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Abstract

The design and deployment of wireless sensor applica-
tions has received increased research attention in recent
years. In this work, we consider a class of wireless sensor
applications—such as mobile robotics—that impose timeli-
ness constraints. We assume that these applications are built
using commodity 802.11 wireless networks and focus on the
problem of providing qualitatively-betterQoS during network
transmission of sensor data. Our techniques are designed to
explicitly avoid network collisions and minimize the comple-
tion time to transmit a set of sensor messages. We argue that
this problem is NP-complete and present several heuristics,
based on edge coloring, to achieve these goals. We present
detailed simulation results to evaluate our heuristics and to
compare them to the optimal solution.
Keywords: sensor networks, wireless communication, net-
work transmission

1 Introduction

1.1 Motivation

The design and deployment of wireless sensor appli-
cations has received increased research attention in recent
years. Wireless sensors are useful in a variety of remote data
monitoring and data gathering applications. Example appli-
cations include environmentalmonitoring in remote areas [1],
monitoring of ocean temperatures [7], and search and rescue
operations. A sensor application typically includes a collec-
tion of sensors that continuously monitor the surrounding en-
vironment, and a collection of sinks that aggregate, process,
and react to this sensory data. Communication between the
sensors and sinks requires a network; since the inherent na-
ture of the above applications precludes the use of wired net-
works, wireless networks are commonly used in many sensor
applications.
In this work, we consider a class of wireless sensor appli-

cations that impose timeliness constraints on the transmission
and processing of sensory data (we refer to such applications
as real-time sensor applications). An example of such an ap-
plication is a team of robots searching for people trapped in a
building on fire. Each robot is equipped with a set of sensors
such as temperature and pressure monitors, video cameras,
GPS, and infra-red monitors. Not all robots may have all of
these sensors due to power, weight and design considerations
(e.g., some robots may specialize in thermal imaging sensors
for locating humans, while others may carry extra process-
ing elements and fewer sensors). The robots pool the sensory
data from all sensors and use it to determine where to move
next, both individually and as a group. Since the path for each
robot needs to be determined in real-time to ensure real-time
mobility, the transmission and processing of sensory data im-
poses timeliness constraints.

In this paper, we focus on the former problem, namely
the network transmission of data in a real-time sensor ap-
plication. The latter problem of scheduling processing tasks
to meet timeliness constraints in a real-time sensor applica-
tion was considered in a prior work [8]. Due to their low
cost and wide availability, we assume that the sensor appli-
cations employ commodity 802.11-based wireless networks.
However, such wireless networks employ a best-effort net-
work transmission technique based on CSMA/CA. Such a
best-effort technique can delay the receipt of the data at re-
ceivers, which can be problematic in time-sensitive sensor
applications. Consequently, we propose techniques to pro-
vide qualitatively-better QoS in such wireless networks. The
reasons for considering such alternatives are manifold. First,
CSMA/CA networks do not completely eliminate the pos-
sibility of a collision despite the collision avoidance tech-
niques. Second, senders can back-off exponentially when
they sense ongoing transmissions on the channel. Third,
vanilla 802.11 networks suffer from the blocking problem as
observed in [2]. In such networks, a node must explicitly
request permission to transmit and must receive a “clear-to-
send” (CTS) acknowledgment before sending data. Further,
all nodes in the vicinity that receive these messages must in-
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Figure 1. False Blocking Problem

habit transmission for the transmission duration, and are thus
blocked. Such a protocol can lead to false blocking and block-
ing propagation as observed in [11] and illustrated in Fig-
ure 1. False blocking occurs when a node sends a “request-to-
send” (RTS) message to a blocked destination node; the RTS
causes other nodes to block even though no data is actually
sent. As shown in the figure, node transmits data to node

and node is disabled since it within ’s transmission
range. While is blocked, node sends a RTS packet to

and receives no response. However, node which is
within ’s range also receives the RTS and is blocked. If
wishes to send data to and issues a RTS, it will not

receive the CTS from , and has to back off exponentially
even though the transmissions and can
occur in parallel. This phenomenon is referred to as false
blocking. As indicated in [11], false blocking may propagate
through the whole network, and even lead to a deadlock, at
least for temporary periods (until one of the nodes backs-off
after a certain number of retries and the deadlock is be bro-
ken).
In this paper, we consider techniques to avoid such prob-

lems in sensor applications built using vanilla wireless net-
works. We exploit the specific characteristics of sensor
applications, such as the robotics scenario, to devise net-
work transmission techniques so that collisions are explicitly
avoided and the total completion time for transmitting a set
of messages is minimized (by parallelizing non-interfering
transmissions to the extent possible).

1.2 Research Contributions

In this paper, we consider the problem of scheduling the
transmission of sensor data over commodity wireless net-
works so as to explicitly avoid collisions and minimize com-
pletion time. We argue that the problem is NP-complete
(proof is in the appendix) and present heuristics based on
edge coloring to address this problem. We discuss modifi-

cations to our approach to incorporate timeliness constraints
and also present an optimal search technique based on the

technique to enable comparisons with our heuristics. We
present simulation results to evaluate the effectiveness of our
heuristics and show that our heuristics are close to the optimal
solution in small sensor networks.
The remainder of this paper is structured as follows. Sec-

tion 2 presents our system model and the problem formula-
tion. Sections 3 and 4 present the optimal solution and our
edge coloring-based heuristics, respectively. Our simulation
results are presented in Section 5. Section 6 presents related
work and, finally, Section 7 presents our conclusions.

2 Background and Problem Formulation

In this section, we formulate the problem of communica-
tion scheduling in sensor applications and present the model
assumed in our research.

2.1 System Model

Consider a wireless sensor application with nodes.
Each node can be a source or a sink or both. Each node
has a wireless network interface with a certain transmission
range; depending on the exact wireless interface employed
(e.g., 802.11b versus 802.11g), different nodes may gave dif-
ferent transmission ranges. All nodes are assumed to commu-
nicate in the ad-hoc mode and no base-stations are assumed
in this environment. For simplicity, we assume that a sink
for a data item is within transmission range of its source. All
communication is assumed to be unicast in this environment.
The terms source and sender as well as sink and receiver are
used interchangeably in this paper.
The communication medium is assumed to be shared by

all nodes in the system. If a receiver is within the range of
multiple senders, then there can be interference if more than
one sender attempts to transmit simultaneously. However,
two receivers that are mutually outside the other sender’s
range can receive data simultaneously. For the example
shown in Figure 2, is covered by the transmission range
of both and , and interferencemay occur if both senders
attempt to communicate with their receivers simultaneously.
However, can transmit in parallel with either of other
transmissions. In this work, we assume that the location of
each node is known at all times, and thus the nature of the
overlap can be determined for the purpose of scheduling net-
work transmissions. This is a reasonable assumption, since
in the robotics example, robots carry GPS receivers and can
additionally use localization algorithms [10] to precisely de-
termine their locations.
Observe in Figure 2 that source sends data to two dif-

ferent receivers and . Since each robot carries multiple
sensors, such a scenario might result from the need to trans-
mit data from different sensors on to different robots (
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Figure 2. Sensor Communication: An Example

and ). Even when data from the same sensor is needed
by different robots (e.g., and ), the unicast nature of
the communication necessitates separate messages to each re-
ceiver.
We can precisely state the above assumptions as follows.

Let denote that is within transmission
range of , and describe the state that sends
messages to .

Wireless NIC Constraint: At one instant, a node can be
either a sender or a receiver, but not both.

Single hop constraint: A node can receive a message
only if it is in the range of the sender range, i.e.,

.

Unicast constraint: Each message can have only one
recipient. That is

Interference constraint: Two simultaneous transmis-
sions will not interfere if and only if both receivers are
mutually outside the other sender’s range. That is, at
time ,

. Where,
means at time , is sending a message to .

Given a set of sources, sinks, their locations and transmis-
sion ranges, the objective of a good communication scheduler
is to determine a transmission schedule such that there is no
interfering communication and the total time to transmit all
messages is minimized. Depending the assumptions made
about individual messages, there can be different variants of
this problem, which we describe next.

2.2 Problem Formulation

We discuss three possible variants of the problem of
scheduling communication in real-time sensor applications.
Static Scheduling with identical ready times: In this ver-

sion of the problem, the scheduler is assumed to run peri-
odically and considers all messages that have become ready
for transmission since the previous scheduling instance. The

length of each message is assumed to be known and all mes-
sages are assumed to be ready for transmission at sched-
ule time. In addition, as noted earlier, the location of each
node and the range constraints are assumed to be known to
the scheduler. Given these assumptions, the objective of the
scheduler is to determine a schedule (i.e., a transmission time
for each message) such that there is no interference between
simultaneous transmissions and the total completion time for
sending all messages is minimized.
Observe that this variant of the problem assumes a cen-

tralized scheduler since the scheduler must consider the range
constraints of all nodes when determining a schedule. The as-
sumption of a centralized scheduler is reasonable for our sce-
nario, since in application such as robotics, a centralized path
planner is used to determine the path for each robot for the
next time period . Consequently, the scheduler can run peri-
odically in conjunctionwith the path planner to determine the
transmission schedule. Observe that the schedule is static—
any new messages are queued up until the next scheduling
instance and do not affect the current schedule.
In a sensor application, sensors will periodically generate

data and this data will need to be sent to one or more sinks.
Different senors may have different periods. It is assumed
that the scheduler runs periodically and considers all sensor
data that has been produced since the last scheduling instance
for transmission.
Static Scheduling with different ready times: This variant

is a generalization of the previous scenario. In this case, mes-
sages are assumed to become ready for transmission at arbi-
trary times but the ready times are assumed to be known a
priori at schedule time. The length of the message and the
range constraints are also assumed to be known. The sched-
uler, also centralized in this case, must determine a schedule
that avoids conflicts and minimized completion times be par-
allelizing non-interfering transmissions. An additional con-
straint is that a message may not be scheduled for transmis-
sion prior to its ready time.
Dynamic Scheduling: In this variant, the message ready

times and message lengths are known only at run time. The
range constraints are assumed to be known when a mes-
sage is ready for transmission. When a message becomes
ready for transmission, the scheduler can insert the message
into the current schedule (by modifying it appropriately). In
this sense, the scheduling is dynamic. Dynamic scheduling
can either be centralized or distributed (in the latter case,
scheduling decisions can be made locally at each node). Like
in the previous two scenarios, a good dynamic scheduler
should avoid conflicts while attempting to minimize comple-
tion times.
In this paper, we consider the first variant, namely static

scheduling with identical ready times. Although this is the
simplest of the three scenarios, as indicated above, it has
practical uses in applications such as real-time robotics. Fur-
ther, as we show in the next section, even the simple sce-



nario of static scheduling with identical ready times is NP-
Complete, and consequently, we will need to resort to heuris-
tics when devising our solutions.

2.3 Graph-based Representation of the Problem

Consider a set of messages that are queued for transmis-
sion at various nodes. The scheduling problem can be for-
mulated as a directed graph where each vertex
in the graph represents a node in the sensor application. We
refer to this graph as the communication graph. A directed
edge from vertex to indicates that a message needs to
be sent from to . The weight of the edge represents
the transmission cost and is a function of the message length
(and the transmission rate). Given such a graph, the problem
of scheduling messages to avoid interference and minimize
completion time can be addressed as follows. Choose a set of
edges that do not conflict with one another (we will define
how to do this in a moment). These edges are deleted from
the graph and the process repeats recursively until all edges
have been chosen. Since each set of edges is chosen such
that the edges do not conflict, the corresponding messages
can be scheduled in parallel. Thus, the above process yields a
transmission schedule that indicates which set of
messages should be scheduled for transmission concurrently.
In essence, this is the intuition behind our approach.
There can be two types of conflicts between edges. First,

two edges that are incident on a common vertex can not be-
long to the same set. This is because a node can send or re-
ceive only one message at any time. Second, if the transmis-
sion of two messages interfere, then the corresponding edges
have a conflict and can not belong to the same set. Edges in
each set should be chosen subject to these constraints. Last,
we note messages can have different lengths and the total
completion time is the sum of the length of the longest mes-
sage in each set. The length of messages will also need to be
considered when choosing these sets.
Consider a simplified version of the problem where all

messages are of equal length (edge weights are equal) and
there is no interference between any of the messages. In this
case, the only constraint is that all edges incident to the same
vertex cannot be scheduled simultaneously. This simpler ver-
sion of the problem can be mapped onto the edge coloring
problem . An edge coloring of a graph is an assignment of
colors to the edges such that edges incident to the same ver-
tex receive different colors. Edges with identical color can
be scheduled in parallel, since these edges will not conflict
with one another. We also note that an edge coloring can be
viewed as a partitioning of the edges into disjoint matchings
(a matching is a subset of edges such that no two edges share
a vertex).
It has been shown that the problem of determining the

minimum number of colors is NP-Complete [5]. Conse-
quently, the problem of minimizing the completion time is

computationally intractable even for the simple case where
messages are of equal length and there is no interference be-
tween messages.

3 Optimal Communication Scheduling

In this section, we present a search-based technique to
compute the optimal solution to the communication schedul-
ing problem. An optimal solution is one that minimizes the
completion time for all transmissions, subject to the con-
straints. Since the problem is NP-Complete (see the ap-
pendix), any attempt to find an optimal solution will incur
an exponential increase as the problem scales. Nevertheless,
it is useful to consider the optimal solution to enable compar-
isons with our proposed heuristics. We first discuss the the
intuition behind the search-based technique and then propose
an optimal solution based on the search algorithm.

3.1 A Search-based Technique

It is helpful to think of the search process as a search tree
where the root of the tree is a node representing the original
communication graph. The search process expands each node
in the tree as follows. It finds all matchings for the node sub-
ject to the interference constraint. Each matching essentially
represents a set of edges that have no conflicts and hence can
be scheduled in parallel. For each such matching, the corre-
sponding edges are deleted from the graph and the resulting
graph is added as a leaf node in the search tree. The search
process continues until we are left with an empty graph at
each leaf. Each path from the root to a leaf is essentially a
transmission schedule. The optimal solution is the path with
the minimum cost, where the cost is defined to be the sum of
cost of each matching along that path (the cost of a matching
is the cost of the largest edge weight in that matching).
Since finding all matchings for a graph is a subset prob-

lem, the search to the optimal solution takes at least
time.

3.2 An -based Search Algorithm

Rather than conduct a brute force search, we use the
algorithm to conduct a directed search. search has been
proved to be optimally efficient in that no other search algo-
rithm will expand fewer nodes in the search tree to locate the
optimal solution [3]. The algorithm requires an evaluation
function for any node on the search
tree, where is the cost of the path from the root to node
and is the estimated cost of the cheapest path from

to the goal. then expands the node with the minimum
value. To guarantee that the search algorithm is complete and
optimal, requires that the function should never over-
estimate the cost to reach the goal. Such an is called an
admission heuristic.



We define the function as the sum of costs of all match-
ings from the root to the node. Let denote the cost
of edge in the original communication graph. Let de-
notes a node representing a graph in the search tree, and let

denote a child of this node representing graph , then
can be defined as:

(1)

where, , is a possible matching of . Ini-
tially, for the root.
For a search node and related graph , if de-

notes the weight of vertex , then is defined as:

(2)

where, are all edges that are incident to vertex . Observe
that this function never overestimates the cost to reach the
goal. This is because the time to transmit the remaining mes-
sages is at least equal to the cost of the edges that can not be
scheduled at the same time (i.e., are adjacent to each other).

4 Heuristic Communication Scheduling

In this section, we will present polynomial time heuristics
for the communication scheduling problem. Our heuristics
will use edge coloring as a building block—note that edge
coloring can not be used directly since it does not explicitly
consider weights on edges, nor does it consider the interfer-
ence constraint. Both of these factors should be considered
when generating a transmission schedule. The notation used
in this section is summarized in Table 1.

Notation Meaning
edge ID
color ID
the color of
edge is adjacent to edge
the weight, communication delay, of edge
the weight of the color
the palette associated with

Table 1. Notation

4.1 Edge Coloring Heuristics

The objective of the heuristic is to assign a color to each
edge such that (i) no two edges incident on the same vertex
have the same color, (ii) no two edges with the same color
interference with one another, and (iii) the total completion
time is minimized.

Given a communication graph, each edge is assigned a
palette. Initially the palettes of all edges are identical and
are assumed to contain a sufficiently large number of colors.
Each color in the palette is assumed to have a weight. Ini-
tially, all colors are given a weight of zero and as the heuristic
progresses, the weight of a color will be set to the weight of
the “heaviest” edge with that color.
The heuristic begins by picking the vertex with the maxi-

mum degree. Each edge incident on this vertex is assigned a
different color. If the degree of this node is , then we need
distinct colors to color these edges. Once an edge has been

assigned a color, that color is deleted from the palettes of all
uncolored adjacent edges (two edges are said to be adjacent if
they share a vertex). From this point on, the heuristic repeats
the following steps until all edges are colored.

1. Choose an edge with the smallest palette (i.e., a
palette with the least number of colors). Ties are bro-
ken randomly.

2. Pick a color from the palette such that no other edges
with that color interfere with this edge. We present three
heuristics for this color selection step in the next section.

3. Delete the chosen color from the palettes of all uncol-
ored edges adjacent to this edge.

4. Update the weight of the chosen color as
max .

Once all edges have been colored, the transmission schedule
involves scheduling all edges with the same color in parallel.
For instance, all red edges are scheduled in parallel, then all
the blue edges and so on. The total time to transmit mes-
sages of a given color depends on the edge with the maxi-
mum weight (which is also given by the weight of that color

). Hence, the total completion time of all messages is
given as , where is the number of distinct colors
that are needed to color the graph.
Figure 3 depicts the various steps in our heuristic.

4.2 Color Selection Policies

We present three heuristics to choose the color for an edge
from the colors in its palette.
Minimal Weight Color (MWC) Heuristic: Observe that

the total time to transmit messages of a certain color is gov-
erned by the longest message in the set. If the palette of an
edge contains a color that already includes a longermessage,
then choosing that color will not result in any increase in the
total time to transmit all messages of that color. This is the
intuition behind this heuristic.
Suppose that the weight of the current edge is .

Consider only those colors from its palette that have a weight
greater than . These are essentially colors that contain
a message that is longer than the current message. The MWC



Heuristic:
Input: A communication graph with message lengths and all constraints.
Output: The total time to complete all transmissions without any con-
flict.
1. Find the vertex that has the maximum degree, and do:
1.1 Color each incident edge with a distinct color.
1.2 For each neighbor of the edge , do:

, if .
1.3 Update the weights of the assigned colors, s.t.,

, if .
2. Select the edge that has the smallest palette. Break ties randomly.
3. Select the first appropriate color based on the specific heuristic,

and then test if there is an interference with existing same colored edges.
If not, i.e., , assign to
, s.t., ; otherwise, choose the next appropriate color until no

interference can happen.
4. If , then .
5. , if .
6. If there is at least one un-colored edge, goto step 2; otherwise calcu-

late and output the final completion time.

Figure 3. Edge Coloring Heuristic
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Figure 4. An Example to Illustrate the Algorithm

heuristic picks a color with the least weight from all colors
that have a weight greater than the edge weight. Note that the
interference constrain must still be satisfied when picking a
color.
If no color in the palette has a weight greater than the

edge weight, then the heuristic simply picks the color with
the maximum weight from the ones in the palette.
The heuristic attempts to assign messages with “similar”

lengths with the same color and avoids increasing the weight
of a color whenever possible. Doing so enables the heuristic
to reduce the completion time for all messages.
Random Color Selection (RCS) Heuristic: The random

color selection heuristic picks a random color from the palette
such that the interference constraint is satisfied.
Least Used Color (LUC) Heuristic: The least used color

is a common heuristic for general coloring problems and we
choose this heuristic to determine its effectiveness for our
communication scheduling problem. This heuristic picks the
least used color—the color with the least number of edges—
such that the interference constraint is satisfied.
Consider the example depicted in Figure 4. Initially,

suppose that each palette has colors. Since vertex has
the maximum degree, the heuristic begins by assigning dis-
tinct colors to all edges incident on . Since now edge

has the smallest palette, it is considered next. If
we use the MWC heuristic, color is selected, because

. If we use the LUC heuristic, color
is chosen and , since is the currently least
used color. Finally, let us consider edge . Any color
except is a possible color. If we use MWC, is cho-
sen since it is the heaviest edge (the weights of all possible
colors are less than ), and . And for LUC,
since all colors have been used once, any possible color can
be used. In above analysis, we assume that there is no inter-
ference in any step. Therefore, the completion time for MWC
is ; for LUC,
the completion time is larger than the time before assigning

, which is
.

4.3 Incorporating Timeliness Constraints

Our heuristics thus far have focused on scheduling mes-
sages so as to minimize completion time. Since we are con-
cerned with real-time sensor applications in this work, it is
conceivable that messages will have deadlines on when they
should be received at the destination node. In general, these
deadlines will be determined by the deadline of the process-
ing task at the sink that will consume the data, once received.
It is possible to enhance our heuristics to take deadlines of
messages into account. To do so, we assume that each edge
on the communication graphs is labeled by a deadline (in ad-
dition to a weight).
One approach is to first determine a coloring of edges

based on the techniques described in the previous section.
Observe that while messages with identical colors can be
scheduled in parallel, our heuristics leave the ordering of
colors unspecified. For instance, if a graph is assigned two
colors—red and blue—then we could schedule all red mes-
sages first, followed by the blue messages, or vice versa. We
can exploit this flexibility to take deadlines into account. We
define the deadline of a color to be the minimum deadline of
all messages with that color. We can then simply order col-
ors by their deadline. This ordering determines an ordering
on the scheduling of messages across various colors—colors
with earlier deadlines get scheduled before those with later
deadlines (messages of the same color are scheduled in par-
allel, like before). Note that, regardless of the ordering of
colors, the total completion time remains unchanged.
Another approach is to incorporate deadlines when assign-

ing colors to edges. This will require us to modify the edge
coloring heuristics outlined in the previous section. While a
detailed discussion of such heuristics is beyond the scope of
this paper, we present an brief outline of how such a tech-
nique might work. The technique will need to balance three
factors—the weight, the deadline, and the palette of an edge,.
Edges can be chosen based on the most important factor. For
instance, if meeting deadlines is a primary goal and reduc-



ing completion times is a secondary goal, then edges can be
chosen for coloring in order of their deadlines. If the oppo-
site is true, the edges are chosen based on their palette sizes
and they can be assigned a color with the smallest deadline.
A detailed exposition of these ideas is the subject of future
work.

4.4 Discussion

Recall from Section 2, that we assume a centralized sched-
uler that is invoked periodically, which then schedules all
messages that are ready for transmission. For simplicity of
exposition, we have also implicitly assumed that each sensor
produces no more than one update between two consecutive
invocations of the scheduler. In general, a sensor may pro-
duce an arbitrary number of updates between two scheduler
invocations, all of which will need to be scheduled for trans-
mission (with minimum queuing delays). It is easy to extend
our technique to this general case. Let us assume that dif-
ferent sensors have different periods (i.e., frequency at which
they produce updates) and let denote the period of sen-
sor . Let denote the sensor with the least period in
the system. Let denote the period at which the scheduler
is invoked. Since the scheduler invocation frequency can be
chosen by the system designer, we will choose to be an
integral multiple of .
When invoked, the schedule partitions the next time

units into slots of duration . At the beginning of each
such time slot, it determines all sensor updates that were pro-
duced in the previous slot and schedules them for transmis-
sion using our edge coloring heuristics. As an example, con-
sider two sensors and produce updates once every 1 sec-
ond and 2 second, respectively. Let the scheduler be invoked
once every 10 seconds. Since , at each invocation,
the scheduler considers each 1 second interval for the next
10 seconds. In each such slot, it schedules all updates pro-
duced in the prior 1 second time slot. At the end of the first
second, sensor produces an updates and it is scheduled for
transmission. At , both and produce updates,
and both are scheduled using the edge coloring heuristics. At

, only the update from needs scheduling, and so
on until t=10s In this fashion, our techniques can schedule
sensor updates with arbitrary periods.

5 Simulation Results

We conduct a simulation study to understand the perfor-
mance of our heuristics. Our study also compares our heuris-
tics to the optimal solution computed by the search algo-
rithm. Our simulations assume that nodes are uniformly dis-
tributed in a given area and may have different transmission
ranges. We assume that the sensor network is represented
by the 3-tuple , where is the number of nodes,

is the set of positions for each
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of the node in the area. The position, of node is gen-
erated randomly in the area of units for its and
coordinates. is the transmission range. We convert the

communication network into a directed graph , so
that , and if and only if the Euclidean
distance between is less than or equal to . The com-
munication cost for each transmission is randomly chosen
over the range .
All results shown in this section are obtained as the mean

of 1000 runs. In each run, one communication graph is gener-
ated with some specific settings. Since the algorithms attempt
to minimize the total completion time for all transmissions in
a graph, the performance is measured by comparing the com-
pletion times across different algorithms. We denote this as
the Completion Time Ratio (CTR).

5.1 Comparison of Heuristics

In this section, we compare the three color selection
heuristics by varying three system parameters, the number
of nodes, the number of edges and the transmission range.

5.1.1 Effect of the Number of Nodes

To study the impact of the number of nodes (denoted by ),
we systematically vary from 20 to 50. For each , we
generate a thousand different communication graphs and de-
termine the total time to schedule all messages using the three
heuristics. For each graph, the transmission radius of a sender
is chosen randomly over the range . Figure 5 shows
the completion time ratio of the three heuristics (we use the
completion time of the MWC as the normalizing factor). As
can be seen, the minimumweight color (MWC) heuristic out-
performs the other two heuristics. Random color selection
(RCS) yields completion times that are within 8% of MWC
(and the performance is not sensitive to the value of ).
The least used color (LUC) heuristic yields the worst perfor-
mance. This is because LUC always tries to find the color that
is currently least used, which actually decreases the ability to
schedule messages in parallel. The sudden increase in the
LUC curve reflects the impact of the initial palette size. For
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Figure 6. Effect of Range

a fixed palette size, when increases, the decreases.
The closer the initial palette size the number of colors needed,
the better is the LUC performance. We choose more colors
at because the palette has not enough colors to cover
all edges. In the figure, the number of colors is represented
by .

5.1.2 Effect of the Range

In this experiment, we systematically vary the transmission
range of a node from 20 to 50. For a given transmission range,
we determine the completion times for the three heuristics
for sensor networks containing 20, 40, 60 and 70 nodes. The
initial size of the palette is set to 100 colors.
Figure 6 (a) compares the completion times of RCS and

MWC, while Figure 6(b) compares the completion times of
LUC and MWC. We find that MWC outperforms the other
two heuristics across all ranges and network sizes. Like in
the previous experiment, the performance of random color
selection is within 10-20% of MWC, while that of LUC is
significantly worse. For LUC, for a given , initially the
curve goes up to some peak, and then drops as the range in-
creases. This is because, initially, the number of nodes has
more impact on the communication density, and after some
point, the dominates.

5.1.3 Effect of the Number of Edges

The number of edges reflects the communication density. We
vary the number of edges in the communication graph sys-
tematically and study the performance of the three heuristics.
Figure 7 plots the completion time ratio for the three heuris-
tics. Again, the MWC outperforms the other two heuristics.
Random color selection is about 10-18% worse. For LCU,
when is the density is small, the number of colors chosen
is much larger than necessary (and depends on the initial
palette). The performance of LUC improves as the number
of edges increases.
Overall, our results indicate that the minimum weight
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heuristic yields the best performance among the three heuris-
tics. This is not surprising since the heuristic takes the com-
pletion time of each color into account when assigning colors
to edges (which in turn, helps minimize the total completion
time). Next, we compare the performance of this heuristic to
the optimal solution.

5.2 MWC versus the Optimal Solution

MWC is a time-based heuristic that is specifically de-
signed to minimize the communication completion time. We
construct several examples to understand how far MWC is
from the optimal schedule. Since the -based optimal so-
lution has exponential complexity as the problem scales, it
is computationally feasible to compare MWC with the op-
timal solution only for small network sizes. Consequently,
we restrict the network size to no more than 20 nodes in our
experiments. The number of edges is restricted to 20—this
involves expanding nodes in the search tree (even for
these small sensor networks, computing the optimal trans-
mission schedule can take several hours on a state-of-the-art
Pentium-4 workstation).
We conduct two experiments. In the first experiment, each

node is assumed to have a different transmission range; we
vary the number of nodes and compute the completion time



of the schedules produced by MWC and . In the second
experiment, each node in the network is assumed to have an
identical transmission range; we vary the number of nodes
and compute the completion times for the two techniques.
Figure 8 and 9 plot our results. The figures plot the comple-
tion time ratio (normalized by the optimal solution) and the
fraction of the cases where MWC yields a solution identical
to the optimal solution.
We observe the following behavior:

1. The time to complete transmissions using MWC is
within of the optimal solution for sensor networks
of up to 20 nodes (and 20 edges).

2. While the solution yielded byMWC is different from the
optimal solution in a large fraction of the cases, this sub-
optimal schedule is only about 6-8% worse for a variety
of transmission ranges.

3. When the transmission range becomes larger, e.g., in
or , the performance actually be-

comes stable, which indicates that MWC is robust even
when the complexity increases.

5.3 Summary of Results

Our experiments yield the following results:

MWC is the best of the three heuristics across a wide
range of system parameters. The better performance is
a result of taking the communication time into account
when generating a schedule.

RCS is close second in terms of the completion times
of its schedules. Further, RCS, like MWC, is not very
sensitive to the number of nodes or the range parameters.

LUC has worst performance and is very sensitive to the
initial number of colors in the palette.

For small networks, the results of MWC are close to the
optimal solution.

The performance of MWC is robust as the communica-
tion density (complexity) increases.

6 Related Work

Real-time issues that arise in various layers of the network
stack in sensor networks are studied in [13]. In terms ofMAC
layer, the authors pointed out that a key research challenge is
to provide predictable delay and/or prioritization guarantees,
while minimizing overhead packets and energy consumption.
Our work aims to provide the explicit delay for data transmis-
sions by avoiding collisions; at the same time, the total trans-
mission time for sending sensor messages is minimized. Our

techniques can also take timeliness constraints into account
when making scheduling decisions.
Other efforts that address real-time issues in sensor net-

works include the design of the communication stack and
real-time routing. For example, RAP [9] is a real-time com-
munication architecture for large-scale wireless sensor net-
works that proposes a novel packet scheduling policy called
velocity monotonic scheduling. In this method, the requested
velocity is mapped to a MAC-layer priority, which in turn re-
duces the deadline miss ratio. In [4], an adaptive real-time
routing protocol, SPEED, uses feedback-based techniques
that try to satisfy per-hop deadlines in face of unpredictable
traffic.
In cellular telephones systems, a communication

channel—a band of frequencies—can be used simultane-
ously by many callers if these callers are spatially apart and
their calls do not interfere with one another. The service area
is divided into a number of regions called cells. In each cell
is a base station that handles all the calls made within the
cell. The total available bandwidth is divided permanently
into a number of channels. Channels must then be allocated
to cells and to calls made within cells without violating the
channel reuse constraint. The minimum distance at which
there is no interference is called the channel reuse constraint.
This problem is similar to our problem in terms of the ability
to reuse the channel. The difference is that there is no need to
consider the transmission cost. Ramanathan [12] introduced
a unified algorithm for efficient (T/F/C)DMA channel
assignment to network nodes or to inter-nodal links in a
(multihop) wireless networks. In [6], the authors established
a relationship between the mutual exclusion problem and the
distributed dynamic channel allocation problem.

7 Conclusions

In this paper, we considered a class of wireless sensor
applications—such as mobile robotics—that impose timeli-
ness constraints. We assumed that these sensor applications
are built using commodity 802.11 wireless networks and fo-
cused on the problem of providing qualitatively-better QoS
during network transmission of sensor data. We proposed
three heuristics based on edge coloring that are designed to
explicitly avoid network collisions and minimize the comple-
tion time to transmit a set of sensor messages. Our simula-
tion results showed that the minimum weight color heuristics
yields the best performance across a range of systems param-
eters and is close to the optimal solution in small sensor net-
works.
As part of future work, we plan to evaluate the effective-

ness of our techniques by implementing them into a sensor
testbed. To do so, we plan to design a scheduler above the
MAC layer to prioritize the packet transmissions based on
the transmission schedule. We also plan to examine the im-
pact of message deadlines and will extend our techniques to
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multi-hop sensor networks.
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APPENDIX

Note: this appendix is provided for ease of the reviewing. It is not
required to read this appendix to review the rest of the paper.
In the appendix, we are proving the NP-completeness of theOp-

timal Parallel Communication Scheduling (OPCS) Problem. In
the OPCS problem, a graph is used to represent the communica-
tion, and there is an interference constraint set such
that, , cannot be scheduled simultaneously with
because of interference.
Optimal Parallel Communication Scheduling (OPCS) Prob-

lem can be formulated as follows.
Input: Graph , weight function ,

interference constraint set .
Question: Find a partition of E into disjoint sets

such that,
1. ,

2. do not share a common endpoint in ,
3. is minimized.

Proposition 1: The OPCS problem is NP-complete. The prob-
lem is NP-complete even if all weights are equal.

Proof: OPCS , since given the disjoint sets, validating
them and compute the objective function
can be done in polynomial time.
To show that it is NP-hard, we prove that Minimum-Edge-

Coloring (MEC) is polynomially reducible to OPCS problem, i.e.,
MEC OPCS. The Minimum-Edge-Coloring below is an NP-
complete problem [5]:
Input: Graph .
Question: A coloring of E, i.e., a partition of E into disjoint sets

such that, for , no two edges in share
a common endpoint in , and the cardinality of the coloring, i.e.,
the number of disjoint sets is minimized.
Given an instance of Minimum-Edge-Coloring with graph
, we can formulate an instance of the OPCS problem as fol-

lows:

let the graph be in OPCS;

, let ;
let ;

Suppose is an optimal solution of OPCS. Now
we establish that it, , is also a solution of the corre-
sponding MEC problem. According to the constraints of the OPCS
problem, is a valid partition of of MEC. Now we
will show that is an optimal solution of the MEC.
We prove this by contradiction.
Assume that there exists another valid partition of for MEC,

, and . This partition,
also satisfies the constraints of OPCS, and it has a lower value:

. Therefore, is not an
optimal partition, which contradicts the assumption.
This completes the proof.


