
1

Hierarchical Multiagent
Reinforcement Learning

Mohammad Ghavamzadeh
Sridhar Mahadevan

CMPSCI Technical Report 04-02

January 25, 2004

Department of Computer Science
140 Governors Drive

University of Massachusetts
Amherst, Massachusetts 01003-4601

04-02.tex; 25/01/2004; 17:25; p.1

04-02.tex; 25/01/2004; 17:25; p.2

1

Abstract

In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to

speed up the acquisition of cooperative multiagent tasks. We introduce a hierarchical

multiagent reinforcement learning (RL) framework and propose a hierarchical multi-

agent RL algorithm called Cooperative HRL. In our approach, agents are cooperative

and homogeneous (use the same task decomposition). Learning is decentralized, with

each agent learning three interrelated skills: how to perform subtasks, which order to

do them in, and how to coordinate with other agents. We define cooperative subtasks

to be those subtasks in which coordination among agents significantly improves

the performance of the overall task. Those levels of the hierarchy which include

cooperative subtasks are called cooperation levels. Since coordination at high levels

allows for increased cooperation skills as agents do not get confused by low-level

details, we usually define cooperative subtasks at the high levels of the hierarchy.

This hierarchical approach allows agents to learn coordination faster by sharing

information at the level of cooperative subtasks, rather than attempting to learn

coordination at the level of primitive actions. We use two experimental testbeds to

study the empirical performance of the Cooperative HRL algorithm. One domain

is a simulated two-robot trash collection task. The other domain is a much larger

four-agent automated guided vehicle (AGV) scheduling problem. We compare the

performance of the Cooperative HRL with selfish HRL, as well as single-agent HRL

and standard Q-learning algorithms. In the AGV scheduling domain, we also show

that the Cooperative HRL outperforms widely used industrial heuristics, such as

“first come first serve”, “highest queue first” and “nearest station first”.

Later in this paper, we address the issue of rational communication behavior

among autonomous agents. The goal is for agents to learn both action and com-

munication policies that together optimize the task given the communication cost.

We extend the Cooperative HRL algorithm to include communication decisions and

propose a cooperative multiagent HRL algorithm called COM-Cooperative HRL. In

this algorithm, we add a communication level to the hierarchical decomposition of

the problem below each cooperation level. Before making a decision at a cooperative

subtask, agents decide if it is worthwhile to perform a communication action. A com-

munication action has a certain cost and provides each agent at a certain cooperation

level with the actions selected by the other agents at the same level. We demonstrate

the efficacy of the COM-Cooperative HRL algorithm as well as the relation between

the communication cost and the learned communication policy using a multiagent

taxi problem.1

Keywords: hierarchical reinforcement learning, cooperative multiagent systems,

coordination, communication.

04-02.tex; 25/01/2004; 17:25; p.3

2

1. Introduction

The analysis of multiagent systems is a topic of interest in both eco-
nomic theory and artificial intelligence (AI). While they have already
been widely studied in game theory, only recently they have started
to attract interest in AI, where their integration with existing methods
constitutes a promising area of research. An optimal policy in a multia-
gent system may depend on the behavior of other agents, which is often
not predictable. It makes learning and adaptation a necessary compo-
nent of the agent. Multiagent learning studies algorithms for selecting
actions for multiple agents coexisting in the same environment. This is
a complicated problem, because the behaviors of the other agents can
be changing as they also adapt to achieve their own goals. It usually
makes the environment non-stationary and often non-Markovian as
well [24]. Robosoccer, disaster rescue and e-commerce are examples of
challenging multiagent domains that need robust learning algorithms
for coordination among multiple agents or effectively responding to
other agents [41].

In addition to the existing methods in distributed AI and machine
learning, game theory also provides a framework for research in mul-
tiagent learning. The game theoretic concepts of stochastic games and
Nash equilibria [10, 26] are the foundation for much of the recent re-
search in multiagent learning. Learning algorithms use stochastic games
as a natural extension of Markov decision processes (MDPs) to multiple
agents. These algorithms can be summarized by broadly grouping them
into two categories: equilibria learners and best-response learners. Equi-
libria learners such as Nash-Q [14], Minimax-Q [20], Friend-or-Foe-Q
[21] and gradient ascent learner in [33] seek to learn an equilibrium of
the game by iteratively computing intermediate equilibria. They guar-
antee convergence to their part of an equilibrium solution regardless
of the behavior of the other agents. On the other hand, best-response
learners seek to learn the best response to the other agents. Although
not an explicitly multiagent algorithm, Q-learning [40] was one of the
first algorithms applied to multiagent problems [8, 38]. WoLF-PHC
[6] and joint-state/joint-action learners [5] are another examples of a
best-response learner. If an algorithm in which best-response learners
playing with each other converges, it must be to a Nash equilibrium
[6].

Multiagent learning has been recognized to be challenging for two
main reasons: 1) curse of dimensionality: the number of parameters
to be learned increases dramatically with the number of agents, and
2) partial observability: states and actions of the other agents which

04-02.tex; 25/01/2004; 17:25; p.4

3

are required for an agent to make decision are not fully observable and
inter-agent communication is usually costly.

Prior work in multiagent learning have addressed the curse of di-
mensionality in many different ways. One natural approach is to restrict
the amount of information that is available to each agent and hope to
maximize the global payoff by solving local optimization problems for
each agent. This idea has been addressed using value function based
reinforcement learning (RL) [32] as well as policy gradient based RL
[28]. Another approach is to exploit the structure in a multiagent prob-
lem using factored value functions. Guestrin et al. [12] integrate these
ideas in collaborative multiagent domains. They use value function ap-
proximation and approximate the joint value function as a linear com-
bination of local value functions, each of which relates only to the parts
of the system controlled by a small number of agents. Factored value
functions allow the agents to find a globally optimal joint-action using
a message passing scheme. However, this approach does not address
the communication cost in its message passing strategy.

Graphical models have also been used to address the curse of di-
mensionality in multiagent systems. These works seek to transfer the
representational and computational benefits that graphical models pro-
vide to probabilistic inference in multiagent systems and game theory
[17, 18]. The previous works established algorithms for computing Nash
equilibria in one-stage games, including efficient algorithms for comput-
ing approximate [15] and exact [22] Nash equilibria in tree-structured
games and convergent heuristics for computing Nash equilibria in gen-
eral graphs [25, 39].

The curse of dimensionality has also been addressed in multiagent
robotics. Multi-robot learning methods usually reduce the complexity
of the problem by not modeling joint states or actions explicitly, such
as works by Balch [2] and Mataric [24], among others. In such systems,
each robot maintains its position in the formation depending on the
locations of the other robots, so there is some implicit communication
or sensing of states and actions of the other agents. There has also been
work on reducing the parameters needed for Q-learning in multiagent
domains, by learning action values over a set of derived features [34].
These derived features are domain specific, and have to be encoded by
hand, or constructed by a supervised learning algorithm.

Almost all the above methods ignore this important fact that an
agent might not have free access to the other agents’ information that
are required to make its own decision. In general, the world is par-
tially observable for each agent in a distributed multiagent setting.
Partially observable Markov decision processes (POMDPs) have been
used to model partial observability in probabilistic AI. A POMDP

04-02.tex; 25/01/2004; 17:25; p.5

4

is a generalization of a MDP in which an agent must base its deci-
sions on incomplete information about the state of the environment.
The POMDP framework can be extended to allow for multiple dis-
tributed agents to base their decisions on their local observations.
This model is called decentralized POMDP (DEC-POMDP) and it has
been shown that the decision problem for a DEC-POMDP is NEXP-
complete [4]. One way to address partial observability in distributed
multiagent domains is to use communication to exchange required in-
formation. However, since communication can be costly, in addition
to its normal actions, each agent needs to decide about communica-
tion with other agents [42, 43]. Pynadath and Tambe [30] extended
DEC-POMDP by including communication decisions in the model, and
proposed a framework called communicative multiagent team decision
problem (COM-MTDP). Since DEC-POMDP can be reduced to COM-
MTDP with no communication by copying all the other model features,
decision problem for a COM-MTDP is also NEXP-complete [30]. The
trade-off between the quality of solution, the cost of communication,
and the complexity of the model is currently a very active area of
research in multiagent learning and planning.

Our approach in this paper differs from all the above in one key
respect, namely the use of hierarchy to speed up multiagent RL [23].
Hierarchical methods constitute a general framework for scaling RL to
large domains by using the task structure to restrict the space of policies
[3]. Several alternative frameworks for hierarchical RL (HRL) have been
proposed, including options [36], HAMs [27] and MAXQ [9]. The key
idea underlying our approach is that coordination1 skills are learned
much more efficiently if the agents have a hierarchical representation of
the task structure (algorithms for learning task-level coordination have
been developed in non-MDP approaches, see [35]). The use of hierarchy
speeds up learning in multiagent domains by making it possible to learn
coordination skills at the level of subtasks instead of primitive actions.
We assume each agent is given an initial hierarchical decomposition
of the overall task. However, learning is distributed since each agent
has only a local view of the overall state space. We define cooperative
subtasks to be those subtasks in which coordination among agents has
significant effect on the performance of the overall task. Agents coop-
erate with their teammates at cooperative subtasks and are unaware of
them at the other subtasks. Cooperative subtasks are usually defined
at highest level(s) of the hierarchy. Coordination at high-level provides
significant advantage over flat methods by preventing agents to get con-

1 We are primarily interested in cooperative multiagent problems in this paper.

04-02.tex; 25/01/2004; 17:25; p.6

5

fused by low-level details and reducing the amount of communication
needed for proper coordination among agents.

These benefits can potentially accrue with using any type of HRL
algorithm. However, it is necessary to generalize the HRL frameworks
to make them more applicable to multiagent learning. In this paper,
first we assume that communication is free and propose a hierarchi-
cal multiagent RL algorithm called Cooperative HRL. We apply this
algorithm to a simple two-robot trash collection task and a complex
four-agent automated guided vehicle (AGV) scheduling problem and
compare its performance and speed with other learning approaches
as well as several well-known industrial AGV heuristics. Later in the
paper, we address the issue of optimal communication, which is impor-
tant when communication is costly. We generalize the Cooperative HRL
algorithm to include communication decisions and propose a multiagent
HRL algorithm, called COM-Cooperative HRL. We study the empiri-
cal performance of this algorithm as well as the relation between the
communication cost and the communication policy using a multiagent
taxi problem.

The rest of this paper is organized as follows. Section 2 describes
a framework for hierarchical multiagent RL which is used to develop
the algorithms of this paper. In Section 3, we introduce a HRL algo-
rithm, called Cooperative HRL for learning in cooperative multiagent
domains. Section 4 presents experimental results of using the Cooper-
ative HRL algorithm in a simple two-robot trash collection task and
a more complex four-agent AGV scheduling problem. In Section 5,
we illustrate how to incorporate communication decisions in the Co-
operative HRL algorithm. In this section, after a brief introduction
of the communication framework in Section 5.1, we illustrate COM-
Cooperative HRL, a multiagent HRL algorithm with communication
decisions in Section 5.2. Section 6 presents experimental results of using
the COM-Cooperative HRL algorithm in a multiagent taxi domain.
Finally, Section 7 summarizes the paper and discusses some directions
for future work.

2. A Hierarchical Multiagent Reinforcement Learning
Framework

In this section, we introduce a hierarchical multiagent RL framework for
simultaneous learning in multiple levels of hierarchy. This is the frame-
work underlying the hierarchical multiagent RL algorithms presented in
this paper. Our treatment builds upon the existing approaches, includ-

04-02.tex; 25/01/2004; 17:25; p.7

6

ing the MAXQ value function decomposition [9], hierarchies of abstract
machines (HAMs) [27], and the options model [36].

2.1. Motivating Example

Consider sending a team of agents to pick up trash from trash cans
over an extended area and accumulate it into one centralized trash bin,
from where it might be sent for recycling or disposed. This is a task
which can be parallelized among agents in the team. An office (rooms
and connecting corridors) type environment with two agents (A1 and
A2) is shown in Figure 1. Agents need to learn three skills here. First,
how to do each subtask, such as navigate to trash cans T1 or T2 or
Dump, and when to perform Pick or Put action. Second, the order to
do the subtasks, for instance go to T1 and collect trash before heading
to Dump. Finally, how to coordinate with each other, i.e., agent A1 can
pick up trash from T1 whereas agent A2 can service T2.

A1, A2 : Agents
T1 : Location of the first trash can
T2 : Location of the second trash can
Dump : Location to deposit all trash

Collect Trash at T1 Collect Trash at T2

Find WallAlign with WallFollow Wall

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Children of
the top-level
Cooperative
Subtask (Root)

U =root

Cooperative SubtaskCooperation Level

Room3

Corridor

Dump

T2

T1

Room1

Room2

A2

A1

Figure 1. A multiagent trash collection task and its associated task graph.

The strength of the HRL methods (when extended to the multiagent
case) is that they can serve as a substrate for efficiently learning all
these three types of skills. In these methods, the overall task is decom-
posed into a collection of primitive actions and temporally extended
(non-primitive) subtasks that are important for solving the problem.
The non-primitive subtasks in the trash collection task are root (the
whole trash collection task), collect trash at T1 and T2, navigate to T1,
T2 and Dump. Each of these subtasks has a set of termination states,
and terminates when reaches one of its termination states. Primitive
actions are always executable and terminate immediately after execu-
tion. After defining subtasks, we must indicate for each subtask, which
other primitive or non-primitive subtasks it should employ to reach its
goal. For example, navigate to T1, T2 and Dump use three primitive
actions find wall, align with wall and follow wall. Collect trash at T1
should use two subtasks navigate to T1 and Dump plus two primitive
actions Put and Pick, and so on. All of this information is summarized

04-02.tex; 25/01/2004; 17:25; p.8

7

by the task graph shown in Figure 1. A key feature of any HRL method
is how it supports temporal abstraction, state abstraction and subtask
sharing [9].

− Temporal Abstraction: Navigate to T1 is a temporally extended
action that can take different numbers of steps to complete depend-
ing on the distance to T1.

− State Abstraction: While an agent is moving toward Dump, the
status of trash cans T1 and T2 are completely irrelevant, cannot
affect navigation to dump. Therefore, the status of the trash cans
T1 and T2 can be removed from the state space of the navigate to
Dump subtask.

− Subtask Sharing: If the system could learn how to solve the
navigate to Dump subtask once, then the solution could be shared
by both collect trash at T1 and collect trash at T2 subtasks.

2.2. Temporal Abstraction using SMDP

Hierarchical RL studies how lower level policies over subtasks or prim-
itive actions can themselves be composed into higher level policies.
Policies over primitive actions are semi-Markov when composed at the
next level up, because they can take variable stochastic amount of
time. Thus, semi-Markov decision processes (SMDPs) have become the
preferred language for modeling temporally extended actions. Semi-
Markov decision processes [13, 29] extend the MDP model in several
aspects. Decisions are only made at discrete points in time. State of the
system may change continually between decisions, unlike MDPs where
state changes are only due to the actions. Thus, the time between tran-
sitions may be several time units and can depend on the transition that
is made. These transitions are at decision epochs only. Basically, the
SMDP represents snapshots of the system at decision points, whereas
the so-called natural process describes the evolution of the system over
all times.

In this section, we extend the SMDP model to multiagent domain
when a team of agents controls the process, and introduce the mul-
tiagent SMDP (MSMDP) model. We assume agents are cooperative,
i.e., maximize the same utility over an extended period of time. The
individual actions of agents interact in that the effect of one agent’s
action may depend on the actions taken by the others. When a group
of agents perform temporally extended actions, these actions may not
terminate at the same time. Therefore, unlike the multiagent extension

04-02.tex; 25/01/2004; 17:25; p.9

8

of MDP (the MMDP model [5]), the multiagent extension of SMDP is
not straight forward.

Definition 1: A multiagent SMDP (MSMDP) consists of six com-
ponents (α,S,A,P ,R,τ) and is defined as follows:

The set α is a finite collection of n agents, with each agent j ∈ α having
a finite set Aj of individual actions. An element #a = 〈a1, . . . , an〉 of the
joint-action space A =

∏n
j=1 Aj represents the concurrent execution

of actions aj by each agent j. The components S, R and P are as in
a SMDP, the set of states of the system being controlled, the reward
function mapping S → &, and the state and action dependent multi-
step transition probability function P : S×N×S×A →[0, 1] (where N
is the set of natural numbers). P (s′, N |s,#a) denotes the probability that
joint-action #a will cause the system to transition from state s to state s′

in N time steps. Since individual actions in a joint-action are temporally
extended, they may not terminate at the same time. Therefore, the
multi-step transition probability function P depends on how we define
decision epochs and as a result, depends on the termination scheme τ
that is used in the MSMDP model. Three termination strategies τany,
τall and τcontinue for temporally extended joint-actions were investigated
in [31]. In τany termination scheme, the next decision epoch is when the
first action within the joint-action currently being executed terminates,
where the rest of the actions that did not terminate are interrupted.
When an agent completes an action (finishes collect trash at T1 by
putting trash in Dump), all other agents interrupt their actions, the
next decision epoch occurs and a new joint-action is selected (agent A1
chooses to collect trash at T2 and agent A2 decides to collect trash at
T1). In τall termination scheme, the next decision epoch is the earliest
time at which all the actions within the joint-action currently being
executed have terminated. When an agent completes an action, it waits
(takes the idle action) until all the other agents finish their current
actions. Then, next decision epoch occurs and agents choose next joint-
action together. In both these termination strategies, all agents make
decision at every decision epoch. τcontinue termination scheme is similar
to τany in the sense that the next decision epoch is when the first action
within the joint-action currently being executed terminates. However,
the other agents are not interrupted and only terminated agents select
new actions. In this termination strategy, only a subset of agents choose
action at each decision epoch. When an agent completes an action, next
decision epoch occurs only for that agent and it selects its next action
given the actions being performed by the other agents. !

04-02.tex; 25/01/2004; 17:25; p.10

9

The three termination strategies described above are the most com-
mon, but not the only termination schemes in cooperative multiagent
activities. A wide range of termination strategies can be defined based
on them. Of course, all these strategies are not appropriate for every
multiagent task. We categorize termination strategies as synchronous
and asynchronous. In synchronous schemes, such as τany and τall, all
agents make a decision at every decision epoch and therefore we need
a centralized mechanism to synchronize agents at decision epochs. In
asynchronous strategies, such as τcontinue, only a subset of agents make
decision at each decision epoch. In this case, there is no need for a
centralized mechanism to synchronize agents and decision making can
take place in a decentralized fashion. Since our goal is to design de-
centralized multiagent RL algorithms, we use the τcontinue termination
scheme for joint-action selection in the hierarchical multiagent model
and algorithms presented in this paper.

While SMDP theory provides the theoretical underpinnings of tem-
poral abstraction by allowing for actions that take varying amounts of
time, the SMDP model provides little in the way of concrete representa-
tional guidance which is critical from a computational point of view. In
particular, the SMDP model does not specify how tasks can be broken
up into subtasks, how to define policy for subtasks, how to decompose
value function etc. We examine these issues in the next sections.

2.3. Hierarchical Task Decomposition

Mathematically, a task hierarchy such as the one illustrated in Section
2.1 can be modeled by decomposing the overall task MDP M , into a
finite set of subtasks {M0,M1, . . . ,Mn}, where M0 is the root task and
solving it solves the entire MDP M .

Definition 2: Each non-primitive subtask i consists of five components
(Si, Ii, Ti, Ai, Ri):

− Si is the state space for subtask i. It is described by those state
variables that are relevant to subtask i. The range of the state
variables describing Si might be a subset of their range in S, the
state space of the overall task MDP M (state abstraction).

− Ii is the initiation set for subtask i. Subtask i could start only in
states belong to Ii.

− Ti is the set of terminal states for subtask i. Subtask i terminates
when it reaches a state in Ti. The policy for subtask i can only be
executed if the current state s belongs to (Si − Ti).

04-02.tex; 25/01/2004; 17:25; p.11

10

− Ai is the set of actions that can be performed to achieve subtask
i. These actions can either be primitive actions from A (the set of
primitive actions for MDP M) or they can be other subtasks.

− Ri is the reward function of subtask i. !

Each primitive action a is a primitive subtask in this decomposition,
such that a is always executable and it terminates immediately after
execution.

2.4. Policy Execution

The goal is to learn a policy for every subtask in the hierarchy. It gives
us a policy for the overall task. This collection of policies is called a
hierarchical policy.

Definition 3: A hierarchical policy π is a set with a policy for each of
the subtasks in the hierarchy: π = {π0, . . . ,πn}.

The hierarchical policy is executed using a stack discipline similar to
ordinary programming languages. Each subtask policy takes a state
and returns the name of a primitive action to execute or the name of a
subtask to invoke. When a subtask is invoked, its name is pushed onto
the stack and its policy is executed until it enters one of its terminal
states. When a subtask terminates, its name is popped off the stack. If
any subtask on the stack terminates, then all subtasks below it are im-
mediately aborted, and control returns to the subtask that had invoked
the terminated subtask. Hence, at any time, root subtask is located at
the bottom and the subtask which is currently being executed is located
at the top of the stack. Under a hierarchical policy π, we define a multi-
step transition probability function P π

i : Si × N×Si →[0, 1] for each
subtask i in the hierarchy, where P π

i (s′, N |s) denotes the probability
that action πi(s) will cause the system to transition from state s to
state s′ in N primitive steps.

2.5. Multiagent Setup

In our hierarchical multiagent framework, we assume that there are n
agents in the environment, cooperating with each other to accomplish
a task. The designer of the system uses his/her domain knowledge to
recursively decomposes the overall task into a collection of subtasks
that he/she believes are important for solving the problem. This in-
formation can be summarized by a directed acyclic graph called the
task graph. We assume that agents are homogeneous, i.e., all agents

04-02.tex; 25/01/2004; 17:25; p.12

11

are given the same task hierarchy.2 At each level of the hierarchy,
the designer of the system defines cooperative subtasks to be those
subtasks in which coordination among agents significantly increases
the performance of the overall task. The set of all cooperative subtasks
at a certain level of the hierarchy is called the cooperation set of that
level. Each level of the hierarchy with non-empty cooperation set is
called a cooperation level. The union of the children of the lth level
cooperative subtasks is represented by Ul. We usually define the co-
operative subtasks at highest level(s) of the hierarchy. Agents actively
coordinate only while making decision at cooperative subtasks and are
ignorant about the other agents at non-cooperative subtasks. Therefore,
cooperative subtasks are configured to model joint-action values. In the
trash collection problem, root is defined as a cooperative subtask, there-
fore the top-level of the hierarchy is a cooperation level. As a result,
root is the only member of the cooperation set at that level and Uroot

consists of all subtasks located at the second level of the hierarchy,
Uroot = {collect trash at T1 , collect trash at T2} (see Figure 1). As it
is clear in the trash collection task, it is more effective that each agent
learns high-level coordination knowledge (what is the utility of agent
A2 collect trash from trash can T1 if agent A1 is collecting trash from
trash can T2, and so on), rather than it learns its response to low-level
primitive actions of other agents (for instance if agent A1 aligns with
wall, what should agent A2 do).

We define policies for non-cooperative subtasks as single-agent poli-
cies and policies for cooperative subtasks as joint policies.

Definition 4: Under a hierarchical policy π, each non-cooperative sub-
task i can be modeled by a SMDP consists of components (Si, Ai, P π

i , Ri).

Definition 5: Under a hierarchical policy π, each cooperative subtask i
located at the lth level of the hierarchy can be modeled by a MSMDP
as follows:

α is the set of n agents in the team. We assume that agents have
only local state information and ignore the states of the other agents.
Therefore, the state space Si is defined as the single-agent state space Si

(not joint-state space). This is certainly an approximation but greatly
simplifies the underlying multiagent RL problem. This approximation
is based on the fact that an agent can get a rough idea of what state the
other agents might be in just by knowing about the high-level actions

2 Studying the heterogeneous case where agents are given dissimilar decomposi-
tions of the overall task would be more challenging and beyond the scope of this
paper.

04-02.tex; 25/01/2004; 17:25; p.13

12

being performed by them. The action space is joint and is defined as
Ai = Ai × (Ul)n−1, where Ul =

⋃m
k=1 Ak is the union of the action sets

of all the lth level cooperative subtasks, and m is the cardinality of the
lth level cooperation set. For the cooperative subtask root in the trash
collection problem, the set of agents is α = {A1, A2} and its joint-
action space, Aroot, is specified as the cross product of its action set,
Aroot, and Uroot, Aroot = Aroot×Uroot. Finally, since we are interested in
decentralized control, we use τcontinue termination strategy. Therefore,
when an agent terminates a subtask, next decision epoch occurs only
for that agent and it selects its next action given the information about
the other agents. !

This cooperative multiagent approach has the following pros and cons:

Pros

− Using HRL scales learning to problems with large state spaces by
using the task structure to restrict the space of policies.

− Cooperation among agents is faster and more efficient as agents
learn joint-action values only at cooperative subtasks usually lo-
cated at the high levels of abstraction and do not get confused by
low-level details.

− Since high-level tasks can take a long time to complete, communi-
cation is needed only fairly infrequently.

− The complexity of the problem is reduced by storing only the local
state information by each agent. It is due to the fact that each
agent can get a rough idea of the state of the other agents just by
knowing about their high-level actions.

Cons

− The learned policy would not be optimal if agents need to coor-
dinate at the subtasks that are defined as non-cooperative. This
issue will be addressed in the AGV experiment in Section 4.2, by
extending the joint-action model to the lower levels of the hier-
archy. Although, this extension provides the cooperation required
at the lower levels, it increases the number of parameters to be
learned and the complexity of the learning problem.

− If communication is costly, this method might not find an appro-
priate policy for the problem. We address this issue in Section 5
by including communication decisions in the model. If communi-
cation is cheap, agents learn to collaborate with each other, and if

04-02.tex; 25/01/2004; 17:25; p.14

13

communication is expensive, agents prefer to make decision only
based on their local view of the overall problem.

− Storing only local state information by agents causes sub-optimality
in general. On the other hand, including the state of other agents
dramatically increases the complexity of the learning problem and
has its own inefficacy. We do not explicitly address this problem
in the paper.

2.6. Value Function Decomposition

The value function decomposition used in our framework is similar
to the MAXQ value function decomposition [9]. The purpose of value
function decomposition is to decompose the value function of the overall
task (root) under hierarchical policy π, in terms of the value functions
of all its descendants in the hierarchy. The value function of subtask i
under hierarchical policy π, V π(i, s), is the expected sum of discounted
reward until subtask i terminates:

V π(i, s) = E{rt + γrt+1 + γ2rt+2 + . . . + γLrt+L|st = s,π} (1)

Now let us suppose that the policy of subtask i, πi chooses subtask
πi(s) in state s, this subtask executes for a number of steps N and
terminates in state s′ according to P π

i (s′, N |s,πi(s)). We can rewrite
Equation 1 as:

V π(i, s) = E

{
N−1∑

k=0

γkrt+k +
L∑

k=N

γkrt+k|st = s,π

}

(2)

The first summation of Equation 2 is the discounted sum of rewards for
executing subtask πi(s) starting in state s until it terminates. In other
words, it is V π(πi(s), s), the value function of subtask πi(s) in state s.
The second summation is the value of state s′ for the current subtask
i under hierarchical policy π, V π(i, s′), discounted by γN :

V π(i, s) = V π(πi(s), s) +
∑

s′∈Si,N

P π
i (s′, N |s,πi(s))γNV π(i, s′) (3)

where s′ is the state when subtask πi(s) terminates. Equation 3 is in
the form of a Bellman equation. We can restate Equation 3 and derive
the following Bellman equation for action-value function:

04-02.tex; 25/01/2004; 17:25; p.15

14

Qπ(i, s, a) = V π(a, s) +
∑

s′∈Si,N

P π
i (s′, N |s, a)γNQπ(i, s′,πi(s′)) (4)

The summation term in Equation 4 is the expected discounted reward
of completing subtask i after executing subtask a in state s. This term
is called completion function and is defined as follows:

Definition 6: Completion function, Cπ(i, s, a), is the expected dis-
counted cumulative reward of completing subtask i after execution of
subtask a in state s. The reward is discounted back to the point in time
where a begins execution.

Cπ(i, s, a) =
∑

s′∈Si,N

P π
i (s′, N |s, a)γNQπ(i, s′,πi(s′)) (5)

Now, we can express the action-value function Q as:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) (6)

and the V function as:

V π(i, s) =
{

Qπ(i, s,πi(s)) if i is a non-primitive subtask∑
s′∈Si

P (s′|s, i)R(s′|s, i) if i is a primitive action
(7)

Equations 5, 6 and 7 are the decomposition equations for the hierar-
chical framework under a fixed hierarchical policy π. These equations
recursively decompose the value function for the root, V π(0, s), into
a set of value and completion functions. The quantities that must be
stored to represent the value function decomposition are just the C
values for non-primitive subtasks and the V values for primitive actions.
Using this decomposition and the stored values, we can recursively cal-
culate all Q values in the hierarchy. For instance, Q(i, s, a) is calculated
as follows:

− From Equation 6, Q(i, s, a) = V (a, s)+C(i, s, a). C(i, s, a) is stored
by subtask i, so subtask i only needs to calculate V (a, s) by asking
subtask a.

− If a is a primitive action, it stores V (a, s) and returns it to subtask
i immediately. If a is a non-primitive subtask, then using Equation

04-02.tex; 25/01/2004; 17:25; p.16

15

7, V (a, s) = Q(a, s,πa(s)), and using Equation 6, Q(a, s,πa(s)) =
V (πa(s), s) + C(a, s,πa(s)). In this case, C(a, s,πa(s)) is available
at subtask a, and a asks subtask πa(s) for V (πa(s), s).

− This process continues until we reach a primitive action. Since,
primitive actions store their V values, all V values are calculated
upward in the hierarchy and eventually subtask i receives the value
of V (a, s) and calculates Q(i, s, a).

The value function decomposition described above relies on a key prin-
ciple: the reward function for the parent task is the value function of
the child task (see Equations 4 and 6). Now, we show how the single-
agent value function decomposition described above can be modified
to formulate the joint-value function for cooperative subtasks. In our
hierarchical multiagent model, cooperative subtasks are configured to
store the joint completion function values.

Definition 7: The joint completion function for agent j, Cj(i, s, a1, . . . ,
aj−1, aj+1, . . . , an, aj), is the expected discounted cumulative reward
of completing cooperative subtask i after taking subtask aj in state
s while other agents performing subtasks ak,∀k ∈ {1, . . . , n}, k)= j.
The reward is discounted back to the point in time where aj begins
execution.

In this definition, i is a cooperative subtask at level l of the hierarchy
and 〈a1, . . . , an〉 is a joint-action in the action set of i. Each individual
action in this joint-action belongs to Ul. More precisely, the decomposi-
tion equations used for calculating the value function V for cooperative
subtask i of agent j have the following form:

V j(i, s, a1, . . . , aj−1, aj+1, . . . , an) = Qj(i, s, a1, . . . , aj−1, aj+1, . . . , an,πj
i (s))

(8)
Qj(i, s, a1, . . . , aj−1, aj+1, . . . , an , aj) = V j(aj , s) +

Cj(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)

One important point to note in this equation is that if subtask aj is itself
a cooperative subtask at level l + 1 of the hierarchy, its value function
is defined as a joint-value function V j(aj , s, ã1, . . . , ãj−1, ãj+1, . . . , ãn),
where ã1, . . . , ãj−1, ãj+1, . . . , ãn belong to Ul+1. In this case, in order to
calculate V j(aj , s) for Equation 8, we marginalize V j(aj , s, ã1, . . . , ãj−1,
ãj+1, . . . , ãn) over ã1, . . . , ãj−1, ãj+1, . . . , ãn.

04-02.tex; 25/01/2004; 17:25; p.17

16

We illustrate the above joint-value function decomposition using the
trash collection task. The value function decomposition for agent A1
at root has the following form:

Q1(root, s, collect trash at T 2 , collect trash at T1) = V 1(collect trash at T1, s)

+C1(root, s, collect trash at T2, collect trash at T1)

which represents the value of agent A1 performing collect trash at T1
in the context of the overall task (root), when agent A2 is executing
collect trash at T2. Note that this value is decomposed into the value
of collect trash at T1 subtask (the V term), and the completion value
of the remainder of the root task (the C term).

Given a hierarchical decomposition for any task, we need to find the
highest level subtasks at which decomposition Equation 8 provides a
sufficiently good approximation of the true value. For the problems used
in the experiments of this paper, coordination only at the highest level
of the hierarchy is a good compromise between achieving a desirable
performance and reducing the number of joint-state-action values that
need to be learned. Hence, we define root as a cooperative subtask and
thus the highest level of the hierarchy as a cooperation level in these
experiments. We extend coordination to the lower levels of the hierarchy
by defining cooperative subtasks at levels below the root in one of the
experiments of Section 4.2.

3. A Hierarchical Multiagent Reinforcement Learning
Algorithm

In this section, we use the HRL framework described in Section 2
and present a hierarchical multiagent RL algorithm, called Cooperative
HRL. The pseudo code for this algorithm is shown in Algorithm 1
at the end of the paper. In the Cooperative HRL, V and C values
can be learned through a standard temporal-difference (TD) learning
method based on sample trajectories. One important point to note is
that since non-primitive subtasks are temporally extended in time, the
update rules for C values used in this algorithm are based on the SMDP
model. In this algorithm, an agent starts from the root task and chooses
a subtask till it reaches a primitive action i. It executes primitive action
i in state s, receives reward r and observes resulting state s′, the value
function V of primitive subtask i is updated using:

Vt+1(i, s) = (1 − αt(i))Vt(i, s) + αt(i)r

04-02.tex; 25/01/2004; 17:25; p.18

17

where αt(i) is the learning rate for subtask i at time t. This parameter
should be gradually decreased to zero in time limit.

Whenever a subtask terminates, the C values are updated for all
states visited during the execution of that subtask. Assume an agent is
executing non-primitive subtask i and is in state s, then while subtask
i does not terminate, it chooses subtask a according to the current ex-
ploration policy (softmax or ε-greedy with respect to πi(s)). If subtask
a takes N primitive steps and terminates in state s′, the corresponding
C value is updated using:

Ct+1(i, s, a) = (1 − αt(i))Ct(i, s, a) + αt(i)γN [Ct(i, s′, a∗) + Vt(a∗, s′)] (9)

where a∗ = argmaxa′∈Ai [Ct(i, s′, a′) + Vt(a′, s′)].

The V values in Equation 9 are calculated using the following equation:

V (i, s) =
{

maxa∈AiQ(i, s, a) if i is a non-primitive subtask∑
s′∈Si

P (s′|s, i)R(s′|s, i) if i is a primitive action
(10)

Similarly, when agent j completes execution of subtask aj ∈ Ai, the
joint completion function C of cooperative subtask i located at level l of
the hierarchy is updated for all the states visited during the execution
of subtask aj using:

Cj
t+1(i, s, a

1, . . . , aj−1, aj+1, . . . , an, aj) =

(1 − αj
t (i))C

j
t (i, s, a1, . . . , aj−1, aj+1, . . . , an, aj) + (11)

αj
t (i)γ

N [Cj
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a∗) + V j

t (a∗, s′)]

where a∗ = argmaxa′∈Ai [C
j
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a′) + V j

t (a′, s′)],
a1, . . . , aj−1, aj+1, . . . , an and â1, . . . , âj−1, âj+1, . . . , ân are actions in Ul

being performed by the other agents when agent j is in states s and
s′ respectively. Equation 11 indicates that in addition to the states
visited during the execution of a subtask in Ul (s and s′), an agent
must store the actions in Ul being performed by all the other agents
(a1, . . . , aj−1, aj+1, . . . , an in state s and â1, . . . , âj−1, âj+1, . . . , ân in state
s′). Sequence Seq is used for this purpose in Algorithm 1.

04-02.tex; 25/01/2004; 17:25; p.19

18

4. Experimental Results for the Cooperative HRL
Algorithm

In this section, we demonstrate the performance of the Cooperative
HRL algorithm proposed in Section 3 using a simple two-robot trash
collection domain, and a more complex four-agent AGV scheduling
task. In both cases, we first provide a brief overview of the domain,
then apply the Cooperative HRL algorithm to the problem, and finally
compare its performance with other algorithms, such as selfish multi-
agent HRL (where each agent acts independently and learns its own
optimal policy), single-agent HRL and flat Q-Learning.

4.1. Two-Robot Trash Collection Task

In the single-agent trash collection task, one robot starts in the middle
of Room 1 and learns the task of picking up trash from T1 and T2 and
depositing it into the Dump. The goal state is reached when trash from
both T1 and T2 has been deposited in the Dump. The state space is the
orientation of the robot (N ,S,W ,E) and another component based on
its percept. We assume that a ring of 16 sonars would enable the robot
to find out whether it is in a corner, (with two walls perpendicular to
each other on two sides of the robot), near a wall (with wall only on
one side), near a door (wall on either side of an opening), in a corridor
(parallel walls on either side) or in an open area (the middle of the
room). Thus, each room is divided into 9 states, the corridor into 4
states, and we have ((9× 3) + 4)× 4 = 124 locations for a robot. Also,
the trash object from trash basket T1(T2) can be at T1(T2), carried
with a robot, or at Dump. Hence, the total number of states of the
environment is 124 × 3 × 3 = 1116 for the single-agent case. Going to
the two-agent case would mean that the trash can be at either T1 or T2
or Dump, or carried by one of the two robots. Therefore in the flat case,
the size of the state space would grow to 124×124×4×4 ≈ 240000. The
environment is fully observable given the above state decomposition.
The direction which the robot is facing, in combination with the percept
(which includes the room that agent is in) gives a unique value for each
situation. The primitive actions considered here are behaviors to find a
wall in one of the four directions, align with the wall on left or right side,
follow a wall, enter or exit door, align south or north in the corridor,
or move in the corridor. In this task, each experiment was repeated ten
times and the results averaged.

In the two-robot trash collection task, examination of the learned
policy in Figure 2 reveals that the robots have nicely learned all three
skills: how to achieve a subtask, what order to do them in, and how

04-02.tex; 25/01/2004; 17:25; p.20

19

to coordinate with each other. In addition, as Figure 3 confirms, the
number of steps needed to accomplish the trash collection task is greatly
reduced when the two agents coordinate to do the task, compared to
when a single agent attempts to carry out the whole task.

Learned Policy for Agent 1

root
navigate to T1

go to location of T1 in room 1
pick trash from T1
navigate to Dump

exit room 1
enter room 3
go to location of Dump in room 3

put trash collected from T1 in Dump
end

Learned Policy for Agent 2

root
navigate to T2

go to location of T2 in room 2
pick trash from T2
navigate to Dump

exit room 2
enter room 3
go to location of Dump in room 3

put trash collected from T2 in Dump
end

Figure 2. This figure shows the policy learned by the Cooperative HRL algorithm
in the two-robot trash collection task.

4.2. AGV Scheduling Domain

Automated Guided Vehicles (AGVs) are used in flexible manufacturing
systems (FMS) for material handling [1]. They are typically used to
pick up parts from one location, and drop them off at another loca-
tion for further processing. Locations correspond to workstations or
storage locations. Loads which are released at the drop off point of a

04-02.tex; 25/01/2004; 17:25; p.21

20

10

20

30

40

50

60

70

80

90

100

110

120

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Nu

m
be

r o
f t

im
e

st
ep

s
re

qu
ire

d
to

 c
om

pl
et

e
th

e
ta

sk
Number of trials

Cooperative HRL
Single-agent HRL

Figure 3. This figure shows that the Cooperative HRL algorithm learns the trash
collection task with less number of steps than the single-agent HRL algorithm.

workstation wait at its pick up point after the processing is over, so
the AGV is able to take it to the warehouse or some other locations.
The pick up point is the machine or workstation’s output buffer. Any
FMS system using AGVs faces the problem of optimally scheduling
the paths of the AGVs in the system [19]. For example, a move request
occurs when a part finishes at a workstation. If more than one vehicle is
empty, the vehicle which would service this request needs to be selected.
Also, when a vehicle becomes available and multiple move requests
are queued, a decision needs to be made as to which request should
be serviced by that vehicle. These schedules obey a set of constraints
that reflect the temporal relations between activities and the capacity
limitations of a set of shared resources. The uncertain and ever changing
nature of the manufacturing environment makes it virtually impossible
to plan moves ahead of time. Hence, AGV scheduling requires dynamic
dispatching rules, which are dependent on the state of the system like
the number of parts in each buffer, the state of the AGV and the
process going on at workstations. The system performance is generally
measured in terms of the throughput, the on-line inventory, the AGV
travel time and the flow time, but the throughput is by far the most
important factor. In this case, the throughput is measured in terms
of the number of finished assemblies deposited at the unloading deck
per unit time. Since this problem is analytically intractable, various
heuristics and their combinations are generally used to schedule AGVs
[16, 19]. However, the heuristics perform poorly when the constraints
on the movement of the AGVs are reduced.

Previously, Tadepalli and Ok [37] studied a single-agent AGV schedul-
ing task using flat average-reward RL. However, the multiagent AGV
task we study is more complex. Figure 4 shows the layout of the system

04-02.tex; 25/01/2004; 17:25; p.22

21

used for experimental purposes in this paper. M1 to M4 show worksta-
tions in this environment. Parts of type i have to be carried to the drop
off station at workstation i, Di, and the assembled parts brought back
from pick up stations of workstations, Pi’s, to the warehouse. The AGV
travel is unidirectional (as the arrows show). This task is decomposed
using the task graph in Figure 5. Each agent uses a copy of this task
graph. We define root as a cooperative subtask and the highest level
of the hierarchy as a cooperation level. Therefore, all subtasks at the
second level of the hierarchy (DM1, . . . ,DM4,DA1, . . . ,DA4) belong
to the set Uroot. Coordination skills among agents are learned by using
joint-action values at the highest level of the hierarchy as described in
Section 3.

Unload

40m20m

40m40m

Parts

Warehouse 60m

P4P3

D2

D3

60m

60m Load

20m

P1P2

M: Machine
D: Drop off Station
P: Pick up Station

Assemblies

D1

D4

M2 M1

M4M3

Figure 4. A multiagent AGV scheduling domain. There are four AGVs (not shown)
which carry raw materials and finished parts between machines and the warehouse.

The state of the environment consists of the number of parts in
the pick up and drop off stations of each machine, and whether the
warehouse contains parts of each of the four types. In addition, each
agent keeps track of its own location and status as a part of its state
space. Thus, in the flat case, state space consists of 100 locations, 8
buffers of size 3, 9 possible states of the AGV (carrying part1, . . . ,
carrying assembly1, . . . , empty), and 2 values for each part in the
warehouse, i.e., 100 × 48 × 9 × 24 ≈ 230 states, which is enormous.
The state abstraction helps in reducing the state space considerably.
Only the relevant state variables are used while storing the comple-
tion functions in each node of the task graph. For example, for the

04-02.tex; 25/01/2004; 17:25; p.23

22

U = Children of the
 top-level Cooperative
 Subtask (Root)

root

Forward RightLeft

.Load Put Pick UnloadNavLoad NavUnloadNavPick iNavPut i

The shaded subtasks are defined as cooperative
subtasks and this level as cooperation level

in the last experiment of this section

DM i : Deliver Material to Station i
DA i : Deliver Assembly from Station i
NavLoad : Navigation to Loading Deck
NavPut i : Navigation to Dropoff Station i
NavPick i : Navigation to Pickup Station i
NavUnload : Navigation to Unload Deck

Root

DA2DA1.DM1 DM2

Cooperative SubtaskCooperation Level

Figure 5. Task graph for the AGV scheduling task.

navigation subtasks, only the location state variable is relevant, and
this subtask can be learned with 100 values. Hence, for the highest
level subtasks DM1, . . . , DM4, the number of relevant states would be
100 × 9 × 4 × 2 ≈ 213, and for the highest level subtasks DA1, . . . ,
DA4, the number of relevant states would be 100 × 9 × 4 ≈ 212. This
state abstraction gives us a compact way of representing the C and V
functions, and speeds up the algorithm.

We now present detailed experimental results on the AGV schedul-
ing task, comparing several learning agents, including single-agent HRL,
selfish multiagent HRL, and Cooperative HRL, the cooperative multi-
agent HRL algorithm proposed in Section 3. In the experiments of
this section, we assume that there are four agents (AGVs) in the envi-
ronment. The experimental results were generated with the following
model parameters. The inter-arrival time for parts at the warehouse is
uniformly distributed with a mean of 4 sec and variance of 1 sec. The
percentage of Part1, Part2, Part3 and Part4 in the part arrival process
are 20, 28, 22 and 30 respectively. The time required for assembling
the various parts is normally distributed with means 15, 24, 24 and 30
sec for Part1, Part2, Part3 and Part4 respectively, and variance 2 sec.
The execution time of primitive actions (right, left, forward, load and
unload) is normally distributed with mean 1000 µ-sec and variance 50
µ-sec. The execution time for the idle action is also normally distributed
with mean 1 sec and variance 0.1 sec. Table I summarizes the values
of the model parameters used in the experiments of this section. In
this task, each experiment was conducted five times and the results
averaged.

Figure 6 shows the throughput of the system for the three algo-
rithms, single-agent HRL, selfish multiagent HRL and Cooperative HRL.
As seen in Figure 6, agents learn a little faster initially in the selfish
multiagent method, but after some time undulations are seen in the

04-02.tex; 25/01/2004; 17:25; p.24

23

Table I. Model parameters for the AGV scheduling task.

Parameter Distribution Mean (sec) Variance (sec)

Idle Action Normal 1 0.1

Primitive Actions Normal 0.001 0.00005

Assembly Time for Part1 Normal 15 2

Assembly Time for Part2 Normal 24 2

Assembly Time for Part3 Normal 24 2

Assembly Time for Part4 Normal 30 2

Inter-Arrival Time for Parts Uniform 4 1

graph showing not only that the algorithm does not stabilize, but also
that it results in sub-optimal performance. This is due to the fact that
two or more agents select the same action, but once the first agent
completes the task, the other agents might have to wait for a long
time to complete the task, due to the constraints on the number of
parts that can be stored at a particular place. The system through-
put achieved using the Cooperative HRL method is significantly higher
than the single-agent HRL and the selfish multiagent HRL algorithms.
This difference is even more significant in Figure 7, when the primitive
actions have longer execution time, almost 1

10th of the average assembly
time (the mean execution time of primitive actions is 2 sec).

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000

Th
ro

ug
hp

ut
 o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL
Selfish Multiagent HRL

Single-agent HRL

Figure 6. This figure shows that the Cooperative HRL algorithm outperforms both
the selfish multiagent HRL and the single-agent HRL algorithms when the AGV
travel time and load/unload time are very much less compared to the average
assembly time.

Figure 8 shows results from an implementation of the single-agent
flat Q-Learning with the buffer capacity at each station set at 1. As can

04-02.tex; 25/01/2004; 17:25; p.25

24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50000 100000 150000 200000 250000
Th

ro
ug

hp
ut

 o
f t

he
 s

ys
te

m
Time since start of simulation (sec)

Cooperative HRL
Selfish Multiagent HRL

Figure 7. This figure compares the Cooperative HRL algorithm with the selfish
multiagent HRL, when the AGV travel time and load/unload time are 1

10th of the
average assembly time.

be seen from the plot, the flat algorithm converges extremely slowly.
The throughput at 70,000 sec has gone up to only 0.07, compared
with 2.6 for the hierarchical single-agent case. Figure 9 compares the
Cooperative HRL algorithm with several well-known AGV scheduling
rules, highest queue first, nearest station first and first come first serve,
showing clearly the improved performance of the HRL method.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10000 20000 30000 40000 50000 60000 70000 80000 90000

Th
ro

ug
hp

ut
 o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Flat Q-Learning

Figure 8. A flat Q-Learner learns the AGV domain extremely slowly showing the
need for using a hierarchical task structure.

So far in our experiments in the AGV domain, we only defined root
as a cooperative subtask. Now in our last experiment in this domain,
in addition to root, we define navigation subtasks at the third level
of the hierarchy as cooperative subtasks. Therefore, the third level of
the hierarchy is also a cooperation level and its cooperation set contains
all navigation subtasks at that level (see Figure 5). We configure the

04-02.tex; 25/01/2004; 17:25; p.26

25

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000
Th

ro
ug

hp
ut

 o
f t

he
 s

ys
te

m
Time since start of simulation (sec)

Cooperative HRL
First Come First Served Heuristic

Highest Queue First Heuristic
Nearest Station First Heuristic

Figure 9. This plot shows that the Cooperative HRL algorithm outperforms three
well-known widely used industrial heuristics for AGV scheduling.

root and the third level navigation subtasks to represent joint-actions.
Figure 10 compares the performance of the system in these two cases.
When the navigation subtasks are configured to represent joint-actions,
learning is considerably slower (since the number of parameters is in-
creased significantly) and the overall performance is not better. The
lack of improvement is due in part to the fact that the AGV travel is
unidirectional, as shown in Figure 4, thus coordination at the naviga-
tion level does not improve the performance of the system. However,
there exist problems that adding joint-actions in multiple levels will
be worthwhile, even if convergence is slower, due to better overall
performance.

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000 100000

Th
ro

ug
hp

ut
 o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL - Cooperation at Top Level of the Hierarchy
Cooperative HRL - Cooperation at Top and Third Levels of the Hierarchy

Figure 10. This plot compares the performance of the Cooperative HRL algorithm
with cooperation at the top level of the hierarchy vs. cooperation at the top and
third levels of the hierarchy.

04-02.tex; 25/01/2004; 17:25; p.27

26

5. Incorporating Communication Decisions in the Model

Communication is used by agents to obtain the local information of
their teammates by paying a certain cost. The Cooperative HRL algo-
rithm described in Section 3 works under three important assumptions,
free, reliable, and instantaneous communication, i.e., communication
cost is zero, no message is lost in the environment, and each agent
has enough time to receive information about its teammates before
taking its next action. Since communication is free, as soon as an agent
selects an action at a cooperative subtask, it broadcasts it to the team.
Using this simple rule, and the fact that communication is reliable and
instantaneous, whenever an agent is about to choose an action at a lth
level cooperative subtask, it knows the subtasks in Ul being performed
by all its teammates.

However, communication can be costly and unreliable in real-world
problems. When communication is not free, it is no longer optimal for
a team that agents always broadcast actions taken at their cooperative
subtasks to their teammates. Therefore, agents must learn to optimally
use communication by taking into account its long term return and
its immediate cost. In the rest of this paper, we examine the case
that communication is not free, but still assume that it is reliable
and instantaneous. In this section, we first describe the communication
framework and then illustrate how we extend the Cooperative HRL
algorithm to include communication decisions and propose a new algo-
rithm, called COM-Cooperative HRL. The goal of this algorithm is to
learn a hierarchical policy (a set of policies for all subtasks including
the communication subtasks) to maximize the team utility given the
communication cost. Finally, in Section 6, we demonstrate the efficacy
of the COM-Cooperative HRL algorithm as well as the relation between
the communication cost and the learned communication policy using a
multiagent taxi domain.

5.1. Communication Framework

Communication usually consists of three steps: send, answer and re-
ceive. At the send step ts, agent j decides if communication is necessary,
performs a communication action and sends a message to agent i. At the
answer step ta ≥ ts, agent i receives the message from agent j, updates
its local information using the content of the message (if necessary) and
sends back the answer (if required). At the receive step tr ≥ ta, agent
j receives the answer of its message, updates its local information and
decides on which non-communicative action to execute. Generally there
are two types of messages in a communication framework: request and

04-02.tex; 25/01/2004; 17:25; p.28

27

inform. For simplicity, we suppose that relative ordering of messages
do not change, which means that for two communication actions c1

and c2, if ts(c1) < ts(c2) then ta(c1) ≤ ta(c2) and tr(c1) ≤ tr(c2). The
following three types of communication actions are commonly used in
a communication model:

− Tell(j, i): agent j sends an inform message to agent i.

− Ask(j, i): agent j sends a request message to agent i, which is
answered by agent i with an inform message.

− Sync(j, i): agent j sends an inform message to agent i, which is
answered by agent i with an inform message.

In the Cooperative HRL algorithm described in Section 3, we assume
free, reliable and instantaneous communication. Hence, the communica-
tion protocol of this algorithm is as follows: whenever an agent chooses
an action at a cooperative subtask, it executes a Tell communication
action and sends its selected action as an inform message to all other
agents. As a result, when an agent is going to choose an action at a lth
level cooperative subtask, it knows actions being performed by all other
agents in Ul. Tell and inform are the only communication action and
type of message used in the communication protocol of the Cooperative
HRL algorithm.

5.2. A Hierarchical Multiagent Reinforcement Learning
Algorithm with Communication Decisions

When communication is costly in the Cooperative HRL algorithm, it is
no longer optimal for the team that each agent broadcasts its action to
all its teammates. In this case, each agent must learn to optimally
use the communication. To address the communication cost in the
COM-Cooperative HRL algorithm, we add a communication level to
the task graph of the problem below each cooperation level, as shown
in Figure 11 for the trash collection task. In this algorithm, when an
agent is going to make a decision at a lth level cooperative subtask,
it first decides whether to communicate (takes communicate action)
with the other agents to acquire their actions in Ul, or do not commu-
nicate (takes not-communicate action) and selects its action without
inquiring new information about its teammates. Agents decide about
communication by comparing the expected value of communication
plus the communication cost (Q(Parent(Com), s, Com) + ComCost)
with the expected value of not communicating with the other agents
(Q(Parent(NotCom), s,NotCom)). If agent j decides not to commu-
nicate, it chooses action like a selfish agent by using its action-value

04-02.tex; 25/01/2004; 17:25; p.29

28

function (not joint-action-value function) Qj(NotCom, s, a), where a ∈
Children(NotCom). When it decides to communicate, it first takes
communication action Ask(j, i),∀i ∈ {1, . . . , j − 1, j + 1, . . . , n}, where
n is the number of agents, and sends a request message to all other
agents. Other agents reply by taking communication action Tell(i, j)
and send their action in Ul as an inform message to agent j. Then
agent j uses its joint-action-value function (not action-value function)
Qj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, a) (a ∈ Children(Com)) to se-
lect its next action in Ul. For instance, in the trash collection task, when
agent A1 dumps trash and is going to move to one of the two trash cans,
it should first decide whether to communicate with agent A2 in order
to inquire its action in Uroot = {collect trash at T1, collect trash at T2} or
not. To make a communication decision, agent A1 compares Q1(Root, s
,NotCom) with Q1(Root, s, Com)+ComCost. If it chooses not to com-
municate, it selects its action using Q1(NotCom, s, a), where a ∈ Uroot.
If it decides to communicate, after acquiring the action of agent A2 in
Uroot, aA2, it selects its action using Q1(Com, s, aA2, a), where a and
aA2 both belong to Uroot.

Communicate

Find WallAlign with WallFollow Wall

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Collect Trash at T1 Collect Trash at T2

Root

Not-Communicate

U = Children of the top-level
 Cooperative Subtask (Root)root

Communication Level

Cooperation Level Cooperative Subtask

Figure 11. Task graph of the trash collection problem with communication actions.

In the COM-Cooperative HRL, we assume that when an agent de-
cides to communicate, it communicates with all other agents as de-
scribed above. We can make the model more complicated by making
decision about communication with each individual agent. In this case,
the number of communication actions would be C1

n−1 + C2
n−1 + . . . +

Cn−1
n−1 , where Cq

p is the number of distinct combinations selecting q out
of p agents. For instance, in a three-agent case, communication actions
for agent 1 would be communicate with agent 2, communicate with
agent 3 and communicate with both agents 2 and 3. It increases the

04-02.tex; 25/01/2004; 17:25; p.30

29

number of communication actions and therefore the number of param-
eters to be learned. However, there are methods to reduce the number
of communication actions in real-world applications. For instance, we
can cluster agents based on their role in the team and assume each
cluster as a single entity to communicate with. It reduces n from the
number of agents to the number of clusters.

In the COM-Cooperative HRL algorithm, Communicate subtasks are
configured to store joint completion function values and Not-Communicate
subtasks are configured to store completion function values. The joint
completion function for agent j, Cj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, aj)
is defined as the expected discounted reward of completing subtask aj

by agent j in the context of the parent task Com when other agents
performing subtasks ai,∀i ∈ {1, . . . , j − 1, j + 1, . . . , n}. In the trash
collection domain, if agent A1 communicates with agent A2, its value
function decomposition would be

Q1(Com, s, Collect T rash at T2, Collect T rash at T 1) =
V 1(Collect T rash at T 1, s) +
C1(Com, s, Collect T rash at T2, Collect T rash at T 1)

which represents the value of agent A1 performing subtask collect trash
at T1, when agent A2 is executing subtask collect trash at T2. Note
that this value is decomposed into the value of subtask collect trash
at T1 and the value of completing subtask Parent(Com) (here root is
the parent of subtask Com) after executing subtask collect trash at T1.
If agent A1 does not communicate with agent A2, its value function
decomposition would be

Q1(NotCom, s, Collect T rash at T1) = V 1(Collect T rash at T 1, s)
+ C 1(NotCom, s, Collect T rash at T1)

which represents the value of agent A1 performing subtask collect trash
at T1, regardless of the action being executed by agent A2.

Again, the V and C values are learned through a standard temporal-
difference learning method based on sample trajectories similar to the
one presented in Algorithm 1. Completion function values for an action
in Ul is updated when we take the action under Not-Communicate
subtask, and joint completion function values for an action in Ul is
updated when it is selected under Communicate subtask. In the later
case, the actions selected in Ul by the other agents are known as a

04-02.tex; 25/01/2004; 17:25; p.31

30

result of communication and are used to update the joint completion
function values.

6. Experimental Results for the COM-Cooperative HRL
Algorithm

In this section, we demonstrate the performance of the COM-Cooperative
HRL algorithm proposed in Section 5.2 using a multiagent taxi prob-
lem. We also investigate the relation between the communication policy
and the communication cost in this domain.

Consider a 5-by-5 grid world inhabited by two taxis (T1 and T2)
shown in Figure 12. There are four specially designated locations in
this domain, marked as B(lue), G(reen), R(ed) and Y(ellow). The task
is continuing, passengers appear according to a fixed passenger arrival
rate3 at these four locations and wish to be transported to one of the
other locations chosen randomly. Taxis must go to the location of a
passenger, pick up the passenger, go to its destination location, and
drop the passenger there. The goal here is to increase the throughput
of the system, which is measured in terms of the number of passengers
dropped off at their destinations per 5000 time steps, and to reduce the
average waiting time per passenger. This problem can be decomposed
into subtasks and the resulting task graph is shown in Figure 12. Taxis
need to learn three skills here. First, how to do each subtask, such
as navigate to B, G, R or Y , and when to perform Pickup or Putdown
action. Second, the order to do the subtasks (for instance go to a station
and pickup a passenger before heading to the passenger’s destination).
Finally, how to communicate and coordinate with each other, i.e., if
taxi T1 is on its way to pick up a passenger at location Blue, taxi
T2 should serve a passenger at one of the other stations. The state
variables in this task are locations of taxis T1 and T2 (25 values each),
status of taxis (2 values each, full or empty), status of stations B, G, R
and Y (2 values each, full or empty), destination of stations (4 values
each, one of the other three stations or without destination, which
happens when the station is empty), and destination of taxis (5 values
each, one of the four stations or without destination, which is when
taxi is empty). Thus, in the multiagent flat case, the size of the state
space would grow to 256 × 106. The size of the Q table is this number
multiplied by the number of primitive actions 10, (256 × 107). In the
hierarchical selfish case (the selfish multiagent HRL algorithm), using
state abstraction and the fact that each agent stores only its own state

3 Passenger arrival rate 10 indicates that on average, one passenger arrives at
stations every 10 time steps.

04-02.tex; 25/01/2004; 17:25; p.32

31

variables, the number of the C and V values to be learned is reduced
to 2 × 135, 895 = 271, 790, which is 135,895 values for each agent.
In the hierarchical cooperative without communication decision (the
Cooperative HRL algorithm), the number of values to be learned would
be 2×729, 815 = 1, 459, 630. Finally in the hierarchical cooperative with
communication decisions (the COM-Cooperative HRL algorithm), this
number would be 2 × 934, 615 = 1, 869, 230. In the COM-Cooperative
HRL algorithm, we define root as a cooperative subtask and the highest
level of the hierarchy as a cooperation level as shown in Figure 12.
Thus, root is the only member of the cooperation set at that level,
and Uroot = Aroot = {GetB, GetG, GetR, GetY, Wait, Put}. The
joint-action space for root is specified as the cross product of the root
action set and Uroot. Finally, τcontinue termination scheme is used for
joint-action selection in this domain. All the experiments in this section
were repeated five times and the results averaged.

Get G Get R Get Y

North South EastWest

Nav

Wait

Communication
Level

Putdown

Children of
the top-level
Cooperative
Subtask (Root)

Pick B

Get B

Pick G Pick R Pick YNav B Nav RNav G Nav Y

Root Cooperative SubtaskCooperation Level

Communicate Not-Communicate

Put

T1: Taxi 1
T2: Taxi 2
B: Blue Station
G: Green Station
R: Red Station
Y: Yellow Station

0 1 2 3 4

0

1

2

3

4

T1

T2

G

BY

R

Figure 12. A multiagent taxi domain and its associated task graph.

Figures 13 and 14 show the throughput of the system and the
average waiting time per passenger for four algorithms, single-agent
HRL, selfish multiagent HRL, Cooperative HRL and COM-Cooperative
HRL when communication cost is zero.4 As seen in Figures 13 and 14,
Cooperative HRL and COM-Cooperative HRL with ComCost = 0 have
better throughput and average waiting time per passenger than selfish
multiagent HRL and single-agent HRL. The COM-Cooperative HRL
learns slower than the Cooperative HRL, due to the more parameters
to be learned in this model. However, it eventually converges to the
same performance as the Cooperative HRL.

4 The COM-Cooperative HRL uses the task graph in Figure 12. The Cooperative
HRL uses the same task graph without the communication level

04-02.tex; 25/01/2004; 17:25; p.33

32

300

400

500

600

700

800

0 20000 40000 60000 80000 100000 120000 140000
Th

ro
ug

hp
ut

 o
f t

he
 S

ys
te

m
Number of Steps (Passenger Arrival Rate = 10)

Single-Agent HRL
Selfish Multiagent HRL

Cooperative HRL
COM-Cooperative HRL, ComCost = 0

Figure 13. This figure shows that the Cooperative HRL and the COM-Cooperative
HRL with ComCost = 0 have better throughput than the selfish multiagent HRL
and the single-agent HRL.

20

25

30

35

40

45

50

55

60

65

0 20000 40000 60000 80000 100000 120000 140000

Av
er

ag
e

W
ai

tin
g

Ti
m

e
pe

r P
as

se
ng

er

Number of Steps (Passenger Arrival Rate = 10)

Single-Agent HRL
Selfish Multiagent HRL

Cooperative HRL
COM-Cooperative HRL, ComCost = 0

Figure 14. This figure shows that the average waiting time per passenger in the
Cooperative HRL and the COM-Cooperative HRL with ComCost = 0 is less than
the selfish multiagent HRL and the single-agent HRL.

Figure 15 compares the average waiting time per passenger for the
multiagent selfish HRL and the COM-Cooperative HRL with ComCost
= 0 for three different passenger arrival rates (5, 10 and 20). It demon-
strates that as the passenger arrival rate becomes smaller, the coor-
dination among taxis becomes more important. When taxis do not
coordinate, there is a possibility that both taxis go to the same station.
In this case, the first taxi picks up the passenger and the other one
returns empty. This case can be avoided by incorporating coordination
in the system. However, when the passenger arrival rate is high, there is
a chance that a new passenger arrives after the first taxi picked up the
previous passenger and before the second taxi reaches the station. This

04-02.tex; 25/01/2004; 17:25; p.34

33

passenger will be picked up by the second taxi. In this case, coordination
would not be as crucial as the case when the passenger arrival rate is
low.

15

20

25

30

35

40

0 20000 40000 60000 80000 100000 120000 140000

Av
er

ag
e

W
ai

tin
g

Ti
m

e
pe

r P
as

se
ng

er

Number of Steps (Passenger Arrival Rate = 5)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0

15

20

25

30

35

40

0 20000 40000 60000 80000 100000 120000 140000

Av
er

ag
e

W
ai

tin
g

Ti
m

e
pe

r P
as

se
ng

er

Number of Steps (Passenger Arrival Rate = 10)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0

15

20

25

30

35

40

0 20000 40000 60000 80000 100000 120000 140000

Av
er

ag
e

W
ai

tin
g

Ti
m

e
pe

r P
as

se
ng

er

Number of Steps (Passenger Arrival Rate = 20)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0

Figure 15. This figure compares the average waiting time per passenger for the
selfish multiagent HRL and the COM-Cooperative HRL with ComCost = 0 for
three different passenger arrival rates (5, 10 and 20). It shows that coordination
among taxis becomes more crucial as the passenger arrival rate becomes smaller.

Figure 16 demonstrates the relation between the communication pol-
icy and the communication cost. These two figures show the throughput
and the average waiting time per passenger for the selfish multiagent
HRL and the COM-Cooperative HRL when communication cost equals
0, 1, 5, 10. In both figures, as the communication cost increases, the
performance of the COM-Cooperative HRL becomes closer to the selfish
multiagent HRL. It indicates that when communication is expensive,
agents learn not to communicate and to be selfish.

7. Conclusion and Future Work

In this paper, we study methods for learning to communicate and act in
cooperative multiagent systems using hierarchical reinforcement learn-
ing (HRL). The key idea underlying our approach is that coordination

04-02.tex; 25/01/2004; 17:25; p.35

34

400

450

500

550

600

650

700

750

800

0 20000 40000 60000 80000 100000 120000 140000 160000
Th

ro
ug

hp
ut

 o
f t

he
 S

ys
te

m
Number of Steps (Passenger Arrival Rate = 5)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0
COM-Cooperative HRL, ComCost = 1
COM-Cooperative HRL, ComCost = 5

COM-Cooperative HRL, ComCost = 10

18

20

22

24

26

28

30

0 20000 40000 60000 80000 100000 120000 140000 160000

Av
er

ag
e

W
ai

tin
g

Ti
m

e
pe

r P
as

se
ng

er

Number of Steps (Passenger Arrival Rate = 5)

Selfish Multiagent HRL
COM-Cooperative HRL, ComCost = 0
COM-Cooperative HRL, ComCost = 1
COM-Cooperative HRL, ComCost = 5

COM-Cooperative HRL, ComCost = 10

Figure 16. This figure shows that as communication cost increases, the throughput
(top) and the average waiting time per passenger (bottom) of the COM-Cooperative
HRL become closer to the selfish multiagent HRL. It indicates that agents learn to
be selfish when communication is expensive.

skills are learned much more efficiently if agents have a hierarchical
representation of the task structure. The use of hierarchy speeds up
learning in multiagent domains by making it possible to learn coordina-
tion skills at the level of subtasks instead of primitive actions. We define
cooperative subtasks to be those subtasks in which coordination among
agents has significant effect on the performance of the system. Those
levels of the hierarchy to which cooperative subtasks belong are called
cooperation levels. Each agent learns joint-action-values at cooperative
subtasks by communicating with its teammates, and is unaware of them
at other subtasks. Since coordination at high-level allows for increased
cooperation skills as agents do not get confused by low-level details, we
usually define cooperative subtasks at the high levels of the hierarchy. A
further advantage of this approach over flat learning methods is that,

04-02.tex; 25/01/2004; 17:25; p.36

35

since high-level subtasks take a long time to complete, communication
is needed fairly infrequently.

We exploit the ideas mentioned above and propose two new co-
operative multiagent HRL algorithms, Cooperative HRL and COM-
Cooperative HRL. In both algorithms, agents are homogeneous, i.e.,
use the same task decomposition, learning is decentralized and each
agent learns three interrelated skills: how to perform subtasks, which
order to do them in, and how to coordinate with other agents. In the
Cooperative HRL, we assume communication is free and therefore the
communication rule is very simple: when an agent takes an action at
a cooperative subtask, it broadcasts it to all its teammates. We demon-
strate the efficacy of this algorithm using two experimental testbeds: a
simple simulated two-robot trash collection domain and a much larger
four-agent automated guided vehicle (AGV) scheduling problem. We
compare the performance of the Cooperative HRL algorithm with other
algorithms such as the selfish multiagent HRL, the single-agent HRL
and flat Q-learning algorithms in these domains. In the AGV scheduling
domain, we also show that the Cooperative HRL outperforms widely
used industrial heuristics, such as “first come first serve”, “highest
queue first” and “nearest station first”.

In the COM-Cooperative HRL algorithm, we address the issue of ra-
tional communicative behavior among autonomous agents. The goal is
to learn both action and communication policies that together optimize
the task given the communication cost. This algorithm is an extension
of the Cooperative HRL by including communication decisions in the
model. We add a communication level to the hierarchical decomposition
of the problem below each cooperation level. In this algorithm, the com-
munication rule is more complicated than the cooperative HRL: before
selecting an action at a cooperative subtask, each agent has to decide if
it is worthwhile to perform a communication action in order to acquire
the actions taken by the other agents at the cooperative subtasks at the
same level of the hierarchy. We study the empirical performance of the
COM-Cooperative HRL algorithm as well as the relation between the
communication cost and the communication policy using a multiagent
taxi problem.

There are a number of directions for future work which can be briefly
outlined. An immediate question that arises is the classes of cooperative
multiagent problems in which the proposed algorithms converge to a
good approximation of optimal policy. The experiments of this paper
show that the effectiveness of these algorithms is most apparent in
tasks where agents rarely interact at the low levels (for example two
trash collection robots may rarely need to exit through the same door
at the same time). However, the algorithms can be easily generalized

04-02.tex; 25/01/2004; 17:25; p.37

36

and adapted to constrained environments where agents are constantly
running into one another (for example ten robots in a small room all
trying to leave the room at the same time) by extending cooperation
to lower levels of the hierarchy. This will result in a much larger set
of action values that need to be learned, and consequently learning
will be much slower. A number of extensions would be useful, from
studying the scenario where agents are heterogeneous, to recognizing
the high-level subtasks being performed by other agents using a history
of observations instead of direct communication [7]. In the later case,
we assume that each agent can observe its teammates and uses its
observations to extract their high-level subtasks. Good examples for
this approach are games such as soccer, football or basketball, in which
players often extract the strategy being performed by their teammates
using recent observations instead of direct communication.

Another direction for future work is to study different termination
schemes for composing temporally extended actions. We used τcontinue

termination strategy in the algorithms proposed in this paper. However,
it would be beneficial to investigate τany and τall termination schemes
in our model. Many other manufacturing and robotics problems can
benefit from these algorithms. Combining the proposed algorithms with
function approximation and factored action models, which makes them
more appropriate for continuous state problems, is also an important
area of research. In this direction, we presented a family of HRL algo-
rithms suitable for problems with continuous state space, using a mix-
ture of policy gradient-based RL and value function-based RL methods
[11]. We believe these algorithms can be easily extended to cooperative
multiagent domains. The success of the proposed algorithms depends
on providing agents with a good initial hierarchical task decomposition.
Therefore, deriving abstractions automatically is an essential problem
to study. Finally, studying those communication features that have not
been considered in our model such as message delay and probability of
loss is another fundamental problem that needs to be addressed.

Acknowledgements

The computational experiments were carried out in the Autonomous
Agents Laboratory in the Department of Computer Science and En-
gineering at Michigan State University under the Defense Advanced
Research Projects Agency, DARPA contract No. DAANO2-98-C-4025,
and the Autonomous Learning Laboratory in the Department of Com-
puter Science at University of Massachusetts Amherst under NASA

04-02.tex; 25/01/2004; 17:25; p.38

37

contract No. NAg-1445 #1. The first author would like to thank Balara-
man Ravindran for his useful comments.

Notes

1 This article significantly extends our previous conference paper [23].

References

1. Askin, R. and C. Standridge: 1993, Modeling and Analysis of Manufacturing
Systems. John Wiley and Sons.

2. Balch, T. and R. Arkin: 1998, ‘Behavior-based Formation Control for Multi-
robot Teams’. IEEE Transactions on Robotics and Automation 14, 1–15.

3. Barto, A. and S. Mahadevan: 2003, ‘Recent Advances in Hierarchical Rein-
forcement Learning’. Discrete Event Systems (Special Issue on Reinforcement
Learning) 13, 41–77.

4. Bernstein, D. S., S. Zilberstein, and N. Immerman: 2000, ‘The Complexity
of Decentralized Control of Markov Decision Processes’. In: Proceedings of
the Sixteenth International Conference on Uncertainty in Artificial Intelligence
(UAI). pp. 32–37.

5. Boutilier, C.: 1999, ‘Sequential Optimality and Coordination in Multi-Agent
Systems’. In: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI). pp. 478–485.

6. Bowling, M. and M. Veloso: 2002, ‘Multiagent Learning Using a Variable
Learning Rate’. Artificial Intelligence 136, 215–250.

7. Bui, H., S. Venkatesh, and G. West: 2002, ‘Policy Recognition in the Abstract
Hidden Markov Model’. Journal of Artificial Intelligence Research 17, 451–499.

8. Crites, R. and A. Barto: 1998, ‘Elevator Group Control using Multiple
Reinforcement Learning Agents’. Machine Learning 33, 235–262.

9. Dietterich, T.: 2000, ‘Hierarchical reinforcement learning with the MAXQ value
function decomposition’. Journal of Artificial Intelligence Research 13, 227–
303.

10. Filar, J. and K. Vrieze: 1997, Competitive Markov Decision Processes. Springer
Verlag.

11. Ghavamzadeh, M. and S. Mahadevan: 2003, ‘Hierarchical Policy Gradient Algo-
rithms’. In: Proceedings of the Twentieth International Conference on Machine
Learning. pp. 226–233.

12. Guestrin, C., M. Lagoudakis, and R. Parr: 2002, ‘Coordinated Reinforcement
Learning’. In: Proceedings of the Nineteenth International Conference on
Machine Learning. pp. 227–234.

13. Howard, R.: 1971, Dynamic Probabilistic Systems: Semi-Markov and Decision
Processes. John Wiley and Sons.

14. Hu, J. and M. Wellman: 1998, ‘Multiagent Reinforcement Learning: Theoretical
Framework and an Algorithm’. In: Proceedings of the Fifteenth International
Conference on Machine Learning. pp. 242–250.

15. Kearns, M., M. Littman, and S. Singh: 2001, ‘Graphical Models for Game
Theory’. In: Proceedings of the Seventeenth International Conference on
Uncertainty in Artificial Intelligence(UAI).

04-02.tex; 25/01/2004; 17:25; p.39

38

16. Klein, C. and J. Kim: 1996, ‘AGV Dispatching’. International Journal of
Production Research 34, 95–110.

17. Koller, D. and B. Milch: 2001, ‘Multiagent Influence Diagrams for Representing
and Solving Games’. In: Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI). pp. 1027–1034.

18. La Mura, P.: 2000, ‘Game Networks’. In: Proceedings of the Sixteenth
International Conference on Uncertainty in Artificial Intelligence(UAI).

19. Lee, J.: 1996, ‘Composite Dispatching Rules for Multiple-Vehicle AGV Sys-
tems’. SIMULATION 66, 121–130.

20. Littman, M.: 1994, ‘Markov Games as a Framework for Multi-Agent Reinforce-
ment Learning’. In: Proceedings of the Eleventh International Conference on
Machine Learning. pp. 157–163.

21. Littman, M.: 2001, ‘Friend-or-Foe Q-Learning in General-Sum Games’. In:
Proceedings of the Eighteenth International Conference on Machine Learning.

22. Littman, M., M. Kearns, and S. Singh: 2001, ‘An Efficient Exact Algorithm
for Singly Connected Graphical Games’. In: Neural Information Processing
Systems (NIPS).

23. Makar, R., S. Mahadevan, and M. Ghavamzadeh: 2001, ‘Hierarchical multi-
agent reinforcement learning’. In: Proceedings of the Fifth International
Conference on Autonomous Agents. pp. 246–253.

24. Mataric, M.: 1997, ‘Reinforcement Learning in the Multi-Robot Domain’.
Autonomous Robots 4, 73–83.

25. Ortiz, L. and M. Kearns: 2002, ‘Nash Propagation for Loopy Graphical Games’.
In: Neural Information Processing Systems (NIPS).

26. Owen, G.: 1995, Game Theory. Academic Press.
27. Parr, R.: 1998, Hierarchical Control and Learning for Markov Decision

Processes. PhD thesis, University of California at Berkeley.
28. Peshkin, L., K. Kim, N. Meuleau, and L. Kaelbling: 2000, ‘Learning to Cooper-

ate via Policy Search’. In: Proceedings of the Sixteenth International Conference
on Uncertainty in Artificial Intelligence (UAI). pp. 489–496.

29. Puterman, M.: 1994, Markov Decision Processes. Wiley Interscience.
30. Pynadath, D. and M. Tambe: 2002, ‘The communicative multiagent team deci-

sion problem: Analyzing teamwork theories and models’. Journal of Artificial
Intelligence Research (JAIR) 16, 389–426.

31. Rohanimanesh, K. and S. Mahadevan: 2002, ‘Learning to Take Concurrent
Actions’. In: Proceedings of the Sixteenth Annual Conference on Neural
Information Processing Systems (NIPS).

32. Schneider, J., W. Wong, A. Moore, and M. Riedmiller: 1999, ‘Distributed
Value Functions’. In: Proceedings of the Sixteenth International Conference
on Machine Learning (ICML). pp. 371–378.

33. Singh, S., M. Kearns, and Y. Mansour: 2000, ‘Nash Convergence of Gra-
dient Dynamics in General-Sum Games’. In: Proceedings of the Sixteenth
International Conference on Uncertainty in Artificial Intelligence (UAI). pp.
541–548.

34. Stone, P. and M. Veloso: 1999, ‘Team-Partitioned, Opaque-Transition Rein-
forcement Learning’. In: Proceedings of the Third International Conference on
Autonomous Agents.

35. Sugawara, T. and V. Lesser: 1998, ‘Learning to Improve Coordinated Actions
in Cooperative Distributed Problem-Solving Environments’. Machine Learning
33, 129–154.

04-02.tex; 25/01/2004; 17:25; p.40

39

36. Sutton, R., D. Precup, and S. Singh: 1999, ‘Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning’. Artificial
Intelligence 112, 181–211.

37. Tadepalli, P. and D. Ok: 1996, ‘Scaling up Average Reward Reinforcement
Learning by Approximating the Domain Models and the Value Function’. In:
Proceedings of the Thirteenth International Conference on Machine Learning.
pp. 471–479.

38. Tan, M.: 1993, ‘Multi-Agent Reinforcement Learning: Independent vs. Co-
operative Agents’. In: Proceedings of the Tenth International Conference on
Machine Learning. pp. 330–337.

39. Vickrey, D. and D. Koller: 2002, ‘Multiagent Algorithms for Solving Graphical
Games’. In: Proceedings of the National Conference on Artificial Intelligence
(AAAI).

40. Watkins, C.: 1989, Learning from Delayed Rewards. PhD thesis, Kings College,
Cambridge, England.

41. Weiss, G.: 1999, Multi-agent Systems: A Modern Approach to Distributed
Artificial Intelligence. MIT Press.

42. Xuan, P. and V. Lesser: 2002, ‘Multiagent Policies: from Centralized ones to
Decentralized ones’. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems.

43. Xuan, P., V. Lesser, and S. Zilberstein: 2001, ‘Communication Decisions in
Multi-Agent Cooperation: Model and Experiments’. In: Proceedings of the
Fifth International Conference on Autonomous Agents. pp. 616–623.

04-02.tex; 25/01/2004; 17:25; p.41

40

Algorithm 1 The Cooperative HRL algorithm.
1: Function Cooperative-HRL(Agent j, Task i at the lth level of the hierarchy,

State s)

2: let Seq = {} be the sequence of (state-visited, actions in
⋃L

k=1
Uk being per-

formed by the other agents) while executing i /* L is the number of levels
in the hierarchy */

3: if i is a primitive action then
4: execute action i in state s, receive reward r(s′|s, i) and observe state s′

5: V j
t+1(i, s) ←− (1 − αj

t (i))V
j

t (i, s) + αj
t (i)r(s

′|s, i)
6: push (state s, actions in {Ul|l is a cooperation level} being performed by the

other agents) onto the front of Seq
7: else /* i is a non-primitive subtask */
8: while i has not terminated do
9: if i is a cooperative subtask then

10: choose action aj according to the current exploration policy
πj

i (s, a
1, . . . , aj−1, aj+1, . . . , an)

11: let ChildSeq = Cooperative-HRL(j, aj , s), where ChildSeq is the sequence

of (state-visited, actions in
⋃L

k=1
Uk being performed by the other agents)

while executing action aj

12: observe result state s′ and â1, . . . , âj−1, âj+1, . . . , ân actions in Ul being
performed by the other agents

13: let a∗ = argmaxa′∈Ai
[Cj

t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a′)+
V j

t (a′, s′)]

14: let N = 0
15: for each (s, a1, . . . , aj−1, aj+1, . . . , an) in ChildSeq from the beginning

do
16: N = N + 1
17: Cj

t+1(i, s, a
1, . . . , aj−1, aj+1, . . . , an, aj) ←−

(1 − αj
t (i))C

j
t (i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)+

αj
t (i)γ

N [Cj
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a∗) + V j

t (a∗, s′)]
18: end for
19: else /* i is not a cooperative subtask */
20: choose action aj according to the current exploration policy πj

i (s)
21: let ChildSeq = Cooperative-HRL(j, aj , s), where ChildSeq is the sequence

of (state-visited, actions in
⋃L

k=1
Uk being performed by the other agents)

while executing action aj

22: observe result state s′

23: let a∗ = argmaxa′∈Ai
[Cj

t (i, s′, a′) + V j
t (a′, s′)]

24: let N = 0
25: for each state s in ChildSeq from the beginning do
26: N = N + 1
27: Cj

t+1(i, s, a
j) ←− (1 − αj

t (i))C
j
t (i, s, aj) + αj

t (i)γ
N [Cj

t (i, s′, a∗)+

V j
t (a∗, s′)]

28: end for
29: end if
30: append ChildSeq onto the front of Seq
31: s = s′

32: end while
33: end if
34: return Seq

35: end Cooperative-HRL

04-02.tex; 25/01/2004; 17:25; p.42

