =



















b2(v) if t = t1(v) for some v ∈ B

v if t = t2(v) for some v ∈ B

b1(v) if des(t) = v for some v ∈ B

desp(t) otherwise

labelBp (t) =











ǫp!1 if t = t1(v) for some v ∈ B

ξp?1 if t = t2(v) for some v ∈ B

labelp(t) otherwise

startBp = startp

EndB
p = Endp

Figure 6. (a) The relationship between the context C and the
context with barriers CB, and (b) the relationship between the
MPI state machine Mp and the state machine after adding barriers
MB

p .

28

◦1

��
77

77
77

77 ◦2

����
��

��
��

◦v

����
��

��
��

��
77

77
77

77

◦3 ◦4

⇒

◦1

��
33

33
33

33 ◦2

����
��
��
��

◦b1(v)

t1(v) ǫp!1

��
◦b2(v)

t2(v) ξp?1

��◦v

��

��
33

33
33

33

◦3 ◦4

Figure 7. Insertion of barrier before state v.

//◦
u1 ǫ1?1 //◦

u2 ǫ2?1 // . . . ǫN?1
//◦
v1 ξ1!1

//◦
v2 ξ2!1

// . . .
ξN−1!1

//◦
vN

ξN !1

jj

Figure 8. The barrier process Mβ .

Mβ has states ui and vi, for 1 ≤ i ≤ N . The start state is u1. For each i, there is
a transition si, departing from ui, with label(si) = ǫi?1. For i < N this terminates
in ui+1, while sN terminates in v1. For each i there is also a transition ti departing
from vi, labeled ξi!1. For i < N this terminates in vi+1, while tN terminates in u1.
Finally, let Endβ = ∅; the barrier process never terminates.

An example will illustrate how an MPI_BARRIER call in the code is represented
in our model. Consider an MPI program written in C and consisting of 3 processes,
with the following code occurring in Process 1:

MPI_Recv(buf, 1, MPI_INT, 2, 0, MPI_COMM_WORLD, stat);

MPI_Barrier(MPI_COMM_WORLD);

MPI_Send(buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

Hence Process 1 first receives an integer from Process 2, then participates in a
barrier, and then sends that integer to Process 0. Let us say that in our model we
will limit the possible values of this integer to the set {1, 2, 3}. Let c be the channel
used for sending messages from Process 2 to Process 1 with tag 0, and let d be the
channel used for sending messages from Process 1 to Process 0. Then the portion
of the state machine corresponding to this code appears in Figure 9.

The translation process described above does not explain how to translate code
with two or more consecutive barrier statements. However, we may always first
modify this code by inserting “null” statements between the consecutive barriers.
These null statements could be represented by local transitions in the state machine,
and then the process already described will work fine.

29

��������

c?1

zzuuuuuuuuuuuuuuuu

c?2

��

c?3

$$IIIIIIIIIIIIIIII

��������

ǫ1!1

��

��������

ǫ1!1

��

��������

ǫ1!1

����������

ξ1?1

��

��������

ξ1?1

��

��������

ξ1?1

����������

d!1

��

��������

d!2

��

��������

d!3

���������� �������� ��������

Figure 9. A process that receives a message, participates in a
barrier, and then sends a message.

Definition 9.1. We say that a global state U of MB is inside a barrier if Uβ is
the state v1 of Mβ.

Although the definition above does not make any mention of the states of the non-
barrier processes, we will see, in the following proposition, that, in any execution,
these must all be at barrier states whenever Mβ is at the state v1.

Proposition 9.2. Let S be a finite execution prefix for MB terminating inside a
barrier. Then for all p ∈ Proc, terminus(S)p is a barrier state. Moreover, there
exists k ≥ 1 such that for all p ∈ Proc,

|Receivedǫp
(S)| = | Sentǫp

(S)| = k,

and

|Receivedξp
(S)| = | Sentξp

(S)| = k − 1.

In particular, Queueǫp
(S) and Queueξp

(S) are empty for all p ∈ Proc.

Proof. For p ∈ Proc, let l(p) be the number of messages received on ǫp in S, and
l̄(p) the number of messages sent on ǫp in S. Let m(p) and m̄(p) be the analogous
numbers for ξp.

Let k = l(p1). By examining Mβ (see Figure 8), it is clear that l(p) = k and
m̄(p) = k−1 for all p ∈ Proc. Considering the construction of MB

p , we see that, for

all p, l̄(p) ≤ m(p) + 1, and equality holds if, and only if, terminus(S)p is a barrier
state. Hence

(1) k = l(p) ≤ l̄(p) ≤ m(p) + 1 ≤ m̄(p) + 1 = k − 1 + 1 = k.

So we must have equality throughout in equation (1), which completes the proof.
�

30

Proposition 9.3. Let S = (s1, . . . , sn) be a finite execution prefix for MB. Suppose
for some p ∈ Proc, and some n′ < n, sn′ is labeled ǫp!1, sn is labeled ξp?1, and for

all k, n′ < k < n, sk 6∈ TransB
p . Then for some k, n′ ≤ k < n, Sk terminates inside

a barrier.

Propositions 9.2 and 9.3, taken together, may be interpreted as a justification
that our representation of barriers corresponds to the semantics given in the MPI
specification. For the specification states that “MPI_BARRIER blocks the caller
until all group members have called it. The call returns at any process only after
all group members have entered the call” ([2, Section 4.3]). Proposition 9.3 shows
that in any execution in which a process enters and exits a barrier, at some point
in between the program must have been “inside a barrier,” while Proposition 9.2
established that being “inside a barrier” corresponds to every process being at a
barrier state, i.e., having entered but not yet exited a barrier.

Proof of Proposition 9.3. Let l be the number of messages received on ǫp in S, l̄ the
number sent on ǫp, and m and m̄ the analogous numbers for ξp. Define l′, l̄′,m′, m̄′

to be the analogous numbers for the sequence Sn′−1.
We know that l ≤ l̄ and m ≤ m̄, since the number of messages received on a

channel can never exceed the number sent. We know that l̄ = m because it is clear
from the construction of MB

p that the number of ǫp!1 events must equal the number
of ξp?1 events in any path that does not terminate in a barrier state. We also know
that m̄ ≤ l since in the cyclic path through Mβ the transition labeled ǫp?1 precedes
the one labeled ξp!1. Putting these together yields

l ≤ l̄ = m ≤ m̄ ≤ l,

which implies

(2) l = l̄ = m = m̄.

Similar reasoning yields

(3) l′ = l̄′ = m′ = m̄′.

Now, in the sequence S′ = (sn′ , . . . , sn) there occur only two events in MB
p ; one

of these is ǫp!1 and the other ξp?1. Hence

l̄ = l̄′ + 1

m = m′ + 1.

Putting these together with equations (2) and (3), we have

l = l̄ = l̄′ + 1 = l′ + 1

m̄ = m = m′ + 1 = m̄′ + 1.

This implies that in S′ there is exactly one occurrence of ǫp?1 and one occurrence

of ξp!1. Moreover, since l′ = m̄′, terminus(Sn′−1)p lies on the path joining v′p to up,
where v′p is the immediate successor to vp in Mβ (see Figure 8). This means that
in S′, the ǫp?1 must occur before the ξp!1. But any path in Mβ for which this is
the case must pass through v1. �

31

10. Removal of Barriers

A common question that arises with MPI programs is “when is it safe to remove
a barrier?” In this section, we show that, under appropriate hypotheses, at least
the removal of barriers can not introduce deadlocks into the program.

Theorem 10.1. Let M be a model of an MPI program with no wildcard receives,
and let B be a barrier-acceptable state set for M, and Σ a subset of Proc. Suppose
MB is Σ-deadlock-free (resp., free of partial Σ-deadlock). Then M is Σ-deadlock-
free (resp., free of partial Σ-deadlock).

To prove the Theorem, we first define a new model N . This is obtained by
modifying MB in a fairly simple way which we will now describe. We will only
change the values of the sender and receiver functions for certain channels, and we
will change the label function for certain transitions, but everything else, including
the state set, the transition set, and the src and des functions, will be exactly the
same in the two models.

First, we change the direction of each channel ξp, so that in the new model, this
channel carries messages from p to β, just like ǫp. Second, we change the labeling
function so that any transition that was labeled by ξp?1 in MB is labeled by ξp!1
in N , and similarly, any transition that was labeled by ξp!1 in MB is labeled by
ξp?1 in N .

Hence in N , the original processes send messages to the barrier process to both
enter and exit the barrier. Now, for arbitrary executions, this arrangement will not
necessarily function as a barrier, since the messages may all be buffered. However,
for synchronous executions, it will function as a barrier in exactly the same way
that this worked in MB. In our proof, N will act as a bridge between M and MB.

There is a 1-1 correspondence ψ from the set of synchronous execution prefixes
of N to the set of those of MB, defined as follows: suppose S = (t1, t2, . . .) is a
synchronous execution prefix of N . Suppose for some i, ti and ti+1 are labeled
by ξp!1 and ξp?1, respectively. By replacing each such subsequence (ti, ti+1) with
(ti+1, ti), we obtain a synchronous execution prefix ψ(S) for MB. The definition
of the inverse of ψ is clear. It is also clear that

S ⊆ T ⇐⇒ ψ(S) ⊆ ψ(T)

and that |S↓p| = |ψ(S)↓p| for all p ∈ ProcB. It follows from these observations
that S is potentially Σ-deadlocked (resp., Σ-ppd) if, and only if, ψ(S) is. We may
conclude that N is Σ-deadlock-free (resp., free of partial Σ-deadlock) if, and only
if, MB is, as Theorems 7.4 and 7.7 reduce these questions to the synchronous case.

We now turn to the relationship between M and N . We define a map θ from the
set of all finite execution prefixes of M to the set of those of N , as follows: suppose
S = (t1, . . . , tn) is a finite execution prefix for M. For each i for which des(ti) ∈ B,
insert, immediately after ti, the appropriate transitions labeled ǫp!1 and ξp!1. This
guarantees that we get paths through each state machine in N , and the resulting
sequence is still c-legal for each channel c since we only inserted send transitions.
Now, at the end of this prefix, there may be messages in the queues for the ǫp and
ξp, so we append the longest possible sequence of transitions from Transβ so that
the resulting sequence is still an execution prefix (i.e., we just let the barrier process
run until it reaches a state in which the channel for the unique outgoing transition
has an empty message queue). This results in an execution prefix θ(S) for N .

32

Observe that, by construction, terminus(θ(S))p = terminus(S)p for all p ∈ Proc.
In particular, terminus(θ(S))p does not have an outgoing barrier transition (i.e., a
transition labeled by a communication event involving an ǫp or a ξp).

We next define a map φ in the opposite direction—from the set of all finite
execution prefixes of N to the set of those of M—by simply deleting all the barrier
transitions. It is clear that φ ◦ θ is the identity, and that, if S ⊆ T are prefixes for
N , then φ(S) ⊆ φ(T). Furthermore, if T is a universally permitted extension of S
then φ(T) is a universally permitted extension of φ(S).

Now suppose N is Σ-deadlock-free, and we wish to show the same of M. Suppose
S is a finite execution prefix of M such that terminus(S)p 6∈ Endp for some p ∈ Σ.
Then terminus(θ(S))p 6∈ Endp as well. Hence there exists a universally permitted
proper extension T of θ(S). Moreover, the first transition t in T \ θ(S) must lie in
Transq for some q ∈ Proc, since, by the construction of θ(S), the barrier process is
blocked at the end of θ(S). As we have seen, t cannot be a barrier transition. It
follows that

φ(T) ⊃ φ(θ(S)) = S,

so φ(T) is a universally permitted proper extension of S. Hence M is Σ-deadlock-
free.

Suppose instead that N is free of partial Σ-deadlock, and we wish to show the
same of M. In this case we may choose T as above but with the additional require-
ment that |T ↓p| > |θ(S)↓p|. Again, it must be the case that the first transition t of
T ↓p \ θ(S)↓p is not a barrier transition. Hence

|φ(T)↓p| > |φ(θ(S))↓p| = |S↓p|,

and this shows that M is free of partial Σ-deadlock, completing the proof of The-
orem 10.1.

11. Emptiness of Channels Inside Barriers

We have already seen, in Proposition 9.2, that inside a barrier, the barrier chan-
nels ξp and ǫp must be empty. Now we will show that, under suitable restrictions
on the model, all channels must be empty inside a barrier.

Theorem 11.1. Let M be a model of an MPI program with no wildcard receives,
and B a barrier-acceptable state set for M. Let Σ be a nonempty subset of Proc.
Suppose MB is Σ-deadlock-free. Let S be a finite execution prefix for MB that
terminates inside a barrier. Let T be an associated synchronous prefix for S. Then
S↓p ∼ T ↓p for all p ∈ ProcB. In particular, Queuec(S) is empty for all c ∈ ChanB.

Proof. By Proposition 9.2, there is an integer k such that for each p ∈ Proc, there
are exactly k occurrences of ǫp?1 and k occurrences of ǫp!1 in S, and k−1 occurrences
of ξp?1 and ξp!1.

For each r ∈ ProcB , there is a path

πr = (sr
1, . . . , s

r
n(r)) ∼ S↓r

through MB
r and an integer m(r) in the domain of πr such that

T ↓r = (sr
1, . . . , s

r
m(r)).

Clearly we cannot have terminus(T)r ∈ Endr for any r, since no terminus(S)r is
an end state. Nor can terminus(T)r be a local-event state, since then we would

33

have n(r) > m(r) + 1 and sr
m(r)+1 is a local transition, and we could append this

transition to T .
Suppose m(β) = n(β). Then Propositions 9.2 and 9.3 imply m(r) = n(r) for all

r ∈ Proc, so T ↓r ∼ S↓r for all r, as required.
So let us assume that m(β) < n(β). We will arrive at a contradiction.
If T were potentially deadlocked then we would have terminus(T)r ∈ Endr for

some r, since Σ is non-empty. As this is not the case, T cannot be potentially dead-
locked. So there must exist p, q ∈ ProcB, and c ∈ ChanB, such that terminus(T)p

has an outgoing transition t labeled c!x and terminus(T)q has an outgoing transi-
tion t′ labeled c?x. Clearly m(p) < n(p), since πp terminates at a receiving state.
We claim that m(q) < n(q) as well. For if not, then m(q) = n(q), c = ξq and
p = β. So β is at the state with an outgoing transition labeled ξp!1. Moreover,
since m(q) = n(q), there are k − 1 occurrences of ξq?1 in T ↓q and therefore k − 1
occurrences of ξp!1 in T ↓β. This implies m(β) ≥ n(β), a contradiction.

Hence either sp

m(p)+1 is labeled c!x, or terminus(T)p is a send-receive state and

s
p

m(p)+2 is labeled c!x. Similarly, either sq

m(q)+1 is labeled c?y, or terminus(T)q is

a send-receive state and s
q

m(q)+2 is labeled c?y for some y ∈ msg(c). (We know

that the receiving channel must be c, since there are no wildcard receives.) Since
Receivedc(S) is a prefix of Sentc(S), and T is synchronous, we must have x = y.
Hence if we append t and then t′ to T , the result is a synchronous execution prefix
T ′ which is longer than T and satisfies T ′ � S, a contradiction. �

12. Local Determinism

12.1. Locally Deterministic Models. In this section, we will explore a partic-
ularly simple class of models, called locally deterministic models. We will show
that many of the common questions concerning execution have simple answers for
models in this class.

Definition 12.1. We say that a model M of an MPI program is locally deter-
ministic if it has no wildcard receives, and, for every local-event state u, there is
precisely one transition t with src(t) = u.

Note that there may still be states in a locally deterministic model with more
than one outgoing transition, namely, the receiving states, which have one transition
for each possible message that could be received, and the send-receive states, which
have an outgoing send transition as well as one outgoing receive transition for each
message. All other states, however, will have at most one outgoing transition.

Theorem 12.2. Suppose M is a locally deterministic model of an MPI program.
Then there exists an execution prefix S for M with the following property: if T is
any execution prefix of M, then for all p ∈ Proc, T ↓p � S↓p. In particular, any
two execution prefixes for M are compatible.

We construct the execution prefix S described in the statement of Theorem 12.2
using the following inductive procedure. Pick a total order on Proc, say Proc =
{p1, . . . , pN}. To begin, set S = (), the empty sequence, and let p = p1.

We define a sequence S′ as follows. If there is no s ∈ Transp such that the
sequence obtained by appending s to S is an execution prefix, let S′ = S. Otherwise,
we pick one such s as follows. Let U be the terminal state of S. If Up is a local-event
state, by hypothesis there is only one outgoing transition, so s is uniquely defined.

34

The same is true if Up is a sending state. If Up is a receiving state, then there is
precisely one channel c such that there is one outgoing transition, labeled c?x, for
each x ∈ msg(c). Only one of these can possibly be appended to S to yield a new
execution prefix—this is the one corresponding to the element x that is the first
element in the message channel queue for c after the last step of S. Finally, if Up

is a send-receive state, let s be the transition departing from Up labeled by a send.
Now let S′ be the sequence obtained by appending s to S.

Now let S = S′, p = p2, and repeat the paragraph above. Continue in this way,
and after pN cycle back to p1. Continue cycling around the processes in this way.
If one ever passes through N processes in a row without adding a transition to S,
then there can be no further extension of S (either because Up ∈ Endp for all p, or
because S is absolutely deadlocked) and the process stops with S finite. Otherwise,
this yields a well-defined infinite execution prefix S.

Before we turn to the proof of Theorem 12.2, we make two observations concern-
ing the execution prefix S = (s1, s2, . . .) defined above.

First, it cannot be the case that for some p ∈ Proc, S↓p is finite and terminates
at a local-event, sending, or send-receive state. For, in any of these cases, the first
time p is reached in the cyclic schedule after reaching this state, the local or send
transition would be available to append to S.

Second, suppose for some p ∈ Proc, S↓p is finite and terminates at a receiving
state u. Let n be the least integer such that si 6∈ Transp for all i > n. Let c be the
receiving channel for the receive transitions departing from u. Then Queuec(S

i)
is empty for all i ≥ n. For, if at some point the queue became non-empty, then
the next time after that point when p is reached in the cyclic schedule, one of the
receive transitions would be available to append to S.

We now turn to the proof of Theorem 12.2. Suppose there is an execution prefix
T = (t1, t2, . . .) such that for some p ∈ Proc, T ↓p 6� S↓p. It is not hard to see that
there must exist n > 0 such that

(4) T n↓p 6� S↓p

for some p. Choose n so that it is the least integer with this property, and replace
T with T n. Clearly (4) holds if p is the element of Proc for which tn ∈ Transp.

To summarize, we now have the following situation: there exist a finite execution
prefix T = (t1, . . . , tn), a p ∈ Proc, and for each r ∈ Proc, a path

πr = (sr
1, s

r
2, . . .)

through Mr and a non-negative integer m(r) in the domain of πr such that:

πr ∼ S↓r for all r ∈ Proc(5)

T n−1↓r = T ↓r = (sr
1, . . . , s

r
m(r)) for all r ∈ Proc \ {p}(6)

T n−1↓p = (sp
1, . . . , s

p

m(p))(7)

T ↓p 6� πp.(8)

We will obtain a contradiction.
Let n(r) denote the length of πr, allowing the possibility that n(r) = ∞. Let

u = src(tn).
Suppose u is a local-event or a sending state. Then there is a unique transi-

tion departing from u. As we have seen, it is not possible that n(p) is finite and
35

terminus(πp) = terminus(S↓p) = u. So we must have n(p) > m(p) and sp

m(p)+1 = tn.

But this means T ↓p is a prefix of πp, contradicting (8).
Suppose u is a send-receive state and that tn is a send, say label(tn) = c!x.

Since it is not possible that πp terminates at a send-receive state, we must have
n(p) > m(p), and, considering (8), sp

m(p)+1 is a receive. However, this means

that des(sp

m(p)+1) is a sending state, so n(p) > m(p) + 1 and s
p

m(p)+2 is a send

transition labeled c!x. Now let π′
p be the sequence obtained from π by replacing

s
p

m(p)+1, s
p

m(p)+2 with the dual path. Then π′
p ∼ πp and T ↓p is a prefix of π′

p,

contradicting (8).
Suppose now that tn is a receive, say label(tn) = c?x. We claim that for some

i ∈ {1, 2}, n(p) ≥ m(p) + i and s
p

m(p)+i
is a receive on c. For if not, then S↓p is

finite and

Receivedc(πp) ⊂ Receivedc(T),

whence

Receivedc(S) = Receivedc(S↓p) = Receivedc(πp)

⊂ Receivedc(T)

⊆ Sentc(T)

= Sentc(T ↓q)

⊆ Sentc(πq)

= Sentc(S↓q)

= Sentc(S).

In other words, Receivedc(S) is a proper prefix of Sentc(S). Moreover, terminus(S↓p) =
terminus(πp) is a receiving state on channel c. We have seen this is not possible, so
our claim must hold.

Now let q = sender(c) and let k be the length of Receivedc(T). Then

x = Receivedc(T)|k = Sentc(T)|k = Sentc(πq)|k = Sentc(S↓q)|k

= Sentc(S)|k = Received(S)|k.

Hence label(sp

m(p)+i
) = c?x.

Now, if i = 1, then T ↓p is a prefix of πp, while if i = 2, T ↓p is a prefix of a
sequence π′

p ∼ πp. In either case, we have T ↓p � πp, a contradiction, completing
the proof of Theorem 12.2.

Corollary 12.3. Suppose M is a locally deterministic model of an MPI program,
and Σ ⊆ Proc. Then M is Σ-deadlock-free if, and only if, there exists a synchronous
execution prefix T such that either T is infinite or T is finite and terminus(T)p ∈
Endp for all p ∈ Σ.

Proof. If M is Σ-deadlock-free then for any synchronous execution prefix T , either
terminus(T)p ∈ Endp for all p ∈ Σ or T has a proper synchronous extension. So we
may construct the required T inductively by beginning with the empty sequence
and applying this fact repeatedly.

Now suppose such a prefix T exists and we wish to show that M is Σ-deadlock-
free. By Theorem 7.4, it suffices to show that M has no synchronous execution
prefix S that is potentially Σ-deadlocked. So suppose S is a finite execution prefix

36

with terminus(S)p 6∈ Endp for some p ∈ Σ. We must show that S has a proper
synchronous extension.

If T is infinite, then there is an n > |S| such that T n is synchronous. Thus, for
some r ∈ Proc,

|T n↓r| > |S↓r|.

By Theorem 12.2, S and T n are compatible. So by Proposition 6.2, there exists a
synchronous extension S′ of S with the property that T n↓q � S′↓q for all q ∈ Proc.
Hence

|S↓r| < |T n↓r| ≤ |S′↓r|,

which shows that S′ is a proper extension of S, as required.
If T is finite and terminus(T)r ∈ Endr for all r ∈ Σ, then we may apply Propo-

sition 6.2 directly to S and T to conclude there is a finite synchronous exten-
sion S′ of S with T ↓q � S′↓q for all q ∈ Proc. This implies, in particular, that
terminus(S′)p ∈ Endp, which shows that S′ must be a proper extension of S. �

Corollary 12.4. Suppose M is a locally deterministic model of an MPI program,
and Σ ⊆ Proc. Then M is free of partial Σ-deadlock if, and only if, there exists a
synchronous execution prefix T such that for each p ∈ Σ, either T ↓p is infinite or
T ↓p is finite and terminus(T ↓p) ∈ Endp.

Proof. If M is free of partial Σ-deadlock then for any synchronous execution prefix
T and p ∈ Σ, either terminus(T)p ∈ Endp or T has a synchronous extension T ′

with |T ′↓p| > |T ↓p|. So we may construct the required T inductively by beginning
with the empty sequence and then cycling repeatedly through all elements of Σ,
applying this fact.

Now suppose such a prefix T exists and we wish to show that M is free of
partial Σ-deadlock. By Theorem 7.7, it suffices to show that M has no synchronous
execution prefix S that is Σ-ppd. So suppose S is a finite execution prefix, p ∈ Σ,
and terminus(S)p 6∈ Endp. We must show that S has a synchronous extension S′

with |S↓p| < |S′↓p|.
If T ↓p is infinite, then there is an n > 0 such that T n is synchronous and

|T n↓p| > |S↓p|.

By Theorem 12.2, S and T n are compatible. So by Proposition 6.2, there exists a
synchronous extension S′ of S with the property that T n↓q � S′↓q for all q ∈ Proc.
Hence

|S↓p| < |T n↓p| ≤ |S′↓p|,

as required.
If T ↓p is finite and terminus(T ↓p) ∈ Endp, then for some n > 0, T n is synchronous

and terminus(T n↓p) ∈ Endp. By Proposition 6.2, there is a finite synchronous
extension S′ of S with T n↓q � S′↓q for all q ∈ Proc. This implies, in particular,
that terminus(S′)p ∈ Endp, which shows that |S′↓p| > |S↓p|, as required. �

12.2. Locally Deterministic Programs. Keep in mind that “locally determin-
istic,” as used above, is a property of a model of a program, and not of the program
itself. It is certainly possible to have two models (even conservative ones) of the
same program for which one of those models is locally deterministic and the other
is not. This might depend, for example, on what kinds of abstraction each model
employs.

37

Let us describe a case where we can always create a locally deterministic model,
and see what conclusions we can draw from this. Suppose we are given an ac-
tual MPI program, in a language such as C or Fortran. Suppose this program
only makes use of the subset of MPI we are considering here (i.e., MPI_SEND,
MPI_RECV, MPI_SENDRECV, and MPI_BARRIER). Assume that the program uses
neither MPI_ANY_SOURCE nor MPI_ANY_TAG. And finally, assume it uses no
non-deterministic functions.

This last condition requires clarification. For in one sense, any numerical oper-
ation, such as addition of floating point numbers, may be non-deterministic, since
these operations may differ from platform to platform. However, it is almost always
the case that, for a given platform, the numerical operations are deterministic func-
tions, in the sense that, given the same inputs repeatedly, they will always return
the same output. (The platform may also specify other information not included
in the program itself, such as the number of bits used to represent a floating point
number.) So we will allow numerical operations in our program; what we want
to prohibit is, for example, a function that returns a random value, or any other
function whose behavior is not a function solely of the program state.

By a slight abuse of terminology, we will call such an MPI program a locally
deterministic program. Now when we use the term locally deterministic it will be
important to specify if one is talking about a program, or a model of that program.
For it is certainly possible for a locally deterministic program to have a model
that is not locally deterministic, particularly if that model attempts to capture the
behavior of the program on all possible inputs, or if the model makes generous use
of abstractions.

However, given (a) a locally deterministic MPI program, (b) a fixed platform,
and (c) the inputs to the program, we may always consider the “full precision”
model. This is the model in which there is a state for every possible combination of
values for all variables (including the program counter, the call stack, etc.) in each
process. Our assumptions ensure that this model will be locally deterministic, and
so the results of this section apply to it.

So suppose, for example, we want to check freedom from deadlock. Let us say
we execute the program once on the given platform and with the given inputs and
that the program terminates normally. Then we may conclude that, if run again
on that platform and with the same inputs, the program will never deadlock, and
will always terminate normally. Furthermore, we may conclude that it will always
produce the same output. The execution steps may be interleaved differently on
different executions, but for each local process, the path followed will be exactly
the same, and the messages sent and received will be the same, on every execution.

Of course, it is possible that when given other inputs the program may deadlock.
This may happen, for example, if the program branches on a condition that is a
function of one of the inputs. However, it is sometimes the case that we can use the
methods of this section to prove that a program is deadlock-free on any input. We
may be able to do this by abstracting away the values of the inputs when building
the (still conservative) model. If there are no branches that rely on the input values
then with suitable abstractions the model we build may be locally deterministic.
In this case we need only check that one execution of this model is deadlock-free,
and then we have shown that any execution of the program, with any inputs, will
not deadlock.

38

The concept of “platform” may be broadly construed. For example, one plat-
form might consist of a particular C compiler with a particular operating system
and machine architecture. However, we may also consider theoretical platforms:
for example, the platform in which the values of all floating point variables are
considered to be actual real numbers, integer variables actual integers, and so on.
It may not be unreasonable to require that the program behave correctly on this
kind of platform. Another example would be a platform in which all computations
are performed symbolically. In this scenario, all input and initial values may be
represented by symbols, and then an operation such as addition of two values x and
y would return a tree structure of the form (+ x y). Such a representation would
allow one to reason about very specific aspects of the calculations performed by the
program. In some cases it may be possible to build locally deterministic models
using this platform.

Of course, it is still possible that the MPI program might behave differently on
two different platforms, due to differences in the numerical operations. The same
could be true of even a sequential program. The results of this Section simply do
not address this sort of non-determinism. We have addressed instead the source of
non-determinism that arises from the choices available in buffering messages, and
in interleaving the execution steps of the various processes. What we have shown is
that, under appropriate hypotheses on the model, this source of non-determinism
can have no bearing on the eventual outcome of execution of that program.

References

[1] Holzmann, Gerard J., The Model Checker Spin, IEEE Trans. on Software Engineering, Vol.
23, No. 5, May 1997, pp. 279–295.

[2] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard (version 1.1).
Technical report, 1995. http://www.mpi-forum.org.

[3] Shumsky Matlin, Olga, Ewing L. Lusk, and William McCune, SPINning Parallel Systems

Software, in Bosnacki, Dragan and Stefan Leue (Eds.), Model Checking of Software, 9th
International SPIN Workshop, Grenoble, France, April 11–13, 2002, Proceedings, pp. 213–
220. Lecture Notes in Computer Science 2318, Springer, 2002.

[4] Snir, Marc, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra, MPI—The
Complete Reference: Volume 1, The MPI Core, second edition, The MIT Press, Cambridge,
2000.

Department of Computer Science, University of Massachusetts, Amherst, MA 01003

E-mail address: siegel@cs.umass.edu

Department of Computer Science, University of Massachusetts, Amherst, MA 01003

E-mail address: avrunin@cs.umass.edu

39

