Inferring TCP Connection Characteristics
Through Passive Measurements

S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, & D.
Towsley

CMPSCI TR 04-10

Inferring TCP Connection Characteristics
Through Passive Measurements

Sharad Jaiswalt, Gianluca Iannaccone$, Christophe Diot$, Jim Kurosef, Don Towsleyt

tComputer Science Department
Univ. of Massachusetts, Amherst

§Intel Research
Cambridge, UK

{sharad, kurose,towsley} @cs.umass.edu {gianluca.iannaccone,christophe.diot}@intel.com

Abstract— We propose a passive measurement method-
ology to infer and keep track of the values of two important
variables associated with a TCP connection: the sender’s
congestion window (cwnd) and the connection round trip
time (RTT). Together, these variables provide a valuable
diagnostic of end-user-perceived network performance.
Our methodology is validated via both simulation and
concurrent active measurements, and is shown to be able to
handle various flavors of TCP. Given our passive approach
and measurement points within a Tier-1 network provider,
we are able to analyze more than 10 million connections,
with senders located in more than 45% of the autonomous
systems in today’s Internet. Qur results indicate that
sender throughput is frequently limited by a lack of data
to send, that the TCP congestion control flavor often has
minimal impact on throughput, and that the vast majority
of connections do not experience significant variations in
RTT during their lifetime.

Index Terms— Network Measurements, Traffic analysis,
TCP

1. INTRODUCTION

TCP (Transmission Control Protocol) is the dominant
end-to-end transport protocol currently deployed in the
Internet, with a wide range of applications such as
Web traffic, grid applications, and newly emerging peer-
to-peer applications relying on TCP’s transport ser-
vices. Given this reliance on TCP, there is currently
great interest in understanding TCP’s performance and
characterizing the factors (such as network congestion,
sender/receiver buffer limits, and sender data-starvation)
that can limit its behavior in practice.

In this paper we present a passive measurement
methodology that observes the sender-to-receiver and

This work is supported by the National Science Foundation under
grants EIA-0080119, ITR-0522631, and ANI- 0240487, and a gift
from Sprint Corporation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation. Part of this work was carried out when S. Jaiswal,
G. Iannaccone and C. Diot were at Sprint ATL, Burlingame, CA.

receiver-to-sender segments in a TCP connection, and
infers/tracks the time evolution of two critical sender
variables: the sender’s congestion window (cwnd) and
the connection round trip time (RT'T). As we will
see, with knowledge of these two values, many im-
portant characteristics of the sender, receiver, and the
network path that connects them can be determined.
For example, by comparing cwnd with the amount of
data actually sent, one can determine when a TCP
connection is starved for application-level data (i.e., that
the connection could support a higher transfer rate, if
more data were available); by carefully observing the
manner in which cwnd changes in response to loss,
one can identify non-conformant TCP senders, or the
particular conformant flavor of TCP (e.g., Tahoe, Reno,
New Reno); by monitoring RTTs, one can characterize
RTT variability within and among flows, and determine
the extent to which application-level adaptivity is needed
to cope with variable network delays.

Our work makes several important contributions. Our
first contribution is methodological. We develop a pas-
sive methodology to infer a sender’s congestion win-
dow by observing TCP segments passing through a
measurement point. The measurement point itself can
be anywhere between the sender and the receiver. We
only require that packets can be observed from both
directions of the TCP connection, a requirement our
previous work [11] has shown to not be overly re-
strictive. In case the connection experiences losses, our
methodology’s estimate of cwnd is sensitive to the TCP
congestion control flavor (Tahoe, Reno, or New Reno)
that best matches the sender’s observed behavior. We
also propose a simple RTT estimation technique based
on the estimated value of cwnd.

Our second contribution is in terms of the measure-
ments made, and the application of our methodology to
the traces gathered within the Sprint IP backbone. We
present results on the distributions of congestion window
sizes and RTTs in the observed TCP connections. Our

study is unique in that it examines a remarkably large and
diverse number of TCP connections. Given our passive
methodology and measurement points within a Tier-1
network provider, we are able to analyze more than
10 million connections, with senders located in more
than 45% of the autonomous systems in today’s Internet.
We find that sender throughput is frequently limited by
lack of data to send, i.e., that lack of data, rather than
network congestion, is often a limiting factor. We find
that the majority of TCP connections reach a maximum
congestion window on the order of 10 segments but that
50 to 60% of the packets belong to connections with
windows larger than 10 segments. We find that connec-
tions do not generally experience large RTT variations
in their lifetime. For example, for approximately 80-85%
of the connections, the ratio between the 95th percentile
RTT value and the 5th percentile RTT value is less
than 3; in absolute terms, the RTT variation during a
connection’s lifetime is less than 1 second for 75-80%
of the connections. Finally, we find that TCP congestion
control flavors generally have a minimal impact on the
sender’s throughput; the vast majority of the connections
would achieve the same throughput independently of the
congestion control flavor implemented.

The remainder of this paper is organized as follows.
Section II discusses related work. In Sections III and IV
we present our methodology to keep track of the sender’s
congestion window, to infer the TCP sender’s flavor, and
to compute the RTT. In Section V we identify events
that can introduce uncertainty into our estimates and we
define bounds on this uncertainty. Section VI describes
the results of the evaluation of our methodology via
simulations and real-world experiments. Section VII
presents our observations derived from the analysis of
packet traces collected in various points in the core of the
Sprint IP backbone. Finally, Section VIII summarizes our
contributions and provides directions for the extension of
this work.

II. RELATED WORK

Numerous measurement studies have investigated the
characteristics of TCP connections in the Internet. Many
of the early studies [17] either actively measured end-
to-end properties (e.g., loss, delay, throughput) of TCP
connections, or passively characterized a connection’s
aggregate properties (e.g., size, duration, throughput)
[20]. .
More recently, researchers have focused their attention
on specific details of TCP implementations. [15] devel-
ops a tool to characterize the TCP behavior of remote
web servers. Their approach involves actively sending

requests to web servers and dropping strategically cho-
sen response packets in order to observe the server’s
response to loss. They observe the prevalence of various
TCP implementations, the presence of TCP options
such as SACK and ECN, and identify conformant/non-
conformant congestion control behaviors. Our approach,
by contrast, is passive and is thus able to easily charac-
terize large numbers of TCP connections.

In [16], the author had the ability to run tcpdump
over a set of end hosts. The paper describes a tool,
tcpanaly, to analyze these traces, and reports on the
differences in behavior of 8 different TCP implementa-
tions. Methodologically, our work is alike, in the sense
that both involve passive observation of the behavior
of TCP connection and the use of heuristics to decide
which flavor or implementation of TCP best matches the
connection being observed. However, the scope of [16]
is focused on highlighting the differences between vari-
ous TCP implementation stacks. Since our measurement
point is located in the middle of the end-end path,
it is not possible for us to distinguish if a particular
sender behavior is due to events in the network or end-
system TCP implementation issues. Moreover, since we
track several millions of highly diverse TCP connections,
we do not concern ourselves with implementation-level
details of the senders. Our main goal is to track the
sender’s congestion window. We only seek to detect the
cases in which our estimate of the congestion window
may be different from that of the sender; we do not
perform a detailed case-by-case analysis of the reasons
for this difference. Also, in [16], the analyzed traces
involve bulk file transfers, hence the author did not have
to take into account effects of sender and application
behavior. This aspect is discussed in some detail in
our work. The location of the observation point also
introduces methodological challenges in estimating a
connection’s RTT (in contrast to measurements taken at
the end hosts) and we propose a technique to address
this issue in this work. Finally, our study is much larger
in scale and more diverse.

Another work of interest is [11], which presents a
methodology to classify out-of-sequence packets,with
the same measurement environment as in our current
work. As discussed in section IV, we use the method-
ology in [11] to identify packet retransmissions in our
traces.

[21] is the work that is perhaps most closely related to
this present work. In [21], the authors passively monitor
TCP connections and develop heuristics that are used
to classify connections according to the factor(s) that
limit their throughput. A technique is also proposed to
estimate RTT by selecting a value (from among a set

of predetermined values) that most closely matches the
observed packet flight dynamics. Our work differs from
[21] in several important respects. Most importantly, our
goal is not to study the rate-limiting factors of TCP,
but more fundamentally to develop a methodology for
estimating cwnd and RTT. These are arguably the two
most important pieces of TCP sender state. As we will
see, knowledge of these values will allow us to study
many characteristics of TCP connections. These values
can be used to determine the factors that limit a TCP’s
throughput. These values can also be used to detect non-
conforming TCP senders, and to determine the extent
to which various “flavors” of TCP are used in practice.
These values can also be used to determine how often
a newer version of TCP is able to exercise its enhanced
capabilities (e.g., how often NewReno’s fast recovery
mechanism is actually used in practice). In cases where
our work overlaps with [21] (e.g., in determining the
factors that limit a TCP connection’s throughput), a
direct comparison is not currently possible, as the tools in
[21] have not yet been released. We conjecture, however,
that since the techniques in [21] and in this present work
are quite complementary, their combined use will allow
for even better classification of TCP behaviors than either
tool alone.

Several recent efforts have considered the problem
of estimating the RTT of a connection using passive
measurements [12], [13]. These works compute one RTT
sample per TCP connection, either during the triple-
handshake or during the slow-start phase. Our works
extends these efforts in that it computes RTT estimates
throughout a connection’s lifetime.

ITII. TRACKING THE CONGESTION WINDOW

In this section we describe our methodology to keep
track of a sender’s congestion window, cwnd. The con-
gestion window represents the maximum amount of data
a sender can potentially transmit at any given point in
time.

The basic idea is to construct a “replica” of the TCP
sender’s state for each TCP connection observed at the
measurement point. The replica takes the form of a
finite state machine (FSM). The replica FSM updates
its current estimate of the sender’s cwnd based on
observed receiver-to-sender ACKs, which (if received at
the sender) would cause the sender to change state. Tran-
sitions are also caused by detecting a timeout event at the
sender. These timeouts are manifested in the form of out-
of-sequence sender-to-receiver retransmissions, which
are detected using the passive measurement techniques
from [11]. The FSM implementation is described in more
detail in [10].

Estimating the state of a distant sender poses many
challenges:

o In order to process large amounts of data (i.e.,
hundreds of GBytes), a replica can only perform
limited processing and maintain minimal state. Our
replica thus works in a “streaming” fashion; it
can neither backtrack nor reverse previous state
transitions.

« Given its position in the “middle” of an end-to-end
path, a replica may not observe the same sequence
of packets as the sender. ACKs observed at the mea-
surement point may not reach the sender. Addition-
ally, packets sent from the sender may be reordered
or duplicated on the sender-to-measurement-point
path. Here, we use use techniques from [11] to
identify and classify such out-of-sequence packets.

o The manner in which cwnd is modified after packet
loss is dictated by the flavor of the sender’s con-
gestion control algorithm. We consider the 3 major
flavors of TCP congestion control - Tahoe, Reno and
NewReno! - and instantiate three different FSMs,
one for each flavor.

-« Implementation details of the TCP sender, as well as
the use of TCP options, are invisible to the replica’.

All of the considerations above introduce uncertainties
into cwnd estimation, which we discuss in more detail
in Section V.

Several variables must be initialized in the replica
FSM. The sender’s initial congestion window size,
icwnd, is the maximum number of bytes that a sender
can transmit after completing the triple-handshake and
before any ACKs arrive. The typical value of icwnd
can be up to twice the maximum segment size [3]. An
experimental TCP specification allows icwnd to be as
high as twice again this value [2]. We estimate icwnd by
keeping a count of the number of data packets observed
before seeing a receiver ACK. We also initialize the
slow-start threshold (ssthresh) to an extremely large
value, as it is commonly done in TCP stacks [3].3.

During normal operations, a TCP sender can ei-
ther be in slow-start or congestion avoidance. The
arrival of a new ACK increases cwnd by 1 or by
1/cwnd, respectively. If the sender detects a loss

There exist other implementations such as TCP Vegas [4] and
TCP Westwood [5], but we are not aware of any widely used OS
stacks which implement these algorithms, hence we drop these from
our study.

28print’s IPMON traces [7] only contain the first 44 bytes of all
packets. Thus, for TCP packets we have only access to the first 4
bytes of the payload.

3In some TCP implementations the sender initializes the value of
ssthresh from its route cache, an issue we discuss in Section V.

via timeout, it sets cwnd to 1 and ssthresh to
maz(min(awnd, cwnd)/2,2), where awnd is the re-
ceiver advertised window. The more interesting case is
when packet loss is detected via the receipt of three
duplicate ACKSs, one event that brings out the differences
between the three flavors under consideration:

Tahoe. A Tahoe sender reacts to the receipt of three du-
plicate ACKs with a so-called fast retransmit, behaving
exactly as if the retransmission timeout had expired.

Reno. Reno TCP adds fast recovery to Tahoe’s fast
retransmit algorithm [3]. Fast recovery works on the
assumption that each duplicate ACK is an indication that
another packet has successfully reached the receiver. The
sender adjusts its cwnd to account for this fact: ssthresh
is set to maz(min(awnd, cwnd)/2,2)* and cwnd is set
to ssthresh + 3. Thereafter, the sender increments the
cwnd by 1 for every new duplicate ACK received. Once
the sender receives a new ACK, it resets the value of
cwnd to ssthresh, and exits fast recovery, returning to
congestion avoidance.

NewReno. NewReno introduces a simple change in
Reno’s fast recovery mechanism [6] by removing the
need to detect a loss through timeout when multiple
losses occur within a single congestion window. The
change occurs when the sender receives a new ACK
while in the recovery phase. In NewReno the sender
checks whether this is a partial new ACK, i.e., it does
not acknowledge all packets sent before fast retransmit.
If the ACK is partial, the sender immediately retransmits
the packet requested by the receiver and remains in fast
recovery. This behavior ensures that the sender is able
to retransmit a lost packet after every RTT without the
timeout mechanism. The NewReno sender remains in
this phase until it receives an ACK that acknowledges all
outstanding packets before the recovery phase, at which
point it returns to congestion avoidance.

A. TCP flavor identification

As noted above, the three flavors of TCP can respond
differently to loss events. In order to determine which
flavor of TCP is implemented by a sender, we exploit the
fact that a TCP sender can never have more outstanding
unacknowledged (“in flight”) packets than its usable
window size. A sender’s usable window size is the
smaller of cwnd and the window advertised by the

*RFC 2581 instructs that, after a loss, ssthresh should be set to
mazx(flightsize/2,2), where flightsize is the number of packets
currently unacknowledged. We choose min{ewnd, cwnd) instead of
flightsize to follow the current implement of TCP in Linux and
FreeBSD.

receiver. This forms the basis for our test to identify
the sender’s flavor. For every data packet sent by the
sender, we check whether this packet is allowed by the
current FSM estimate of cwnd for each particular flavor.
Given a flavor, if the packet is not allowed, then the
observed data packet represents a “violation” - an event
that is not allowed. We maintain a count of the number of
such violations incurred by each of the candidate flavors.
The sender’s flavor is inferred to be that flavor with the
minimum number of violations, and, at any time during
the life of a connection, the sender’s congestion window
is the value of cwnd as estimated for this flavor. If no
violations are observed for any TCP flavors, we say that
the flavors are indistinguishable. In section VILB we
quantify the extent to which various flavors of TCP are
observed in our traces.

B. Use of SACK and ECN

TCP sender behavior also depends on two options
whose deployment is reported to be growing fast [15]:
Selective Acknowledgments (SACK) [14] and Explicit
Congestion Notification (ECN) [18].

The TCP SACK option allows for the recovery from
multiple losses in a single congestion window without
timeout. SACK, by itself, does not change the congestion
window dynamics of the sender, i.e. it only helps in
deciding what to send, not when to send it. Our mea-
surement points do not have access to SACK blocks. In
some cases, it is possible to detect the presence of SACK
blocks and/or infer the use of SACK information during
fast recovery. Detecting and using SACK information is
part of our ongoing work, and is not considered further
in this paper.

An ECN-capable sender explicitly notifies the receiver
of every reduction of the congestion window for any
reason (fast retransmit, retransmission timeout or ECN-
echo flagged acknowledgment). The measurement point
could estimate the congestion window of the sender
just by looking at the ECN bits in the TCP header.
Unfortunately, ECN is still not widely deployed by end-
hosts. In the packet traces we studied, only 0.14% of the
connections were ECN-aware.

IV. ROUND-TRIP TIME ESTIMATION

In this section we describe a technique to compute
RTT samples throughout the lifetime of a TCP connec-
tion, leveraging the cwnd estimation techniques from the
previous section. The implementation of this method is
simple and in some cases results in as many RTT samples
as would be computed by the actual TCP sender. We
only provide a brief overview of our technique here; the
reader is referred to [11] for a more detailed description.

Iy Data packet
L]
1
Sender’s ! 'y
RTT '
d1 H
sample : ! H
1 \J '
v / ACK 1 Inferred
, ' RTT sample
¥ d2 :
\/
Data packet
triggered by
this ACK |
Sender Receiver
Fig. 1. TCP running sample based RTT estimation

The basic idea behind our RTT estimation technique is
illustrated in Figure 1. Since we are not able to directly
measure the sender’s RTT sample shown in the left of
Figure 1, we instead measure (i) the round trip delay
from the measurement point to the receiver and then
back to the measurement point (labeled d1 in the figure),
and (ii), the round trip delay between the measurement
point, the sender and then back to the measurement
point (labeled d2 in the figure). The sum of these two
delays d1 + d2, as shown in Figure 1, is our estimate
of the RTT. We refer to our method as a running RTT
estimation technique, since it continuously makes RTT
estimates, based on the measured values of d1 and d2
throughout the TCP connection’s lifetime. In the case
that the transmission time of the two data packets in
Figure 1 is exactly the same, our RTT estimate will
be exact. We will investigate the magnitude of the RTT
estimation error shortly. We conclude here by mentioning
two important aspects of the running RTT estimation
technique.

An important requirement of the running RTT esti-
mation technique is the ability to determine which data
packet transmissions are triggered by the arrival of a
particular ACK. This requires an accurate estimate of
cwnd and it is here that our techniques from the previous
section come into play.

Our technique must also be able to stop (and restart)
the RTT estimation as a sender recovers from a loss in
order to closely emulate the behavior of the actual TCP
sender (which does not compute the RTT during the loss
recovery). In order to do this, our technique relies on the
knowledge of the state of the TCP connection, i.e., if the
sender is in fast recovery.

V. SOURCES OF ESTIMATION UNCERTAINTY

The idea behind replicating sender state, and tracking
various TCP flavors is not complicated. However, the
measurement point has only partial information about

the TCP connections it observes. Given its location in
the middle of the path, it may not observe the same
events as the senders, and vice versa. Moreover, it
assumes complete knowledge of the TCP stack imple-
mentations that may instead present subtle (or malicious)
differences [15], [16]. These two characteristics of our
measurement methodology can introduce uncertainties
into our estimate of sender state. A significant aspect
of our work is to understand how these issues impact
our approach (or any passive measurement approach, in
the middle of the end-end path). In order to address these
issues, we start by identifying events in the network that
can result in an ambiguous or erroneous state at the mea-
surement point. Then, we discuss how our methodology
can detect such events, and provide a quantitative upper
bound on their occurrence.

A. Under-estimation of cwnd

The measurement point may underestimate cwnd if
it observes three duplicate ACKs that never reach the
sender. According to our methodology, the measurement
point would infer that the sender will undergo a fast
retransmit and reduce cwnd and ssthresh accordingly.
The sender will eventually timeout and then retransmit
the packet. At this point the measurement point will
detect the timeout and reduce the the value of ssthresh
twice (once for the fast retransmit and then as part of
the timeout) while the sender would do so only once.

Note that even if the measurement point detects the
timeout, it cannot later reverse its decision. Indeed, the
measurement point would observe the same sequence of
packets if the third duplicate ACK is lost (ssthresh is
modified only once) or if the packet sent due to fast
retransmit is lost (ssthresh is modified twice).

On the other hand, detection of these cases is relatively
simple. A sender, if greedy, will transmit more packets
than the estimated cwnd would permit. That sender
would then trigger violations in all the TCP flavor
FSMs. This way, the measurement point can identify
the connections for which the congestion window is
uncertain.

In order to quantify the frequency of these events, we
counted the number of senders that incur in violations in
all the flavors in the packet traces we study. Only 0.01%
of all senders show this behavior. If we focus on senders
with more than 13 packets to send’ this percentage goes
up to 5%. This is expected given that the more packets a

3Senders with at least 13 packets may experience a fast retransmit.
In fact, a sender with an initial window of 2 packets and in presence
of delayed ACKs would send 13 packets in 4 flights of 2, 3, 3, and
5 packets, respectively.

sender transmits, higher the likelihood that it will incur
the loss scenario described above.

B. Over-estimation of cwnd

Two events will lead to an over estimate of the
congestion window size.

Acknowledgments lost after the measurement point.
Every ACK for new data observed at the measurement
point causes an increment of cwnd. If the ACK is lost
before reaching the sender, there will not be a corre-
sponding increment at the sender, resulting in an over-
estimation of the sender’s congestion window. Moreover,
during fast recovery, any extra duplicate ACKs observed
at the measurement point cause cwnd to be increased
by one. Again, if such ACKs are lost before they reach
the sender, the measurement point will over-estimate the
sender’s cuwnd.

Entire window of data packets lost before the mea-
surement point. An entire window of packets transmit-
ted by the sender and dropped before the measurement
point will remain undetected. This is because, in order
to detect a loss, the measurement point needs either
to observe packets from the receiver related to the
packet drops (in the form of duplicate ACKSs) or earlier
transmissions of the data packets. In this case the sender
will timeout and update the values of ssthresh and
cwnd while the measurement point will maintain the old
values. The loss of the initial SYN packet is a special
case of this event that will make the measurement point
over-estimate ssthresh (set by the sender to 2) and thus
incorrectly consider the sender to be in slow-start for
longer than needed.

The detection of overestimation events is particularly
difficult. In fact, a sender for which the measurement
point has a larger estimate of cwnd would just appear
as a “not-greedy” sender, i.e., with a rate limited by the
application or by the kernel sending buffer size. Not-
greedy senders are not uncommon: Zhang et al. [21]
estimate that application-limited senders account for up
to 34% of all senders. Our traces tend to confirm this
estimate, with around 30% of the senders not-greedy
(see Section VII). It is important to remember that
these numbers represent very loose upper bounds on the
magnitude of this type of estimation uncertainty.

C. Window scaling

The sender window is the minimum of cwnd and
the receiver advertised window, awnd. Since, we collect
only the first 44 bytes of the packets and thus can
not track the advertised window for all connections.

Indeed, for those connections that use the window scale-
option [9], capturing only the first 44 bytes hides the
scale factor making it impossible to know the exact value
of the receiver window.

In order to estimate how often this problem occurs
we first count the the number of connections that could
be using the window scale option; then, we count the
connections for which cwnd could exceed awnd.

The standard [9] requires end-hosts to negotiate the
use of the window scaling option during the initial
connection setup. Therefore, the size of the SYN and
SYN+ACK packet can be used to infer if those pack-
ets could accommodate the window scale option (that
consumes 3 bytes).

For these connections, given that the window scale
option can only “scale up” the window size, we have at
least a lower bound on the size of the receiver window.
Therefore, we can identify all the connections for which
we are uncertain of the sender window as those where
cwnd reaches the lower bound of awnd.

In the packet traces under study, our measurement
point is uncertain of the sender window for around 2%
of the connections. Note that these numbers refer to the
case where the window size is uncertain at least once
during the lifetime of the connection. In general, our
methodology allows us to track correctly cwnd as long
as it is below the lower bound of awnd. When cwnd
exceeds the lower bound of awnd we may underestimate
cwnd, as discussed earlier.

D. Issues with TCP implementations

Several previous works [15], [16] have uncovered bugs
in the TCP implementations of various OS stacks. For
example, using the TBIT tool, the authors in [15] found
that as many as 8% of web servers probed used a version
of Reno which would behave more aggressively then
Reno during the recovery phase, and about 3% of web
servers simply did not cut down their window after a
loss.

Another issue that we mentioned in Section III is
regarding the initialization of the senders ssthresh
value. Some TCP implementations cache the value of the
sender’s cwnd just before a connection to a particular
destination IP-address terminates, and reuse this value
to initialize ssthresh for subsequent connections to this
destination. Hence, in such cases a TCP sender can
start out with a smaller value of ssthresh, which might
result in it exiting slow-start earlier than predicted by the
FSMs.

These implementation issues affect our ability to track
the congestion window and RTT of a TCP sender.
It is impractical to detect and track all possible TCP

implementations. On the other hand, we can use the
same techniques described above to identify inaccuracies
in the cwnd estimate to discover TCP senders with non-
compliant congestion control or differences in implemen-
tation, and interrupt our RTT and cwnd estimation. For
example, a sender that does not react to the receipt of
three duplicate ACKs will later violate all TCP flavors
and thus be discovered by our measurement point. Also,
a sender with a smaller initial value of ssthresh which
exits slow-start earlier than predicted by the FSM could
appear as a non-greedy source, prompting us to stop
computing RTT estimates.

E. Impact on RTT estimation

RTT estimation is directly affected by estimation inac-
curacies in cwnd. Our methodology needs to know cwnd
in order to identify the data packet whose transmission
by the sender is triggered by the receipt of the ACK
used in the estimation (see Section IV). Therefore, over-
(under-) estimation of cwnd will result in an over-
(under-) estimation of the RTT. For this reason when
the measurement point detects estimation uncertainty in
cwnd, it interrupts RTT estimation for that connection.

VI. EVALUATION

We validated our methodology using both simulations
and experiments over the Internet.

A. Simulations

In our simulations we used the ns simulator, with a
typical “dumbbell” topology with a single bottleneck
link. We generated long lived flows for analysis and
cross traffic consisting of 5,700 short lived flows (40
packets) with arrival times uniformly distributed through
the length of the simulation. We did sets of experiments
with the bottleneck link located between the sender
and the measurement node, and with the bottleneck
after the measurement point. We also ran simulations
with different parameters for the bottleneck link, varying
the bandwidth, buffer size and propagation delay. The
average loss rate in the various scenarios varied from
2% to 4%.

For each sender we compare the RTT samples mea-
sured with our methodology with the values computed
by the rs sender. Estimated cwnd values are compared to
those maintained at the sender every time the sender’s
window changes. Given a series of estimated and ob-
served values, we compute the average of the relative
errors for each sender. Figure 2 plots the cumulative
distribution of the mean relative errors for RTT and
cwnd. The estimated error for cwnd is shown to be
less than 5% for more than 95% of the senders. Only

. 0-9/ emmmmmmmmoane
£ o
g o8 - ”
%0.7— R
L4
g
E osl!
—§ osf
E
o3, s 10 [P 25
Mean Relative Error (%)
Fig. 2. Mean relative error of cwnd and RTT estimates in the

simulations

1 sender out of the 280 under study incurred an error
larger than 20%. In absolute terms, 265 senders have
an average cwnd of less than 0.5 packets, while only 1
had an error of more than 1 packet. The RTT estimate
error is less than 10% for 90% of the senders, and never
exceeds 25% of the actual value.

Simulations can also give us insight into how accu-
rately our methodology identifies the TCP flavor. Out
of the 280 senders, the TCP flavor of 271 senders
was identified correctly. Of the remaining senders, 4
either had zero violations for all flavors (i.e., they did
not suffer a specific loss scenario that allows us to
distinguish among the flavors) or had an equal number of
violations in more than one flavor (including the correct
one). Also, we misclassified 5 connections. This can
happen if the FSM corresponding to the TCP sender’s
flavor understimates the sender’s congestion window, for
example, as in the scenario described in Section V-A.
Thus, this FSM may experience more violations in its
estimate of the sender’s cwnd and this would lead to an
incorrect identification of the sender’s flavor.

We also observed that by increasing the duration of
the simulations, we were able to increase the number of
connections for which we correctly identified the flavor.
This is as expected, since the more packets a sender
transmits, the higher the probability that the sender
would exhibit the behavior peculiar to its flavor.

B. Experiments over the network

We also validated our inference techniques in an
experimental testbed. Our setup consists of PCs running
the FreeBSD 4.3 and 4.7 operating systems, with a
modified kernel that exports the connection variables to
user space using the sysctl facility. The PCs were
located at the University of Massachusetts, in Ambherst,
MA and Sprint ATL, in Burlingame, CA. Traffic between
these two sites passed through an OC-3 access link in
Stockton, CA, which was also passively monitored by
an IPMON system. We carried out our experiments by

1 T T P ™~

o e o o
o0 ~N o -]
—

L
>

Cumutative fraction of senders
o o
(2] o

S
o

R S S

L
20

10 15
Mean Relative Error (%)

Fig. 3. Mean relative error of cwnd and RTT estimates with losses
induced by dummynet

setting up 200 TCP connections (divided between Reno
and NewReno flavors).

We ran a set of experiments at different times of
the day, over several days, with bulk transfers lasting
between 10 seconds and 5 minutes. Given the very low
loss rates (rarely exceeding 0.2%) experienced by the
connections our estimate were very accurate. The error
in cwnd was on the order of the rounding error when
converting cwnd from bytes to packets.

Given the low error rates observed in the native
Amberst-to-Burlingame connection, we ran a second set
of experiments using a dummynet bridge in front of the
TCP senders [19] to emulate a bottleneck link (with loss
rates in 3-5% range). Figure 3 plots the mean relative
error for cwnd and RTT. The error in the cwnd estimate
is less than 15% for almost 95% of the senders. In
absolute terms, 182 out of the 200 senders exhibit an
error of less than 0.5 packets. This level of error is
likely due to rounding errors between the measurement
point and the TCP stacks in the kernels under study.
The RTT errors are also very small: 95% of the senders
have an error of less than 15%. We note that RTT errors
below 10% are to be expected. The average RTT between
UMass and Sprint ATL is around 90ms, thus a 10% error
is on the order of the kernel clock tick in the testbed
machines (set to 10ms).

In summary, our simulations and live Internet experi-
ments have demonstrated the accuracy of our methodol-
ogy for tracking cwnd and RTT. The relative errors
were found to be small, often on the order of (and
possibly due to) rounding errors or clock tick precision.

VII. BACKBONE MEASUREMENTS

The IPMON infrastructure provides packet-level traces
from OC-3/12/48/192 links in several Points-of-Presence
(POPs) in the Sprint backbone®. In the following, we

For more details see hitp://ipmon.sprint.com

show results from three data sets: i) a bidirectional OC-
48 (2.5 Gbps) link on the East Coast of the U.S. (named
East Coast); ii) two bidirectional OC-48 links connecting
San Jose, CA to Relay, VA (Transcontinental); iii) one
bidirectional OC-48 link inside the New York PoP (/ntra-
POP).

Table I presents a summary of the characteristics of
the data sets. All the data sets are 1 hour long and
contain a total of approximately 11M TCP connections.
We believe these traces provide a representative sample
of the Internet traffic. For example, we retrieved the
BGP table from Sprint backbone routers during trace
collection, and used the AS path information to derive
the source and destination ASes of the observed TCP
connections. Overall, the data sets contain TCP connec-
tions originating in 5,819 unique ASes. This represents
around 45.3% of the total number of allocated ASes at
the time of the trace collection (we counted 12,848 ASes
as of November 21st, 2002).

A. Congestion window

A first metric of interest is the maximum window that
a TCP sender reaches during its connection lifetime. As
mentioned earlier, the maximum window size is limited
by several factors, including the receiver’s advertised
window’. Figure 5 shows the empirical cumulative distri-
bution function of the maximum window size during the
lifetime of the connections. The five curves correspond to
different thresholds for the size of the flows.® The curve
with the minimum threshold, 5 data packets, has the
steepest slope since it includes many small connections
that do not have the opportunity to expand their window
sizes. The median value of the maximum window for
these flows is 8, while 80% of the flows have a maximum
window size of less than 11.

We observe that as the flow size threshold increases,
the distribution of the curves become more similar, with
a median maximum window size of approximately 10
to 12 packets. This could be because as the connections
become larger, they have a higher probability of either
incurring a loss, or being restricted by the receiver-
advertised window. Additionally, the distributions show
a set of spikes at values corresponding to maximum
window sizes of 6, 12, or 16 packets. These values cor-
respond to connections that are restricted by commonly-
used advertised window values of 8 and 16 Kbytes, with
an MSS of either 536 or 1460 bytes.

"As discussed in Section V, we remove senders for which we are
unsure of the receiver window from this analysis

#We have combined data from all the three traces for this analysis,
since the distributions of window size were similar across the traces.
Please refer to [10] for a per-trace analysis.

East Coast

Intra-POP

| Transcontinental |

Link Speed 0OC-48 (2.5Gbps) | OC-48 (2.5Gbps) | OC-48 (2.5Gbps)
No. of links 1 1 2
Unique source ASes 1,565 4,945 2,326
Unique network prefi xes 7,359 25,133 11,218
TCP connections 844K 6M 4.9M
Percentage of all TCP connx 18.76% 51.98% 38.76%
TCP Data packets 18M 74M 110M
TABLE I

SUMMARY OF THE TRACES

Cumulative fraction of senders

4
o
T

e
@
T

e
~

o
-
T

e
[
T

o
1Y

o
@

1
@
2 .08}
§
2 N
® :
§od [
=3 . - N
§ 02 .| & Intra-POP
& Do -5~ Transcontinental
H. -9~ East Coast
10° 10' 10°
Maximum sender window (in packets), for senders > 5 pkts
1
14
S o8t
=
06 : i
k-2 . .
8 :
B oaf P Cai
= B .
§ 0z -8 Intra-PCP
& . ~%- Transcontinantal
-6~ East Coast
s

i
10° ! 10 10

10
Maximum sender window (in packets), for senders > 50 pkts

Fig. 4. Cumulative fraction of senders as a function of the maximum
window

Although most of the senders have a relatively small
maximum window size, most of the packets belong to
connections with large window sizes. Figure 6 plots
the cumulative distribution of packets that belong to a
connection with a given maximum window size. Looking
at the curve for flows with at least 5 data packets,
we observe that although 80% of such flows have a
maximum window size of less than 11 data packets, they
carry only 45% of the packets. We also observe similar
spikes in the distribution of Figure 6 as in the previous
figure, again corresponding to commonly used values for
receiver-advertised windows.

Overall, the throughput of 4% of the connections is
limited by the receiver-advertised window at some point
in their lifetime. These connections account for about
40% of the packets. If we look at connections with
at least 10, 25 and 50 data packets, we observe that
44%, 62% and 72% of such connections, respectively,
are limited by the receiver window.

B. TCP flavors

As described in Section III, congestion window evolu-
tion can depend on the flavor of TCP congestion control.

o
»

0.

o H
10' 10° 10
Maximum sendar window

Fig. 5. Cumulative fraction of senders as a function of the maximum
window

Table II gives the number of connections and packets
in the three data sets that conform to a specific flavor.
The flavor of a particular TCP sender is defined to
be that flavor whose estimated cwnd values resulted
in the minimum number of observed violations, i.e.,
packets sent that exceeded the estimated available win-
dow. Senders with no window violations are classified
as “indistinguishable”, indicating that the specific flavor
does not affect the connection throughput. In case of
parity between TCP Reno and NewReno violations, we
count the sender as a Reno sender.

In Table II we consider only those senders that
transmit more than 13 data packets. This way we only
consider connections that have the opportunity to ex-
perience a fast retransmit. These senders account for
about 8% of all senders but contribute to almost 78%
of data packets. Interestingly, the behavior of 97.05%
of these senders does not allow us to distinguish a
particular flavor of congestion control. This is because
the congestion control flavors manifest differences only
in the way in which they respond to the receipt of three
duplicate acknowledgments. In our traces, this event is

041

Cumutative fraction of senders

o
W
T

o
n
T

01

Fig. 6. Cumulative fraction of packets as a function of the sender’s

maximum window

L
10

10°

Maximum sender window

TCP Senders

Data Packets

Senders >13 pkts

1,56M

139M

Tndistinguishable | 1,51M (97.05%) | 94M (67.51%)
Tahoe 640 (0.04%) | 340K (0.17%)
Reno 28K (1.84%) | 18.5M (13.33%)
NewReno 17K (1.10%) | 26M (19.17%)

TABLE 11
TCP FLAVORS

relatively rare: only 5% of the senders experience a triple
duplicate ACK. Moreover, even after a fast retransmit
the three flavors will exhibit different behavior only in
presence of specific loss patterns. Overall, only 2.95%
of the senders have the opportunity to make use of this
flavor-manifesting behavior over their lifetimes.

Table II also shows the number of packets that belong
to connections of different flavors. Using this metric, the
number of packets that belong to the “indistinguishable”
category drops to 67.5%. This is expected, given that
large connections have a higher probability of experienc-
ing losses that allow us to classify the flow as a specific
flavor of TCP.

Also, the NewReno connections seem to carry a dis-
proportionately large number of packets when compared
to Reno senders. But this is expected as well, given that
the difference between Reno and NewReno manifests
itself only in presence of multiple packet losses in the
same window of data. The likelihood of such event
happening is higher for long connections with large
windows.

In order to confirm our conjectures we plot in Figure 7
the percentage of senders and packets classified as Reno
or NewReno as a function of the number of data packets
sent. As expected, the number of senders that fall in

&~ Indistinguishable ———
-~ NewReno ﬂ\

80N -e- Reng s
ol \&\
-
Y
T /a{,/*’""/’g""'e“‘
g
s
g .
1

) 1
Threshold (packets)

—~..
s -

4

Percentage of senders

K]

a

- .

2 .

3. & B - S

5 oo e

% 40r ‘ﬁﬂ\\ca--__{;__j
P

E V_,ﬂf——v—-—’*?‘

§ X gm0 e

o | S———— B S

0 1
Threshold (packets)

Fig. 7. Percentage of Reno/NewReno senders (above) and packets
(below) as a function of the data packets to transmit

the “indistinguishable” category decreases as the number
of packets sent increases. Also, as the number of data
packets sent increases, NewReno appears to be the more
prominant TCP flavor both in terms of senders and
packets.

C. Greedy senders

A sender is defined as “greedy” if at all times the num-
ber of unacknowledged packets in the network equals the
the available window size. Under normal conditions, the
measurement point would observe a full window of data
being sent, a set of acknowledgments being returned, a
new (larger) full window of data packets being sent, and
so on. In this model of sender behavior, a “flight” is a
set of packets sent “together” separated from subsequent
flights by the ACKs from the receiver.

Using our estimate of the window available to the
sender, and this notion of flights of packets, we propose
a simple heuristic to identify not-greedy senders: if
the number of unacknowledged packets (also defined
as flight-size), at the end of a flight, is less than the
available window at the beginning of a flight, then the
sender is not greedy. The measurement point identifies
the beginning of a new flight (and the end of the current
flight) as the first data packet observed after an ACK that
acknowledged a data packet in the current flight®.

The basic assumption of this heuristic is that a set
of packets sent in a “flight” by the sender is never
interleaved with acknowledgments for packets in that
flight, i.e. that all acknowledgments that arrive in the
“middle” of a flight cover data packets belonging to
previous flights. The validity of this assumption depends

*In the presence of packet losses, the measurement point needs to
wait for the end of the recovery phase.

T
Greedy all flights
Gready for 75% of the fiig

Percentage of senders
8

05010 0.76 mora than 0.75

less than 0.25 0.25 to 0.50

ACK-time / RTT

Fig. 8. Fraction of greedy senders based on the distance between
measurement point and receiver

on the position of the measurement point with respect to
the sender and receiver. Indeed, if the measurement point
is very close to the receiver, each data packet will be
immediately acknowledged (or every other data packet
in presence of delayed acknowledgments). Hence, the
measurement point will estimate a flight size of one
or, at most, two packets and deem the sender as not-
greedy. In order to identify those connections for which
the measurement point is “too close” to the receiver,
we define the “ACK-time” as the time between the
observation of a data packet and the observation of the
acknowledgment that covers that data packet. In our
discussion, we use the ratio between the ACK-time and
the RTT (called the ACK-time ratio) as an indication of
the proximity of the measurement point to the receiver.

To summarize, we split the lifetime of a connection
into “flights”, and test, at the end of each flight, if the
number of packets sent is equal to the sender’s window
at the beginning of the flight. We only examine senders
that transmit more than 4 flights (i.e., send more than 13
data packets). Nearly 54% of these senders are greedy.

In order to test the impact of the proximity to the
receivers on our classification, we group the senders
into four categories depending on their ACK-time ratio
(Figure 8). The figure shows that the fraction of greedy
senders is largest in the category with an ACK-time ratio
of at least 0.75 (the measurement point is far from the
receivers). In this category, as much as 68% of all senders
are greedy for all the flights, and nearly 79% of senders
are greedy for 75% of the flights transmitted.

We can consider the greediness of these senders to be
a close approximation of the percentage of actual greedy
senders. However, it is important to know whether this
is a representative set of senders. In order to address
this question, we compare the distribution of size of the
connections with an ACK-time ratio greater than 0.75
with that of all other connections. Figure 9 plots the
quantile-quantile plot of the log of the connection sizes.
We can observe an almost perfect linear fit for flow sizes

log10{Size in packets), Al sendsrs
b I @ & [
o N fil w 0 & 0 o o
— —

L .
2 285 3 35 4 45 5
log10{Size in packets), Senders with ACK/RTT > 0.75

oF

Fig. 9. qq-plot of flow size between flows with large ACK times,
and all flows

e o ©
& & -]
——

Cumulative fraction of sendars
®
T

: [~ East-Coast H
i 1| - Transcontinentas
= - m-pOP

10 10

-
El

e
(3
T

e
(=)
T

e
R
T

Cumulative fraction of senders
o
=

10' 10° 1
Median RTT (In msecs)

-0
3

Fig. 10. Top: CDF of minimum RTT; Bottom: CDF of median RTT

until 100 data packets (which corresponds to a little more
than 90% of all flows in these two populations), and
a linear-seeming trend for the higher percentiles. This
lends confidence to our assumption that the connections
with large ACK-time ratio are representative of the total
population of connections in our traces.

D. Round trip times

Figure 10 plots the minimum and median values of the
RTTs of the connections in the three data sets. We only
plot RTTs for those connections with at least 10 RTT
samples (in both directions). We choose this threshold
to discount the effects of single erroneous values, and
also to have enough samples to examine the variability
of the round trip time within the lifetime of a flow.

We observe that for 50% of the examined senders the
minimum value of the RTT is less than 150-200 msecs.
Note, however, that the RTT can range from less than
10 msecs, to as high as 10 secs. The distribution of the
median value of the RTT in the lifetime of the flow is
similar in shape to that of the minimum RTT, and in 50%
of the senders, this value is less than 300-400 msecs.

Next, in Figure 11 we look into the RTT variability
within a connection. To this end, we consider the 95th-

o
©
T

=4
o
T

o
>
T

o
1)
T

Cumulative fraction of senders

" : 1
10' 10 10° 10
AT o5 parcentty Tsm pocentle

o
@
T

o
kY

‘[~ East-Coast
— - Transcontinantal
— - Intra POP
10’

10

o
1

Cumulative fraction of senders

: i
2]

10
HTTsm (in msecs)

AT Tosm porcontis

Fig. 11. Varability of RTT. Top: ratio 95th/5th percentile; Bottom:
difference between 95th and 5th percentiles.

percentile and the Sth-percentile of the RTT samples. In
the top plot of Figure 11 we look at the ratio between
these two values. Quite consistently across the three
data sets, for as much as 50-60% of all connections,
the 95th-percentile RTT is less than two times the 5th-
percentile, while for nearly 40% of all senders, this can
range between 2-6 times. In absolute terms, 50% of the
connections exhibit an RTT variability of less that 200-
300ms (bottom plot in Figure 11). Similar observations
about the variability in TCP round-trip times have also
been recently reported in [1], using measurements taken
at a university access link.!® In their work, the authors
report that for 40% of the senders, the ratio between
the 90th-percentile and the minimum RTT sample of
a connection is less that 2, and for about 50% of the
senders, this ratio ranges between 2 — 10.

E. Efficiency of slow-start

TCP’s slow-start mechanism is intended to quickly
identify the “equilibrium” point of a connection so that
a sender can run stably with a full window of data in
flight [8]. Once the connection reaches the equilibrium,
congestion avoidance is used to keep the connection
operating around that point. The assumption behind this
overall approach is that the first loss event is a valid
estimator of the available bandwidth.

In order to verify this assumption we compare the
maximum window reached by a sender with the window
right before exiting slow-start (called sswnd). Figure 12
plots the CDF of the ratio between the maximum window
and sswnd. We only consider senders with more than 13

"Given the fact that the measurement point is close to the sender
in [1], the authors compute a RTT to be the time difference between
a data packet and its corresponding ACK.

Empirical CDF

- y
= 80% packels left

« = 75% packets left
= = 50% packets left

Cumutative fraction of senders

L : 2
] 10 " 12

L i
1 2 3 4 5 6 7 8
Ratio of maximum sender window to slow--start window

Fig. 12. Ratio of maximum sender window to the window size
before exiting slow-start

packets to transmit and divide them into three categories
based on the packets sent after exiting slow-start (50%,
75% and 90% of all sent packets).

We observe that 25% to 55% of the senders reach
a maximum window that is two or more times larger
than sswnd. Note that a TCP connection assumes that
the data rate reached during slow-start is at most twice
the available bandwidth. Figure 12 shows that a large
portion of the connections actually reach rates that are
four times the estimated available bandwidth.

This may indicate that TCP connections are overly
conservative and may operate at rates far from the
available bandwidth. Once in congestion avoidance, a
TCP connection could spend many RTTs to move away
from the slow-start dictated operating point. Further
investigation is needed to understand the impact of slow-
start on application performance and to identify how to
improve the bandwidth estimation (or quickly reverse an
incorrect decision). This will be part of our future work.

VIII. CONCLUSIONS

We have presented a passive measurement methodology
that observes the segments in a TCP connection and
infers/tracks the time evolution of two critical sender
variables: the sender’s congestion window (cwnd) and
the connection round trip time (RT'T"). The measurement
point itself can be anywhere between the sender and
the receiver. This allows us to apply our methodology
to packet traces collected in the middle of a backbone,
providing a significant advantage in comparison to tra-
ditional active end-to-end measurements. We are able
to monitor millions of TCP connections originated and
destined to a large portion of the entire Internet.

We have also identified the difficulties involved in
tracking the state of a distant sender and described the
network events that may introduce uncertainty into our
estimation, given the location of the measurement point.
We have also defined bounds on these uncertainties and
investigated how frequently they occur in the traces
under study.

Our results lead to the following observations:

« The sender throughput is often limited by lack of
data to send, rather than by network congestion.

¢ In the few cases where TCP flavor is distinguish-
able, it appears that NewReno is the dominant
congestion control algorithm implemented.

« Connections do not generally experience large RTT
variations in their lifetime. The ratio between the
95th and 5th percentile of the RTT is less than 3
for approximately 80-85% of the connections.

As part of our future work, we would like to inves-
tigate the efficiency of TCP slow-start, specifically, the
issue that the first packet loss a connection experiences
is not a particularly good estimator for the available
bandwidth along the path.

Looking further, our work represents a fundamental
building block for addressing a wide range of research
questions about Internet traffic, such as identifying
the root causes behind packet losses (i.e., congestion,
routing, network failures). The methodology proposed
in [11] to classify out-of-sequence packets represented a
first building block. This work complements [11] with
a technique to accurately estimate the sender’s state and
the connection flavor.

The next step is to correlate the behavior of different
TCP connections to identify common patterns. This
would allow us to understand if connections experience
congestion in one or multiple points in the network. It
would also allow us to identify the Autonomous Systems
that contribute significantly to connection loss, and thus
drive down connection throughput.

ACKNOWLEDGMENTS

The authors would like to thank Richard Gass at
Sprint ATL for systems support and help in setting up
the experiments for this work, and to the anonymous
reviewers for their detailed comments.

REFERENCES

(1] J. Aikat, J. Kaur, F. Smith, and K. Jeffay. Variability in tco
roundtrip times. In Proceedings of ACM Sigcomm Internet
Measurement Conference, Oct. 2003.

[2] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s initial
window. RFC 2414, Sept. 1998.

Bl
4]

(5]
[6]
(71

(8]
191
(10]

f11]
[12]

[13]

(14]
(15]
[16]
[17]

(18]
[19]
[20]

(21]

M. Allman, V. Paxson, and W. R. Stevens. TCP congestion
control. RFC 2581, Apr. 1999.

L. Brakmo and L. Peterson. TCP Vegas: End to end congestion
avoidance on a global internet. JEEE Journal on Selected Areas
in Communications, 13(8):1465-1480, Oct. 1995.

C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang.
TCP Westwood: Bandwidth estimation for enhanced transport
over wireless links. In Proceedings of ACM Mobicom, pages
287-297, July 2001.

S. Floyd and T. Henderson. The NewReno modification to
TCP’s fast recovery algorithm. RFC 2582, Apr. 1999.

C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, R. Rockell,
D. Moll, T. Seely, and C. Diot. Packet-level traffic measure-
ments from the Sprint IP backbone. IEEE Network, 2003.

V. Jacobson. Congestion avoidance and control. In Proceedings
of ACM Sigcomm, pages 314-329, 1988.

V. Jacobson, R. Braden, and D. Borman. TCP extensions for
high performance. RFC 1323, May 1992.

S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Inferring TCP connection characteristics through passive mea-
surements (extended version). Technical Report RR0O3-ATL-
070121, Sprint ATL, July 2003.

S. Jaiswal, G. lannaccone, C. Diot, J. Kurose, and D. Towsley.
Measurement and classification of out-of-sequence packets in
a tier-1 IP backbone. In Proceedings of IEEE Infocom, Mar.
2003.

H. Jiang and C. Dovrolis. Passive estimation of TCP round-trip
times. Technical report, July 2001.

H. Martin, A. McGregor, and J. Cleary. Analysis of internet
delay times. In Proceedings of Passive and Active Measurment
Workshop (PAM), 2000.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
selective acknowledgement options. RFC 2018, Oct. 1996.

J. Padhye and S. Floyd. On inferring TCP behavior. In
Proceedings of ACM Sigcomm, Aug. 2001.

V. Paxson. Automated packet trace analysis of TCP implemen-
tations. Sept. 1997.

V. Paxson. End-to-end internet packet dynamics. IEEE/ACM
Transactions on Networking, 7(3):277-292, June 1999.

K. Ramakrishnan, S. Floyd, and D. Black. The addition of
explicit congestion notification (ECN) to IP. RFC 3168, Sept.
2001.

L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. ACM Computer Communication Review,
27(1), Jan. 1997.

K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet
traffic patterns and characteristics. IEEE Network Magazine,
Nov. 1997.

Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
characteristics and origins of internet flow rates. In Proceedings
of ACM Sigcomm, Aug. 2002.

APPENDIX

procedure updateCwnd

Inputs :
Argument | Input type | Remarks
packetType RTOData | ACK | Dup-ACK | packet types which cause this procedure to be invoked

num_dupacks

Integer

number of duplicate ACKs

ack_seqno Sequence number sequence number of last ACKed data packet

next_seqno Sequence number sequence number of the next expected data packet

ocwnd Integer value of cwnd before it deflates, used by procedure fhvorTest

numACKed | Integer number of packets cumulatively acked by a new ACK, used only by NewReno
Variables :

Variable name | Type Remarks

cwnd Integer sender’s congestion window estimate

ssthresh Integer sender’s slow start threshold estimate

recover Sequence number for New Reno, sequence number of last data packet

observed before entering fast recovery
state DEFAULT Tahoe states
DEFAULT | FAST_RECOVERY Reno and NewReno states

MSS Bytes global variable, Maximum Segment Size for this connection

aund Integer Another global variable, the receiver’s advertised window
Outputs

Name | Remarks

cwnd, ssthresh,ocwnd | updated values of cwnd, ssthresh and ocwnd

Input Format - for Tahoe, Reno
<packetType, num_dupacks, ack_segno, next_seqno, ocwnd>

Input Format - for NewReno
<packetType, num_dupacks, ack_segno, next_seqno, ocwnd, numACK ed>

Fig. 13. Variables required to keep track of the cwnd of the three TCP flavors

procedure incr_cwnd

Inputs :

cwnd, ssthresh

Outputs :
cwnd

iflcwnd < ssthresh)
cwnd + +;

else

cwnd+ = 1/cwnd

Fig. 14. Function used to update cwnd during slow-start and congestion avoidance

State Input | Action
<DEFAULT> <ACK, *, *, * ocwnd> incr cwnd(cwnd, ssthresh);
<Dup_ACK, 3, ack_seqno, next_seqno, ocwnd> | ssthresh = maz(min(awnd,cwnd)/2,2);
if (flightsize < min{cwnd, awnd))
ocwnd = min(cwnd, awnd)
elseocund =0
cwnd = 1;
<RTO_packet, *, *, *, ocwnd, > ssthresh = mez(min(ewnd, cwnd)/2, 2);
cwnd = 1;
ocwnd = 0;
Fig. 15. Pseudocode to track congestion window for Tahoe
State Input | Action
<DEFAULT> <ACK, *, * * ocwnd> incr cwnd(cwnd, ssthresh);
: cmp_ocwnd(cwnd, ocwnd);
<Dup_ACK, 3, ack.seqno, next_seqno, ocwnd> | ssthresh = maz(min(awnd, cwnd)/2,2);
if(flightsize < min(cwnd, awnd))
ocwnd = min(cwnd, awnd)
else ocund =0
cwnd = cuwnd/2 + 3;
state = FAST_RECOVERY;
<RTO_packet, *, *, * ocwnd> ssthresh = maz(min(awnd, cwnd)/2, 2);
cund = 1;
ocwnd = 0;
<FASTRECOVERY> | <ACK, >= 3, ack-seqno, next_seqno, ocwnd> | if(flightsize < min(cwnd, awnd) and ocwnd == 0)

<Dup-ACK, *, * * gcwnd>

<RTO_packet, *, *, * ocwnd>

ocwnd = min(cwnd, awnd)
else ocwnd =0
cwnd = ssthresh;
num_dupacks = 0,
state = DEFAULT;

cwnd + +;
cemp_cwnd(cwnd, ocwnd);

ssthresh = maz(min(awnd, cwnd)/2, 2);
cwnd = 1;

ocund = 0;

num_dupacks = 0;

state = DEFAULT;

Fig. 16. Pseudocode to track congestion window for Reno

State Input | Action

<DEFAULT> <ACK, *, *, * ocwnd, numACKed> iner_cwnd(cwnd, ssthresh);
emp_ocwnd(cwnd, ocwnd);

<Dup_ACK, 3, ack_segno, next_seqno, ocwnd, 0> ssthresh = maz(min(awnd, cwnd)/2,2);

if (flightsize < min(cwnd, awnd)
ocwnd = min(cwnd, awnd)

cwnd = cwnd/2 + 3;

recover = next_seqno — 1

state = FAST_.RECOVERY;

<RTO_packet, *, *, *, ocwnd, 0> ssthresh = maz(min(awnd, cwnd)/2, 2);
cwnd = 1;
ocwnd = 0;

<FASTRECOVERY> | <ACK, *, ack_seqno, next_seqno, ocwnd, numACKed> | if(flightsize < min(cwnd, awnd))
ocuwnd = min{cwnd, awnd)
else ocund =0

num_dupacks = 0;
if(ack_segno > recover)
state = DEFAULT;
recover = 0
cwnd = ssthresh;
else
cwnd = cwnd — numACKed + 1;

<Dup ACK, *, * * ocwnd, 0> cund + +;
emp_cwnd(cwnd, ocwnd);

<RTO_packet, *, *, *, ocund, 0> ssthresh = maz(min(awnd, cwnd)/2, 2);
cwnd = 1;

ocund = 0;

recover = ()

num_dupacks = 0;

state = DEFAULT;

Fig. 17. Pseudocode to track congestion window of NewReno

procedure cmp_ocwnd
Inputs :

cwnd, ocwnd

Outputs :

ocwnd

iflcwnd > ocwnd)
ocwnd = 0;

Fig. 18. Function used to reset ocwnd

procedure flavorTest

Inputs :
Argument Input type Remarks
flavor TAHOE | RENO | NEWRENO | flavor being tested
cund Integer estimate of cwnd for this flavor
ocwnd Integer value of cwnd before it deflated
num_dupacks Integer Number of duplicate ACKs
ack_segqno Sequence number last sequence number ACKed
cur_segno Sequence number sequence number of current data packet
flightsize Integer the number of packets currently unacknowledged
inFastrecovery | Integer flag which denotes if the state m/c for this flavor is in the fast recovery state
Variables :
Name ﬁ Type | Remarks
1sFalse | Integer | flag which indicates whether this packet was allowed by this flavor
MSS Bytes Maximum Segment Size for this connection
Outputs :
isFalse

Input Format :
<cwnd, ocwnd, num_dupacks, ack_seqno, cur_seqno, flightsize, >

isFalse = 0,
if(flightsize > max(cwnd, ocwnd))
if(cur_segno > ack_seqno)
isFalse = 1;
if(cur_seqno == ack_seqno)
if(flavor +# NEW RENO)
iflnum_dupacks < 3)
isFalse = 1;
elsif (inFastrecovery # 1)
isFalse = 1;

Fig. 19. Testing TCP flavors

procedure ritEstimate

Inputs:
Argument Input type | Remarks
packetType New Data | Retx Data | Dup-ACK | packet types which cause this procedure to be invoked
num_dupacks | Integer number of duplicate ACKs
uwnd Integer current estimate of the sender’s usable window, i.e. min{awnd, cund)
time the current time
cur_seqno Sequence number sequence number of a New_Data packet
ack_seqno Sequence number most recent ACK
Variables:
Name Type | Remarks
state DEFAULT | FROZEN | whether RTT estimation is currently frozen or on
startTime time at which this estimate for the RTT started
startSeqno Sequence number sequence number of data packet that starts the RTT sample
sampleSeqno | Sequence number sequence number of data packet that completes the RTT sample
MSS Bytes Maximum Segment Size for this connection
Outputs:
Name | Remarks

rtt_estimate | current RTT sample

Input Format

<packetType, num_dupacks, uwnd, time, cur_seqno | ack_seqno >

State Input | Action
<FROZEN> <New Data, *, *, time, cur_seqno > | startSeqno = cur_seqno
sampleSegno = NOTSET
startTime = time
state = DEFAULT
<DEFAULT> | <New_ACK, *, uwnd, *, ack_seqno> | if (ack_seqno > startSeqno)
sampleSeqno = startSeqno + uwwnd * M SS
<DEFAULT> | <New.Data, *, *, time, cur_seqno> | if (cur_segno == sampleSeqno)
rit = time — startTime
startSeqno = cur-segno
sampleSeqgno = NOTSET
startTime = time
<DEFAULT> <Retx Data, *, *, *, *> | state = FROZEN
<DEFAULT> <Dup_ACK, 3, *, *, *> | state = FROZEN

PSEUDO-CODE D

TABLE Il
ESCRIBING THE RTT ESTIMATION SCHEME

