
Organization-Based Coalition Formation

Sherief Abdallah and Victor Lesser
University of Massachusetts, Amherst

MAS Laboratory
shario,lesser @cs.umass.edu

UMASS Computer Science Technical Report 2004-04

February 8, 2004

Abstract

The coalition formation problem has received a considerable amount of atten-
tion in recent years. In this work we present a novel distributed algorithm that
returns a solution in polynomial time and the quality of the returned solution in-
creases as agents gain more experience. Our solution utilizes an underlying orga-
nization to guide the coalition formation process. We use reinforcement learning
techniques to optimize decisions made locally by agents in the organization. Ex-
perimental results are presented, showing the potential of our approach.

1 Introduction
Agents can benefit by cooperating to solve a common problem [2, 10]. For exam-
ple, several robots may cooperate to move a heavy object, sweep a specific area in
short time, etc. In general, this cooperation is achieved by coordination and negotia-
tion among all agents. However, as the number of agents increases, having all agents
involved in this detailed coordination/negotiation process will limit the scalability of
the system. It is better to first form a coalition of agents that has enough resources to
undertake the common problem. Then only the agents in this coalition coordinate and
negotiate among themselves.

This situation is common in domains where a task requires more than one agent
and there are more than one task competing for resources. Computational grids and
distributed sensor networks are examples of such domains. In computational grids a
large number of computing systems are connected via a high-speed network. The goal
of the grid is to meet the demands of new applications (tasks) that require large amounts
of resources and reasonable responsiveness. Such requirements cannot be met by an
individual computing system. Only subset of the available computing systems (aka a
coalition) has enough resources to accomplish an incoming task.

The work in [7] defined the coalition formation problem as follows (a formal defi-
nition is given in Section 2). The input is a set of agents, each controlling some amount
of resources, and a set of tasks, each requiring some amount of resources and each



worth some utility. The solution assigns a coalition of agents to each task, such that
each task’s requirements are satisfied and total utility is maximized.

In this paper we propose a novel approach for solving the coalition formation prob-
lem approximately using an underlying organization to guide the coalition formation
process. The intuition here is to exploit whatever knowledge is known a priori in order
to make the coalition formation process more efficient. For instance, in many domains,
agents’ capabilities remain the same throughout the lifetime of the system. Addition-
ally, incoming tasks may follow some statistical pattern. Can we organize agents to ex-
ploit this knowledge (of their capabilities and task arrival patterns) to make the search
for future coalitions more efficient? If so, will all organizations yield the same coali-
tion formation performance, or do some organizations perform better than others? In
the remainder of this paper we try to provide answers to these questions. The main
contributions of this work are:

an organization-based distributed algorithm for approximately solving the coali-
tion formation problem

the use of reinforcement learning to optimize the local allocation decisions made
by agents in the underlying organization

The paper is organized as follows. In Section 2 we define the problem formally,
laying out the framework we use throughout the paper. In Section 3 we present our
approach to solving the problem. Section 4 describes our experimental results. We
compare our approach to similar work in Section 5. We conclude and discuss future
work in Section 6.

2 Problem definition
Let be the set of tasks over which we are evaluating the system.
Each task is defined by the tuple , where is the utility
gained if task is accomplished; and is the amount of resource required by
task . Let be the set of individual agents in the system. Each
agent is defined by the tuple , where is the amount of
resource controlled by agent .

The coalition formation problem is finding a subset of tasks that maximizes
utility while satisfying the coalition constraints, i.e.:

is maximized
there exists a set of coalitions , where is the coalition
assigned to task , such that , and

In other words, each task is assigned a coalition capable of accomplishing it and
any agent can join at most one coalition. This means if the resources controlled (col-
lectively) by a coalition exceed the amount of resources required by the assigned task,
the excess resources are wasted.1

1Having more than one type of resource means that there will be trade-offs, where decreasing the excess

2



2.1 Complexity
In this section we prove that the Coalition Formation Problem (CFP), as we formulated
it, is NP-hard. We do so by reducing the multidimensional knapsack problem, which
is known to be NP-hard, to CFP.

2.1.1 The Multi-dimensional Knapsack Problem

The input of this problem consists of a set of constraints and a
set of objects , where each object is defined by the tuple

, where is its value and is its weight for dimension
. The goal is to find a subset of objects , s.t. is maximized, while

Theorem 1 Coalition Formation Problem, CFP, is NP-hard

Proof: This is proved by reducing an MDKP instance to a CFP instance. This is done
as follows. The decision version of the MDKP problem is: given a set of objects and
a set of constraints , is there a valid subset of objects that satisfy the constraints and
has total utility of or more?

For each object in MDKP, we define an agent
and a task . We also add task
, where and (this amount

can be viewed as the gap between the demand of a resource and its supply). And the
CFP decision problem then becomes: given the set of tasks and the set of agents ,
is there a solution that results in utility or more? Note that encodes the con-
straints of the MDKP instance such that the coalition assigned ti this task corresponds
to the set of objects left outside the knapsack.

2.2 Assumptions and Limitations
Cooperation: Agents are cooperative.
Closed system: No agents enter or exit the system.
Stable environment: Incoming tasks follow a statistical pattern. Also the re-
sources controlled by agents are constant over time.
Non-consumable resources: A task does not permanently consume a resource,
but temporarily decreases the available amount of it. Once a task finishes, it
releases the resources it acquired previously. Examples of non-consumable re-
sources are network bandwidth and processing power.
Disjoint coalitions: In future work we plan to tackle the generic case, where an
agent can multiplex its resources over more than one task. Such multiplexing
may incur an overhead cost, which we also need to take into account.
Episodes: We assume time is divided into episodes and that each task is com-
pleted within an episode. At the beginning of each episode, a set of tasks arrives

of one resource type may increase the excess of another resource type.

3



to the system that need to be assigned coalitions for this episode. We made this
assumption to avoid adding scheduling to our problem, which is a very hard
problem by itself. In future we plan to integrate scheduling in our framework.
Linear resources: The amount of resources controlled by a coalition is the sum-
mation of the resources controlled by each member of the coalition. Many re-
sources either follow this assumption or can be considered approximately linear
(e.g., processing power). We plan to tackle other types of resources/capabilities
(e.g., speed) in the future.

3 Proposed Solution
Because the coalition formation problem is NP-hard, an optimal algorithm will need
exponential time in the worst case (unless NP = P). We need an approximation algo-
rithm that can exploit information about the problem. If the environment (in terms of
incoming task classes and patterns) does not follow any statistical model, and agents
continually and rapidly enter and exit the system, there is little information to be ex-
ploited. Luckily, in many real applications the environment does follow a model, and
the system can be assumed closed.

In such cases, it is intuitive to take advantage of this stability and organize the
agents in order to guide the search for future coalitions. A possible organization may
consist of a centralized manager keeping track of which agents have which resources.
When a task arrives, this centralized manager only contacts those agents who have
the necessary resources to undertake the incoming task. This approach is not scal-
able and is inefficient in domains that are distributed by nature (e.g., distributed sensor
networks). We chose to organize agents in a hierarchy, which is both distributed and
scalable.

Figure 1 shows a sample hierarchical organization.2 An individual (the leaves in
Figure 1) represents the resources controlled by a single agent. A manager (shown as
a circle in Figure 1) is a computational role, which can be executed on any individual
agent, or on dedicated computing systems. A manager represents agents beneath it
when it comes to interaction with other parts of the organization.

Figure 1: An Organization Hierarchy

Each manager has a set of children, , which is the set of nodes di-
rectly linked below it. So for instance, in the organization shown in Figure 1,

, while . Conversely, each child has a
2Note that the example in Figure 1 shows a strict tree organization. In general, an organization may be

represented by a directed acyclic graph, where the same agent may have more than one manager.

4



set of managers . For example, . For com-
pleteness, children of an individual are the empty set, and so are the managers of a root
node.

Each agent (either a manager or an individual) controls, either directly or indi-
rectly, a set of individuals, (i.e., the leaves reachable from agent ). In the
example above, , ,
and .

Also for each agent , we define to be the set of all agents reach-
able from . In the above example, .

3.1 Local Decision
Algorithm 1 describes the decision process made by each manager in the organization.
The algorithm is executed every time a task is received by a manager (either from
the environment or from another agent). is the list of coalitions allocated for
previous tasks. The algorithmworks as follows. evaluates its current state (Section
3.2.1). then selects an action based on its policy (Section 3.2.3). This action
can either be to stop forming the coalition or to select a child .
If a child is selected, a subtask of is dynamically created based on ’s state
(Section 3.2.2). then asks to form a subcoalition capable of accomplishing .
(The notion means that the function is
called remotely on agent ). forms a subcoalition and sends a commitment
back to . updates and learns about this action. updates its state, including
the amount of resources to be allocated ( ) and the corresponding utility to be gained
( ).

selects the next best action and the process continues as long as all the following
conditions hold (step 3): requires more resources than currently allocated, still
controls some unallocated resources that are required by , and the stop action has not
been selected. At the end adds the formed coalition to its list of commitments

and returns .
Note that manager executes Algorithm 1 if and only if has

enough resources to accomplish . Otherwise, passes up the organization hierar-
chy until it reaches a capable manager ( is rejected if even the root manager does not
have enough resources). Also to simplify handling of multiple tasks, we do not allow
coalition formation of a task to be interrupted. This means that if a new task
arrives at manager while is still forming a coalition for an older task , then
will finish forming the coalition for before considering .

3.2 Example
Figure 2 shows how a group of agents, organized in a hierarchy, can cooperate to form
a coalition. A task is discovered by agent .
Knowing that does not have enough resources to accomplish ,

sends task to its manager . Since has enough resources
to achieve , uses its local policy to chose the best child to contribute in achieving
, which is . decomposes into subtask

5



Algorithm 1 allocateCoalition( )
INPUT: task
OUTPUT: coalition
1: let , , , false,
the amount of available resources controlled by

2: encodeState( )
3: while AND AND false do
4: selectAction( s )
5: if is the stop action then
6: true
7: else
8: let be the child corresponding to .
9: decomposeTask( , )
10: .allocateCoalition( )
11:
12: , , and

13: time and communication costs of forming
14: if /* does not need more resources */ then
15:
16: end if
17: encodeState( ) /* the next state */
18: learn( )
19:
20: end if
21: end while
22: /* to exclude agents in from next allocations */
23: return

, and asks to allocate a coalition for it. returns a committed coalition
. The process continues until the whole task is allocated. Finally,

integrates all subcoalitions into and sends it back to .

3.2.1 State Abstraction

For a manager , the function collects the abstract states of each child
and encodes this information along with the vector of resources

to be allocated, , and the utility to be gained, , to produce the current state of
. (This encoding is then fed to neural nets to get action values, as

we discuss in Section 3.2.3.)
Since managers control exponentially more individuals as we ascend in the orga-

nization, abstraction of state information is necessary to achieve scalability (otherwise
we are effectively centralizing the problem). In our solution, each manager abstracts
the state of its organization, . The price of this abstraction is loss

6



of information (a manager higher in the hierarchy “sees” fewer details about its orga-
nization). This leads to uncertainty in the manager state, and hence makes the local
decision process more difficult to optimize.

Additionally, due to the large state space, we use a factored state. That is, a
state is defined by a set of features. To abstract a feature at a manager , we need
to define it recursively in terms of features abstracted at ’s children. For exam-
ple, we defined the feature vector as the total
amount of resources controlled by manager (where is the number of different
resource types). It can be defined recursively as follows:

. That is, the total resources controlled by a man-
ager is the sum of the total resources controlled by its children. For an individual ,

.
Some features cannot be abstracted directly, but can still be inferred from other ab-

stracted features. For example, is a feature vector of the aver-
age amount of resources controlled by any individual in . To com-
pute this feature, we need another abstract feature: the total number of individuals in an
organization, . Thenwe have

.
The above features are assumed constant throughout the system lifetime. For each

constant feature we define a corresponding dynamic feature, preceded by , to
indicate the current value of the feature. For example, the number of individuals
not allocated to tasks , and
their aggregated resources

.

3.2.2 Task Decomposition

When a manager selects a child to ask for contribution regarding task ,
decomposes heuristically to as shown in Algorithm 2.

As we described in Section 3.2.1, a manager only sees abstract features of
its child . Using this information, needs to find that is more suitable to

. The heuristic we use is to try to ask each child a multiple, ,
of the average available resources it controls; i.e., . We
want to chose such that the expected excess of resources is minimized. 3

The intuition behind the heuristic is as follows. If all individuals controlled by
are identical, the heuristic is the only choice to avoid wasting resources. As individu-
als become more diverse, the multiple of average available resources remain the most
likely to succeed without wasting any resources. Because agents can not participate in
more than one coalition, the minimum of the ratio over all resource types is selected
and used for all other resource types. Also to ensure progress, is at least 1. Fi-
nally, the utility of the decomposed task is proportional to the total of the decomposed
resources.

3When decomposes into , it does not know what coalition would return, which makes it
difficult to minimize the wasted excess of resources.

7



For example, let ,
, and . Using the algorithm below we

get and hence . Note that asking
for as much as possible will result in wasted resources. For example, the decomposed
task can only be satisfied if all individuals
controlled by are allocated, resulting in 50 units of resource type 1 being wasted.

Finally, because our decomposition is not optimal, 4 we allow each manager to
select the same child more than once to fine tune the decomposition at the expense of
more communication and time cost.

Algorithm 2 decomposeTask( )
INPUT: task AND manager
OUTPUT: task
1:
2:
3:

4:
5:
6:

7:

8: return

3.2.3 Learning

A key factor in the performance of our system is how a manager selects its actions
(function in Algorithm 1). In particular, in what order should a manager
ask each child for its contribution?5 We considered three possible policies: random,
greedy, and learning. The random policy just picks a child at random. The greedy pol-
icy selects the child with the highest preference value ,
which measures how much resources can contribute to the incoming task. For ex-
ample, let the incoming task and let manager
has two possible children and where

and . Then
and , hence will select .

In the learning approach, we used the Q-learning algorithm [9] with neural nets
to approximate action values. Unlike value or policy iteration, Q-learning is a model-
free algorithm that does not require an environment model. Q-learning also learns in
an incremental manner; as an agent gains more experience, its performance improves.

4In the previous example, if the whole organization only has 150 units of resource type 2 available, then
the decomposed task may be better than .

5A more sophisticated decision process would consider parallelism. Here we focus on strictly serialized
orderings only.

8



This is important in domains containing huge number of states, many of which will not
be visited.

We used a decaying exploration rate to select actions so that agents explore less as
they gain more experience. We also used a separate neural net for each action. This
uses more memory space, but provides better approximation.

In reinforcement learning, rewards determine what an agent learns. From Algo-
rithm 1, intermediate rewards are small negative rewards to reflect the communication
and the processing costs of each additional step spent forming the coalition. Once a
manager successfully allocates a coalition to task , it gains a reward equal to ’s
utility.6 Note that even if is a subtask of another task , the rewards received by
are independent of whether the coalition formation for will succeed or not. This

recursive optimality speeds up learning, while not affecting the quality of the formed
coalitions.

We explored several techniques to speed up learning further. One technique in-
volved minimizing the input fed to each neural net. The key observation is that the
value of choosing a child depends mainly on ’s state, and to a lesser extent
on the other children’s states. We also tried using eligibility tracing, but the learning
algorithm often diverged so this approach was dropped.

3.2.4 Organization Structure

If we view the underlying organization as a search tree, our distributed algorithm
searches the same search tree several times for each task and for each episode. Each
time, the search has a different start state (where and when the task is discovered) and
different goal state (the set of individuals — leaves — that form the coalition.)

To optimize performance, not only do we need to find a good search mechanism,
but we also need to find an organization that for a specific environmentmodel and agent
population yields the best performance. In other words, we are modifying the search
tree so that the search mechanism can perform better. The closest analogue in classical
AI is the use of macro operators, which adds edges to the search tree to speedup the
search. In our case we have more flexibility, as we can modify the search tree in
whatever way we see appropriate. In our experiments we verify this by testing different
organization structures of the same agent population and same tasks distribution, as we
describe in Section 4.

4 Experiments and Results
4.1 Setup
In our experiments, we wanted to know if using an underlying organization improved
the system’s performance. To do so, we compared our approach to centralized (a single
manager controlling all individuals) random policy ( ) and to centralized greedy

6We can implicitly indicate our preferences by modifying the reward function. For example, in [7] the
author prefers coalitions of smaller size. This can be achieved by adjusting the reward function accordingly
(e.g., dividing the utility gained by the size of the coalition formed).

9



policy ( ). In , an agent is picked at random and added to the coalition. In
, the agent that may contribute the most resources to the coalition is selected.

We also investigated the effect of learning in an organization by comparing three
local policies: distributed learned policy ( ), distributed random policy ( ),
and distributed greedy policy ( ). Finally to measure the effect of the organization
structure on system performance, we collected results using different organizations, all
constructed from the same population of individual agents. In the system we tested,
agents control two types of resources, and the fall into 6 types of agents:

Type A controls resources
Type B controls resources
Type C controls resources
Type D controls resources
Type E controls resources
Type F controls resources

In these classes, we tried to represent different specializations among agents. We
studied four different organization structures shown in Figure 3. Organization is
homogeneous. Agents of each type are clustered together, then similar types (e.g., A
and B) are clustered together. Organization is semi-homogeneous. Each couple
of agents of similar types are clustered together, then similar clusters are clustered to-
gether. Organization is similar to , but one organization level is omitted. Finally,
organization has the same “structure” of , but individual agents are assigned
randomly to each cluster.

Results for every organization/technique combination were computed over 10 sim-
ulation runs. Each simulation run consisted of 30,000 episodes. Seven tasks arrive
at every episode and are randomly picked from a bag of tasks (to simulate a stable
environment). Tasks in the bag are generated randomly such that each task requires
between 4 and 10 agents to be accomplished. At any episode, the resources required
by arriving tasks exceed the resources available to the system.

Our experiments focused only on 40 individuals and 10 managers so we can easily
hand code different organization structures and study their effect. However, to verify
the scalability of our approach, we tested it in a population of 90 agents and 13 man-
agers. Agents were organized in a way similar to organization and were randomly
generated (using 9 distributions to represent 9 different classes of agents). Tasks were
also randomly generated (from two different distributions). We plan to study even
larger populations and use clustering techniques to automatically generate different or-
ganizations.

4.2 Results
Figure 4 shows the average utility for different organizations and policies. As expected,

performed worst. performed better than . 7 is better than both.
Our approach, , outperformed all other policies for all organization structures,

7We believe this is due to the goal decomposition component of the organization, which encodes part of
the domain knowledge.

10



except when using a random organization structure. Figure 5 illustrates how the per-
formance of our system improves as agents gain more experience (i.e., witness more
episodes). Interestingly, (not shown in the figures), performed worse than
and in all organizations except RS, where it performed better than both.

This reinforces our belief that organization structure does affect performance. Learn-
ing the local policy lessens this effect, but state abstraction and task decomposition
remain sensitive to the structure of the organization. For the abstraction and task de-
composition algorithms that we used, if agents are randomly organized, little can be
gained by learning.

In our experiments with larger agent population (90 agents), was better than
other policies, achieving 35% more utility than and at least 20% better than

and .
More importantly, is more stable than other approaches as Figure 6 shows.

The standard deviation (of achieved utility) using is 70% worse than with
SE organization. is 30% worse than . Also was the worst for all
organizations except . We had similar results with the larger agent population.

had the least standard deviation, which was around one third that of .
Figure 7 compares the average number of exchanged messages per task. As ex-

pected, centralized approaches exchange fewer messages. Still, learning the local deci-
sion reduces the number of exchanged messages. Finally, Figure 8 shows the average
resources wasted. wasted 20% more resources than , while wasted
40% more. We got similar results for the larger agent population.

5 Related work
In [7], the authors presented a distributed algorithm for solving the coalition forma-
tion problem. The algorithm is optimal, complete and requires exponential time. Our
algorithm is an approximation algorithm that returns a solution in polynomial time.

The work in [5] introduced an anytime coalition structure generation algorithm (the
term coalition structure refers to the solution of the coalition formation problem). As
in [7], the work did not use any organization for guiding the coalition formation search
and assumed a black box function that given a feasible solution returns the value of
such solution, while we evaluate the solution based on the total utility of the allocated
tasks.

The work in [8] used a multi-leveled learning scheme to form coalitions. Both
reinforcement learning and case based reasoning were used. Unlike our work, they do
not use an underlying organization, which limits the scalability of their approach (their
experiments were limited to 4 agents).

Though some extensions to the original contract net protocol [11] proposed the use
of an underlying organization, none of these extensions (to our knowledge) provided
a formal model of such an organization, nor evaluated the performance for different
organizations, unlike our work here.

The coalition formation problem can be mapped to a multi-unit combinatorial auc-
tion8. Each task, to be assigned a coalition, is mapped to an auction, where the required

8In a multi-unit combinatorial auction, there might be more than one identical items, i.e. multiple units

11



resources are the items to be bidded on. Each individual agent is represented by a bid
that contains the resources this agent controls and willing to contribute to any coalition
it joins.

However, none of the algorithms developed for combinatorial auctions [6] make
use of stable knowledge, which remains relatively unchanged throughout the system
lifetime. This includes agents’ capabilities (e.g., same bids repeat for consecutive auc-
tions) and task patterns (e.g., consecutive auctions follow some statistical model). We
on the other hand try to exploit this knowledge implicitly using an underlying organi-
zation.

The work in [3] tried to provide a unified framework for coordination in MAS.
In this framework each agent follows a set of behaviors that differ in their level of
abstraction. As behaviors become more and more abstract, an (implicit) underlying
organization becomes more and more apparent. The goal of such an organization is to
optimize the immediate individual goals. In our work, the goal of the organization is to
optimize the coalition formation process, which indirectly optimizes the performance
of the MAS as a whole.

In [4], the authors proposed and analyzed a simplified and restricted model of an or-
ganization, which takes only processing and communication costs into account. While
they tried also to analyze the performance of different organizations, unlike our work
there was no notion of resources, individual capabilities, coalition capabilities, task
requirements, and coalition formation.

In our approach a group of agents co-learn to work together in an organization.
This can be viewed as distributed learning of a hierarchical policy that targets recursive
optimality [1]. However, none of the work in hierarchical learning area introduced
the concepts of quantitative/dynamic state abstraction and task decomposition. We
defined these concepts to decouple agents’ local decision problems while minimizing
communication, and hence achieve scalability. Our work also quantitatively evaluates
how different action hierarchies affect the learning performance.

6 Conclusions and Future work
In this work we defined a generic problem solving framework using an underlying
organization, and applied it to the coalition formation problem. We provided an algo-
rithm for the local decision to be made by each agent, given state abstractions from
other agents and its decomposed task. We used Q-learning with neural nets as func-
tional approximators to improve the local decision. Our initial results show that our
approach outperformed both random and greedy policies for most of the organizations
we studied. It achieved higher utility and more stability with a smaller percentage of
wasted resources and fewer exchanged messages. The results also verify the scalabil-
ity of our approach as it still outperforms the other approaches we studied for larger
systems.

In future, we aim to study a wider variety of organizations for different types of
environments. We will also investigate further our abstraction and decomposition
of the same item may exist.

12



schemes, as we believe better schemes can considerably improve the learned policy
performance. We also plan to study the optimization of the underlying organization
and how this interacts with optimizing the hierarchical policy.

References
[1] A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learn-

ing. In Discrete Event Systems journal, volume 13, pages 41–77, 2003.

[2] K. Decker and V. Lesser. Designing a family of coordination algorithms. In 1st
International Conference on Multi-Agent Systems, 1995.

[3] E. Durfee and T.Montgomery. Coordination as distributed search in a hierarchical
behavior space. IEEE Trans. on Systems, Man, and Cybernetics, 21:1363–1378,
1991.

[4] Y. pa So and E. Durfee. Designing tree-structured organizations for computational
agents. Computational and Mathematical Organization Theory, 2(3):219–246,
1996.

[5] T. Sandholm and et al. Coalition structure generation with worst case guarantee.
Proceedings of the 3rd Internation Conference on Autonomous Agents, 1999.

[6] T. Sandholm and et al. Winner determination in combinatorial auction general-
izations. Proceedings of the 1st International Joint Conference on Autonomous
Agents and Multiagent Systems, 2002.

[7] O. Shehory. Methods for task allocation via agent coalition formation. Artificial
Intelligence Journal, 101(1–2):165–200, 1998.

[8] K. Soh and X. Li. An integrated multilevel learning approach to multiagent coali-
tion formation. International Joint Conference on Artificial Intelligence, pages
619–624, August 2003.

[9] R. Sutton and A. Barto. Reinforcment Learning: An Introduction. MIT Press,
1999.

[10] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Re-
search, 7:83–124, 1997.

[11] D. N. W. Shen. An agent-based approach for dynamic manufacturing scheduling.
Proceedings of the 3rd International Conference on the Practical Applications of
Agents and Multi-Agent Systems, 1998.

13



Figure 2: An example of organization-based coalition formation.

14



Figure 3: An Organization Hierarchy

CENTERALIZED
7000

7200

7400

7600

7800

8000

8200

8400

CRP
CGP

SH SE H RS
7000

7200

7400

7600

7800

8000

8200

8400

DRP
DLP

Figure 4: Utility average.

episodes
2500 7500 12500 17500 22500

av
er

ag
e 

ut
ilit

y

6000

6500

7000

7500

8000

8500

H
SE
SH
RS

Figure 5: Learning curve.

15



CENTERALIZED
600

700

800

900

1000

1100

1200

CRP
CGP

SH SE H RS
600

700

800

900

1000

1100

1200

DRP
DLP

Figure 6: Utility standard deviation.

CENTERALIZED
10

15

20

25

30

35

40

45

CRP
CGP

SH SE H RS
10

15

20

25

30

35

40

45

DRP
DLP

Figure 7: Messages average.

CENTERALIZED
24

26

28

30

32

34

36

38

CRP
CGP

SH SE H RS
24

26

28

30

32

34

36

38

DRP
DLP

Figure 8: Average percentage of wasted resources.

16


