
Application Performance in the QLinux Multimedia Operating System

Vijay Sundaram, Abhishek Chandra, Pawan Goyal
Prashant Shenoy, Jasleen Sahni and Harrick Vin

Department of Computer Science, University of Massachusetts Amherst.
IBM Almaden Research Center.

Department of Computer Science, University of North Carolina at Chapel Hill.
Department of Computer Sciences, University of Texas at Austin.

Abstract

In this paper, we argue that conventional operating systems need to be enhanced with predictable re-
source management mechanisms to meet the diverse performance requirements of emerging multimedia and
web applications. We present QLinux—a multimedia operating system based on the Linux kernel that meets
this requirement. QLinux employs hierarchical schedulers for fair, predictable allocation of processor, disk
and network bandwidth. We experimentally evaluate the efficacy of these mechanisms using benchmarks and
real-world applications. Our experimental results show that (i) emerging applications can indeed benefit
from predictable allocation of resources, and (ii) the overheads imposed by the resource allocation mecha-
nisms in QLinux are small. For instance, we show that the QLinux CPU scheduler can provide predictable
performance guarantees to applications such as web servers and MPEG players, albeit at the expense of
increasing the scheduling overhead. We conclude from our experiments that the benefits due to the resource
management mechanisms in QLinux outweigh their increased overheads, making them a practical choice for
conventional operating systems.

1 Introduction

Recent advances in computing and communication technologies have led to the emergence of a wide variety of

applications with diverse performance requirements. Today’s general purpose operating systems are required to

support a mix of (i) conventional best-effort applications that desire low average response times but no absolute

performance guarantees, (ii) throughput-intensive applications that desire high average throughput, and (iii) soft

real-time applications that require performance guarantees from the operating system. To illustrate, PCs in office

environments run a mix of word processors, spreadsheets, streaming media players and large compilation jobs,

while large-scale servers run a mix of network file services, web services, database applications and streaming

media servers.

A preliminary version of this paper appeared in the proceedings of the ACM Multimedia conference, Los Angeles, CA, November
2000.
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Whereas less demanding application mixes can be easily handled by a conventional best-effort operating

system running on a fast processor, studies have shown that such operating systems are grossly inadequate for

meeting the diverse requirements imposed by demanding application mixes [12, 14]. To illustrate, conventional

operating systems running on even the fastest processors today are unable to provide jitter-free playback of full-

motion MPEG-2 video in the presence of other applications such as long-running compile tasks. The primary

reason for this inadequacy is the lack of service differentiation among applications—such operating systems

provide a single class of best-effort service to all applications regardless of their actual performance require-

ments.1 Moreover, special-purpose operating systems designed for a particular application class (e.g., real-time

operating systems [11, 23]) are typically unable or inefficient at handling other classes of applications. This ne-

cessitates the design of an operating system that (i) multiplexes its resources among applications in a predictable

manner, and (ii) uses service differentiation to meet the performance requirements of individual applications.

The QLinux operating system that we have developed meets these requirements by enhancing the standard

Linux operating system with quality of service support. To do so, QLinux employs schedulers that can allocate

resources to individual applications as well as application classes in a predictable manner. These schedulers

are hierarchical—they support class-specific schedulers that schedule requests based on the performance re-

quirements of that class (and thereby provide service differentiation across application classes). Specifically,

QLinux employs three key components: (i) hierarchical start-time fair queueing (H-SFQ) CPU scheduler that

allocates CPU bandwidth fairly among application classes [6], (ii) hierarchical start-time fair queueing (H-SFQ)

packet scheduler that can fairly allocate network interface bandwidth to various applications [7], and (iii) Cello

disk scheduler that can support disk requests with diverse performance requirements [16]. Figure 1 illustrates

these components. We have implemented these components into QLinux and have made the source code freely

available to the research community.2

In this paper, we make four key contributions. First, we show how to synthesize several recent innovations

in OS resource management into a seamless multimedia operating system. Second, we consider several real-

world applications and application scenarios and demonstrate that these resource management techniques enable

QLinux to provide benefits such as predictable performance, application isolation and fair resource allocation.

For instance, we show that QLinux enables a streaming media server to stream MPEG-1 files at their real-time

rates regardless of the background load. Third, we show that existing/legacy applications can also benefit from

these features without any modifications whatsoever to the application source code. Finally, we show that the

1Rather than reduce the processor shares of all applications equally, an operating system that provides service differentiation might
reduce the fraction of the CPU bandwidth allocated to best-effort compile jobs and thereby reduce the jitter in soft real-time video
playback.

2Source code and documentation for QLinux is available from http://www.cs.umass.edu/˜lass/software/qlinux.
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Figure 1: Key components of QLinux.

implementation overheads of these sophisticated resource management techniques are small, making them a

practical choice for general-purpose operating systems. For instance, we show that the context switch overhead

due to the H-SFQ CPU scheduler increases from 1 s to 4 s, but the increased overhead is still substantially

smaller than the quantum duration. Based on these results, we argue that conventional operating systems should

be enhanced with such resource management mechanisms so as to meet the needs of emerging applications as

well as existing and legacy applications.

The rest of this paper is structured as follows. Section 2 discusses the principles underlying the design

of QLinux and briefly describes each component employed by QLinux. Section 3 presents the results of our

experimental evaluation. Section 4 discusses related work, and finally, Section 5 presents some concluding

remarks.

2 QLinux Philosophy and Overview

In this section, we first present the principles underlying the design and implementation of QLinux. We then

briefly describe each resource management component employed by QLinux (these mechanisms are described

in detail elsewhere [6, 7, 16]).

2.1 QLinux Design Principles

The design and implementation of QLinux is based on the following principles:

Support for Multiple Service Classes: Today’s general purpose computing environments consist of a

heterogeneous mix of applications with different performance requirements. As argued in Section 1,

operating systems that provide a single class of service to all applications are inadequate for handling

such diverse application mixes. To efficiently support such mixes, an operating system should support
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multiple classes of service and align the service provided within each class with application needs. For

instance, an operating system may support three classes of service—interactive, throughput-intensive and

soft real-time—and treat applications within each class differently (interactive applications are provided

low average response times, real-time applications are provided performance guarantees, and throughput-

intensive applications are provided high aggregate throughput). Other operating systems such as Nemesis

[15] have also espoused such a multi-service approach to operating system design.

Predictable resource allocation: Amulti-service operating system requires mechanisms that can multiplex

its resources among applications in a predictable manner. Many operating systems (e.g., Solaris, UNIX

SVR4) support multiple application classes using strict priority across classes. Studies have shown that

such an approach can induce starvation in lower priority tasks even for common application mixes [12].

For instance, it has been shown that running a compute-intensive MPEG decoder in the highest priority

real-time class on Solaris can cause even kernel tasks (which run at a lower priority) to starve, causing

the entire system to “freeze” [12]. One approach to alleviate the starvation problem is to use dynamic

priorities. Whereas the design of dynamic priority mechanisms for homogeneous workloads is easy, the

design of such techniques for heterogeneous workloads is challenging. Consequently, QLinux advocates

rate-based mechanisms over priority-based mechanisms for predictable resource allocation. Rate-based

techniques allow a weight to be assigned to individual applications and/or application classes and allocate

resources in proportion to these weights. Thus, an application with weight is allocated fraction

of the resource.3 Observe that, rate-based allocation techniques are distinct from static partitioning of

resources—they can dynamically reallocate resources unused by an application to other applications, and

thereby yield better resource utilization than static partitioning.

Service differentiation: Since different application classes have different performance requirements, an

operating system that supports multiple service classes should provide service differentiation by treating

applications within each class differently. To do so, QLinux employs hierarchical schedulers that support

multiple class-specific schedulers via a flexible multi-level scheduling structure. A hierarchical scheduler

in QLinux allocates a certain fraction of the resource to each class-specific scheduler using rate-based

mechanisms; class-specific schedulers, in turn, use their allocations to service requests using an appropri-

ate scheduling algorithm. The flexibility of using a different class-specific scheduler for each class allows

3Such a resource allocation mechanism performs relative allocations—the fraction allocated to an application depends on the weights
assigned to other applications. Rate-based mechanisms that allocate resource in absolute terms have also been developed. Such mech-
anisms allow applications to be allocated an absolute fraction ( ), or allocate units every units of time. We chose a
relative allocation mechanism based on weights due to its simplicity.
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Figure 2: A sample hierarchy employed by the H-SFQ CPU scheduler. The figure shows three classes—
interactive, throughput-intensive and soft real-time—with equal share of the processor bandwidth. The band-
width within the soft real-time class is further partitioned among the audio and video classes in the proportion
1:4. Individual threads can also be assigned weights, assuming the leaf node scheduler supports rate-based
allocation.

QLinux to tailor its service to the needs of individual applications. Moreover, the approach is extensible

since it allows existing class-specific schedulers to be modified, or new schedulers to be added.

Support for legacy applications: We believe that only those mechanisms that preserve compatibility with

existing and legacy applications are likely to be adapted by mainstream operating systems in the near

future. Hence, QLinux chooses an incremental approach to OS design. Each mechanism within QLinux

is carefully designed to maintain full compatibility with existing applications at the binary level. We also

decided that mere compatibility was not enough—we wanted existing applications to possibly benefit (but

definitely not suffer) from the new resource allocation mechanisms in QLinux (although the degree to

which they benefit would be less than new applications that are explicitly designed to take advantage of

these features).

Next, we describe the three key components of QLinux.

2.2 Hierarchical Start-time Fair Queuing (H-SFQ) CPU Scheduler

Hierarchical start-time fair queuing (H-SFQ) is a hierarchical CPU scheduler that fairly allocates processor

bandwidth to different application classes and employs class-specific schedulers to manage requests within each

class [6]. The scheduler uses a tree-like structure to describe its scheduling hierarchy (see Figure 2). Each

process or thread in the system belongs to exactly one leaf node. A leaf node is an aggregation of threads and

represents an application class in the system. Each non-leaf node is an aggregation of application classes. Each

node in the tree has a weight that determines the fraction of its parent’s bandwidth that should be allocated to

it. Thus, if denote the weights on the children of a node, and if denotes the processor

5



bandwidth allocated to the node, then the bandwidth received by each child node is given by

Each node is also associated with a scheduler. Whereas the scheduler of the leaf node schedules all threads

belonging to the leaf, the scheduler of an intermediate node schedules all its children. Scheduling of threads

occurs hierarchically in H-SFQ: the root node schedules one of its child nodes; the child node, in turn, schedules

one of its children until a leaf node schedules a thread for execution. Any class-specific scheduler may be

employed to schedule a leaf node. For instance, the standard time-sharing scheduler could be employed for

scheduling threads in the interactive class, whereas the earliest deadline first (EDF) scheduler could be used to

schedule soft real-time tasks. H-SFQ employs start-time fair queuing (SFQ) as the scheduling algorithm for a

non-leaf node. SFQ is a rate-based scheduler that allocates weighted fair shares—bandwidth allocated to each

child node is in proportion to its weight. Bandwidth unused by a node is redistributed to other nodes according

to their weights. In addition to rate-based allocation, SFQ has the following properties: (i) it achieves fair

allocation of CPU bandwidth regardless of variation in available capacity, (ii) it does not require the length of

the quantum to be known a priori (and hence, can be used in general-purpose environments where threads may

block for I/O before their quantum expires), and (iii) SFQ provides provable guarantees on fairness, delay, and

throughput received by each thread in the system [6, 7].

H-SFQ replaces the standard time-sharing scheduler in QLinux. The default scheduling hierarchy in H-SFQ

consists of a root node with a single child that uses the standard time-sharing scheduler to schedule threads.

An application, by default, is assigned to the time-sharing scheduler, thereby allowing QLinux to mimic the

behavior of standard Linux. The scheduling hierarchy can be modified dynamically at run-time by creating new

nodes on the fly. Creating a new node involves specifying the parent node, a weight, and a scheduling algorithm,

if the node is a leaf node (non-leaf nodes are scheduled using SFQ). QLinux allows processes and threads to be

assigned to a specific node at process/thread creation time; processes and threads can be moved from one leaf

node to another at any time. Moreover, weights assigned to an application or a node in the scheduling hierarchy

can be modified dynamically. QLinux employs a set of system calls to achieve these objectives (see Table 1).

We have also implemented several utility programs to manipulate the scheduling hierarchy as well as individual

applications within the hierarchy. These utilities allow existing/legacy applications to benefit from the features

of H-SFQ since users can assign weights to applications without modifying the source code.

As mentioned before, the H-SFQCPU scheduler uses a tree-like structure to describe its scheduling hierarchy.

Each node in the scheduling structure has a weight, a start-tag, and a finish-tag that are maintained as per the
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Table 1: System call interface supported by the H-SFQ CPU scheduler

System call Purpose
hsfq mknod create a new node in the scheduling hierarchy
hsfq rmnod delete an existing node from the hierarchy
hsfq join nod attach the current process to a leaf node
hsfq move move a process to a specified child node
hsfq parse parse a pathname in the scheduling hierarchy
hsfq admin administer a node (e.g., change weights)

SFQ algorithm. A non-leaf node maintains a list of child nodes, a list of runnable child nodes sorted by their

start tags, and a virtual time of the node which, as per SFQ, is the minimum of the start-tags of the runnable

child nodes. A leaf node has a pointer to a function that is invoked, when it is scheduled by its parent node, to

select one of its thread for execution; this function implements the scheduling algorithm for this leaf node. Given

a scheduling structure, the actual scheduling of threads occurs recursively. To select a thread for execution, a

function hsfq schedule() is invoked. This function traverses the scheduling structure by always selecting

the child node with the smallest start tag until a leaf node is selected. When a leaf node is selected, a function

that is dependent on the leaf node scheduler, determined through the function pointer that is stored in the leaf

node, is invoked to determine the thread to be scheduled. When a thread blocks or is preempted, the finish

and start tags of all the ancestors of the node to which the thread belongs have to be updated. This is done by

invoking a function hsfq update() with the duration for which the thread executed and the node identifier

of the leaf node as parameters. A node in the scheduling structure is scheduled if and only if at least one of the

leaf nodes in the sub-tree rooted at that node has a runnable thread. The eligibility of the node is determined as

follows. When the first thread in the leaf node becomes eligible for scheduling, function hsfq setrun() is

invoked with the leaf nodes identifier. This function marks the leaf node as runnable and all the other ancestor

nodes that may become eligible as a consequence. Note that this function has to traverse the path from the leaf

up the tree only until a node that is already runnable is found. On the other hand, when the last thread in a

leaf node makes a transition to sleep mode, function hsfq sleep() is called with the leaf node’s identifier.

This function marks the leaf node as ineligible and all the other ancestor nodes that may become ineligible as

a consequence. This function has to traverse the path from the leaf only until a node that has more than one

runnable child node is found. Finally, in our implementation, any scheduling algorithm can be used at the leaf

node as long as it: (1) provides an interface function that can be invoked by hsfq schedule() to select the

next thread for execution, and (2) invokes hsfq setrun(), hsfq sleep and hsfq update() as per the

rules defined above.
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Figure 3: The H-SFQ network packet scheduler. The figure shows a sample scheduling hierarchy with two
classes—http and soft real-time. The bandwidth within the http class is further partitioned among two web
domains, and , in the ratio 1:1. Note that individual sockets can either share a queue or have a queue of
their own. Since each queue has its own weight, in the latter case, bandwidth allocation can be controlled on a
per-socket basis.

2.3 H-SFQ Packet Scheduler

An operating system employs a packet scheduler at each of its network interfaces to determine the order in which

outgoing packets are transmitted. Traditionally, most operating systems have employed the FIFO scheduler

to schedule outgoing packets. To better meet the needs of applications with different requirements, QLinux

employs H-SFQ to schedule outgoing packets. As described in Section 2.2, H-SFQ can fairly allocate resource

bandwidth among different application classes in a hierarchical manner. As in the case of CPU, the H-SFQ

packet scheduler employs a multi-level tree-like scheduling structure to hierarchically allocate network interface

bandwidth (see Figure 3). Each leaf node in the tree consists of one or more queues of outgoing network packets

and any class-specific scheduler can be employed to schedule the transmission of packets from these queues; the

default leaf scheduler is FIFO. A non-leaf node is scheduled using SFQ. Every node in the hierarchy is assigned

a weight; H-SFQ allocates bandwidth to nodes in proportion to their weights. Bandwidth unused by a node is

reallocated fairly among the nodes with pending packets, thereby improving overall utilization.

The H-SFQ packet scheduler in QLinux replaces the FIFO scheduler employed by Linux. The default

scheduling hierarchy in H-SFQ is a root node with a single child that employs FIFO scheduling. Packets sent

by applications are, by default, queued up at this node, enabling QLinux to emulate the behavior of Linux. As

in the case of the CPU scheduler, the scheduling hierarchy can be modified by adding new nodes to the tree or

deleting existing nodes. QLinux allows applications to be associated to a specific queue at a leaf node (via the

setsockopt system call); this association can be done on a per-socket basis. Packet classifiers [18] are then

employed to map each transmitted packet to the corresponding queue at a leaf node. Table 2 lists the system call

interface exported by the packet scheduler to achieve these objectives. We are currently implementing utility
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Table 2: System call interface supported by the H-SFQ packet scheduler

System call Purpose
hsfq qdisc install Install HSFQ queuing discipline

at a network interface
hsfq link mknod create a node in the scheduling

hierarchy
hsfq link createq create a packet queue
hsfq link attachq attach a queue to a leaf node
hsfq link moveq move a queue between schedulers
hsfq link rmnod delete the specified node
hsfq link rmq delete the specified queue
hsfq link modify change the weight of a node/queue
hsfq link parsenode parse a pathname in the

scheduling hierarchy
hsfq link getroot get the ID of the root node at a

particular network interface
hsfq link status display the scheduling tree
setsockopt attach a socket to a queue

programs using these system calls that will enable existing applications to benefit from these features without

having to modify their source code.

Our implementaion of the H-SFQ packet scheduler is similar in nature to the implementation of the H-SFQ

CPU scheduler. A similar tree-like structure is used to describe the scheduling hierearchy. The functional

equivalent of a thread being scheduled by the CPU scheduler, is a queue being scheduled for service by the

packet scheduler. And the functions hsfq dequeue(), hsfq wakeup node(), hsfq sleep node and

hsfq net update(), respectively, in the packet scheduler, perform actions similar to that of hsfq schedule(),

hsfq setrun(), hsfq sleep and hsfq update(), respectively, in the CPU scheduler. Again, as in the

CPU-scheduler, any scheduling algorithm can be used at the leaf-scheduler.

2.4 Cello Disk Scheduler

Unlike disk scheduling algorithms such as SCAN that provide a best-effort service to disk requests, QLinux

employs the Cello disk scheduling algorithm to support multiple application classes. Cello services disk requests

using a two level scheduling algorithm, consisting of a class-independent scheduler and a set of class-specific

schedulers [16]. The class-independent scheduler is responsible for allocating disk bandwidth to classes based

on their weights, whereas the class-specific schedulers use these allocations to schedule individual requests based

on their requirements. Unlike pure rate-based schedulers that focus only on fair allocation of resources, Cello
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Figure 4: The Cello disk scheduling algorithm.

Table 3: System call interface supported by Cello

System call Purpose
cello open Open a file and associate it with

the specified class
cello close Close a file
cello read read data using an optional deadline
cello write write data using an optional deadline
cello set class associate a class with a process
cello get class get the class associated with a process
cello admin administer a class (e.g., specify weights)
cello start Enable cello scheduling for a device
cello stop Disable cello scheduling for a device
cello round Change the round duration for Cello scheduling
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also takes disk seek and rotational latency overheads into account when making scheduling decisions (thereby

improving disk throughput).

The implementation of Cello in QLinux supports three application classes—interactive, throughput-intensive

and soft real-time. To do so, QLinux maintains three pending queues, one for each application class and a

scheduled queue (see Figure 4). Newly arriving requests are queued up in the appropriate pending queue. They

are eventually moved to the scheduled queue and dispatched to the disk in FIFO order. The class-independent

scheduler determines when and how many requests to move from each class-specific pending queue to the

scheduled queue, while the class-specific schedulers determine where to insert it into the scheduled queue. In

QLinux, Cello disk scheduling is achieved by means of a kernel thread; one such thread is required for each

device (disk) for which Cello disk scheduling is desired. These threads can either be started at boot up time

or they can be started using a command line utility. These threads are responsible for moving requests from

the pending queue to the scheduled queue, as well as for issuing scheduled requests to the device queue. Cello

partitions disk bandwidth between application classes over periods of fixed length also called a round; the time

share of each application class over a round is in proportion to it’s weight. The kernel thread maintains round

statistics, such as the time elapsed in the round, as well as the total and the remaining time share of each

application class in the current round; this information is used for making scheduling decisions. In addition, our

implementation of the Cello disk scheduler is work-conserving; when the scheduler detects the disk to be idle,

it schedules requests from the application classes which have exhausted their share in a round-robin manner.

In Linux all read and write requests which enter the block I/O layer are broken into fundamental operations

described by buffer heads. These buffer heads are the basic I/O descriptors used by device drivers. Once

buffer heads have been created to describe a particular I/O operation, they are passed onto some functions to be

queued for a mid-level driver (e.g., scsi or ide). The mid-level driver periodically removes requests which have

been placed on its queue and sends them to lower level host bus adapter drivers. In QLinux these buffer heads

are inserted in the appropriate pending queue for scheduling by the kernel thread, instead of the block device

queue as in Linux. The kernel thread, which implements Cello scheduling, then schedules these buffer heads for

insertion in the block device queue. The pending queues are maintained a layer just below the Logical Volume

Manager (LVM) and the Software RAID driver layer, so Cello scheduling is also transparent to the presence of

any logical volume or software RAID device. The only requirement is that there be a kernel thread for each disk

for which Cello scheduling is desired; this also has the added advantage that Cello scheduling can be selectively

enabled only for those disks for which it is desired.

Table 3 lists the interface exported by Cello. An application can associate a request with an application class

in one of two ways.
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We provide the system call cello open to allow applications to associate file I/O with an application

class; all subsequent read and write operations on the file are then associated with the specified class. For

the soft real-time class, an application must also specify a deadline with each read or write request. The

use of our enhanced open system call interface requires application source code to be modified.

We also provide a command line utility that allows a process (or thread) to be associated with an appli-

cation class—all subsequent I/O from the process is then associated with that class. Any child processes

that are forked by this process inherit these attributes and their I/O requests are treated accordingly. This

enables legacy applications to benefit from our techniques. For the real-time class, we tag the I/O request

with a fixed deadline (from the time of arrival) inside the kernel.

In our implementation requests not assigned a class are made to bypass Cello scheduling. This is done because

assigning these requests a default class would interfere with the class based scheduling of the Cello disk sched-

uler. Moreover, this has the added advantage that no kernel I/O requests get delayed as a result of a class having

exhausted it’s share for the current round.

A disk I/O request has to percolate through several levels before it is satisfied by the disk subsystem. In a

typical operating system these levels may include system call interface, file system, virtual memory manager,

buffer cache, operating system block device support and the device drivers. If the application uses the first

approach listed above of using the system call cello open to associate a request with an application class,

this information has to be passed down through all the layers listed above; this involved extending several kernel

data structures so that the information is available in order to insert the request in the appropriate pending queue.

In the second approach, which allows a process to be associated with an application class, this information is

available as part of the process context; so it is passed on to the buffer head just before it is inserted in the

pending queue.

Finally, in our implementation we disable filesystem readahead for requests in the soft real-time class. This

is because in many operating systems including Linux, the file system prefetches blocks of a file when it de-

tects that the file is being sequentially accessed. Moreover, the prefetch window is aggressively increased if

prefetched pages see hits in the buffer cache. Applications in the soft real-time class typically access data in

rounds sequentially, and readahead requests may retrieve data which may not be required immediately. If these

requests use up the share of the soft real-time class, this would impact the throughput of other applications in

the same class. Hence, we disable readahead for this class.

Note that the current implementation of Cello supports bandwidth allocation only on a per-class basis; in the

future, we plan to add support for bandwidth allocation on a per-application basis. Also the current implemen-
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tation provides for Cello disk scheduling only for requests issued to a local disk.

3 Experimental Evaluation

In this section, we experimentally evaluate the performance of QLinux and compare it to vanilla Linux. In

particular, we examine the efficacy of the resource allocation mechanisms within QLinux to (i) allocate resource

bandwidth in a predictable manner, (ii) provide application isolation, and (iii) support multiple traffic classes.

We use several real applications, benchmarks and micro-benchmarks for our experimental evaluation. In what

follows, we first describe the test-bed for our experiments and then present the results of our experimental

evaluation.

3.1 Experimental Setup

The test-bed for our experiments consists of a cluster of PC-based workstations. Each PC is equipped with a

100 Mb/s 3-Com ethernet card (model 3c595); all machines are interconnected by a 100 Mb/s ethernet switch

(model 3Com SuperStack II). The version of QLinux used in our experiments is based on the 2.4.4 Linux

kernel; comparisons with vanilla Linux use the identical version of the kernel. All machines and the network are

assumed to be lightly loaded during our experiments.

The workload for our experiments consists of a combination of real-world applications, benchmarks, and

sample applications that we wrote to demonstrate specific features. These applications are as follows: (i) Inf: an

application that executes an infinite loop and represents a simple compute-intensive best-effort application; (ii)

mpeg play: the Berkeley software MPEG-1 decoder; represents a compute-intensive soft real-time application;

(iii) Apache web server and webclient: a widely-used web server and a configurable client application that

generates http requests at a specified rate; represents an I/O-intensive best-effort application; (iv) Streaming

media server: a server that transmits (streams) MPEG-1 files over the network using UDP; represents an I/O-

intensive soft real-time application; (v) Net inf: an application that sends UDP data as fast as possible on a

socket; represents an I/O-intensive best-effort application; (vi) Dhrystone: a compute-intensive benchmark for

measuring integer CPU performance; (vii) IO inf: a closed-loop process with concurrency which consists

of concurrent clients that issue requests continuously, i.e., each client issues a new request as soon as the

previous request completes; the request sizes are assumed to be fixed and successive requests access the file at

a random offset; (viii) lmbench: a comprehensive benchmark suite that measures various aspects of operating

system performance such as context switching, memory, file I/O, networking, and cache performance.

In what follows, we present the results of our experimental evaluation using these applications and bench-
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Figure 5: Predictable, fair allocation of processor bandwidth by the H-SFQ scheduler

marks. Since the code for the Cello disk scheduler was unstable at the time of writing, we have not included

experimental results for Cello.

3.2 Supporting Multiple Application Classes using the H-SFQ CPU Scheduler

To demonstrate that the H-SFQ CPU scheduler can allocate CPU bandwidth to applications in proportion to

their weights, we created two classes in the scheduling hierarchy and ran the Inf application in each class. We

assigned different combination of weights to the two classes (e.g., 1:1, 1:2, 1:4) and measured the number of

loops executed by Inf in each case. Figures 5(a) and (b) depict our results. Figure 5(a) shows the progress made

by the two Inf applications for a specific weight assignment of 1:4. Figure 5(b) shows the number of iterations

executed by the two processes at t=337 seconds for different weight assignments. Together, the two figures show

that each application gets processor bandwidth in proportion to its weight.

Next, we conducted an experiment to demonstrate the fair work-conserving nature of H-SFQ. Again, we cre-

ated two application classes and gave them equal weights (1:1). The Inf application was run in each class and as

expected each received 50% of the CPU bandwidth. At t=250 seconds, we suspended one of the Inf processes.

Since H-SFQ is work-conserving in nature, the scheduler reallocated bandwidth unused by the suspended pro-

cesses to the running Inf process (causing it’s rate of progress to double). The suspended process was restarted at

t=350 seconds, causing the two processes to again receive bandwidth in the proportion 1:1. Figure 5(c) depicts

this scenario by plotting the progress made by the continuously running Inf process. As shown, the process

makes progress at twice the rate between and receives its normal share in other time intervals.

We then conducted experiments to show that real-world applications also benefit from H-SFQ. To show

that the CPU scheduler can effectively isolate applications from one another, we created two classes—soft
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Figure 6: Application isolation and flexibility in the H-SFQ CPU scheduler.

real-time and best-effort—and assigned them equal weights. The best-effort leaf class was scheduled using

the standard time sharing scheduler, while the soft real-time leaf class was scheduled using SFQ. We ran the

Berkeley software MPEG decoder (mpeg play) in the soft real-time class and used it to decode a five minute

long MPEG-1 clip with an average bit rate of 1.49 Mb/s. The Dhrystone benchmark constituted the load in

the best-effort class. We increased the load in the best-effort class (by increasing the number of independent

Dhrystone processes) and measured the CPU bandwidth received by the MPEG decoder in each case. We then

repeated this experiment using vanilla Linux. Figure 6(a) plots our results. As shown in the figure, in case

of QLinux, the CPU bandwidth received by the MPEG decoder was independent of the load in the best-effort

classes. Since vanilla Linux employs a best-effort scheduler, all applications, including the MPEG decoder, are

degraded equally as the load increases. This demonstrates that H-SFQ, in addition to proportionate allocation,

can also isolate application classes from one another. To further demonstrate this behavior, we ran two Apache

web servers in two different classes and gave them different weights. The webclient application was used to

send a large number of http requests to each web server and we measured the processor bandwidth received

by each class. As shown in Figure 6(b), the H-SFQ scheduler allocates processor bandwidth to the two classes

in proportion to their weights. These experiments demonstrate that QLinux can be employed for web hosting

scenarios where multiple web domains are hosted from the same physical server. Each web domain can be

allocated a certain fraction of the resources and can be effectively isolated from the load in other domains.
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3.3 Supporting Multiple Traffic Classes Using the H-SFQ Packet Scheduler

To demonstrate that the H-SFQ packet scheduler can allocate network interface bandwidth to applications in

proportion to their weights, we created two classes in the scheduling hierarchy and ran the Net inf application

in each class. The UDP packets sent by Net inf were received as fast as possible by a receiver process running

on a lightly loaded PC. We varied the weights assigned to the two classes and measured the number of packets

sent by the two processes for different weight assignments. Figure 7(a) depicts the number of bytes received

from each Net inf for one particular weight assignment (1:4). As expected, both classes receive bandwidth in

proportion to their weights. To demonstrate that bandwidth received by a class is independent of the packet size,

we repeated the experiment using different packet sizes for the two classes. Figure 7(b) shows that, despite using

different packet sizes, the two classes again receive bandwidth in proportion to their weights.

To demonstrate that real-world applications also benefit from these features, we conducted an experiment

with two classes—soft real-time and best-effort. The streaming media server was run in the soft real-time class

and was used to stream a five minute long variable bit-rate MPEG-1 clip (average bit rate of the clip was 1.49

Mb/s). We ran an increasing number of Net inf applications in the best-effort class and measured their impact

on the bandwidth received by the streaming media server. We then repeated this experiment on vanilla Linux.

As shown in Figure 8, QLinux is able to effectively isolate the streaming media server from the best-effort

class—the server is able to stream data at its real-time rate regardless of the best-effort load. Linux, on the other

hand, is unable to provide this isolation—increasing the best-effort load reduces the bandwidth received by the

streaming media server and also increases the amount of packet loss incurred by all applications.
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3.4 Supporting Multiple Application Classes Using the Cello Disk Scheduler

To demonstrate that the Cello disk scheduler can allocate disk bandwidth to applications in proportion to their

weights, we configured the Cello disk scheduler with two application classes and ran one IO inf application

in each class. The concurrency of each IO inf application was set to 6. Recall that the implementation of

Cello in QLinux supports three application classes—interactive, throughput-intensive and soft real-time; in this

experiment we set the weight of the soft real-time class to 0 and assigned different combinations of weights

to the two remaining classes. We then repeated the experiment for vanilla Linux. Figures 9 (a) and (b) depict

our results. Figure 9 (a) plots the fraction of requests serviced for class 2 to its fractional share of the disk

bandwidth; the figure shows that the class gets disk bandwidth in proportion to it’s weight. Figure 9 (b) plots

the total number of requests serviced for Linux, as well as for different weight combinations in QLinux. As can

be seen the total number of requests serviced is similar in all cases; this shows that the Cello disk scheduler has

low overheads and has throughput comparable to that of vanilla Linux.

Next, we conducted an experiment to demonstrate application isolation. For this experiment we configured

Cello with two application classes, the interactive class and the soft real-time class. The weights of the two

application classes were chosen to be in the ratio 1:3. We ran the streaming media server application in the

soft real-time class and the IO inf application constituted the load in the interactive class. The streaming media

server accessed four different files each at an average bit rate of 1.5 Mb/s. With the load in the soft real-time

class fixed, we increased the load in the interactive class by increasing the number of IO inf applications; the

concurrency of each application was fixed at 2. We then repeated this experiment with vanilla Linux. Figure 10

plots the results. As can be seen in QLinux the streaming media server is able to retrieve data at the real-time

rate regardless of the load in the interactive class. In Linux, on the other hand, the bandwidth received by the

streaming media server decreases as one increases the load in the interactive class.

3.5 Combined Impact of H-SFQ Packet Scheduler and the Cello Disk Scheduler

In this experiment, we demonstrate the combined benefits of the HSFQ packet scheduler and the Cello disk

scheduler. For this experiment we created two classes in the packet scheduler hierarchy; the Cello disk scheduler

was also configured with two application classes, the interactive class and the soft real-time class. We ran the

streaming media server application in the soft real-time class and the IO inf application in the interactive class,

respectively, of the Cello disk scheduler. We assigned the same streaming media server application to one of the

classes in the packet scheduler and ran the Net inf application in the other class (called best-effort). The use of

different best-effort applications, IO inf in the Cello disk scheduler and Net inf in the packet scheduler, isolates
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the performance of one from other; so these compete independently with the same streaming media server

application. We set the weight of the best-effort class to the soft real-time class to be in the ratio 1:2 for both

the Cello disk scheduler as well as the H-SFQ Packet scheduler. The streaming media server accessed a video

file at 30 frames/s, which corresponded to an average bit rate of 1.5 Mb/s. Keeping the load of the streaming

media server application constant we simultaneously increased the number of IO inf and Net inf applications.

The concurrency of the IO inf application was fixed at two. Note that the streaming media server application

streamed data to the client in rounds. This involved reading 30 frames worth of data in each round, and then

streaming it to the client, which was on another machine. The data was sent using 8 KB UDP packets. The

round duration was one second. At the client we record the sequence number, the arrival time and the size of

each packet received. We then computed the mean inter-arrival time of packets in each round, and computed

the average over all the rounds for a given run. We also measured the percentage of packets lost, and the mean

bit rate observed by the client. We then repeated the experiment with vanilla Linux. Figure 11 plots the results.

The mean inter-arrival time of packets in a round and the percentage packet loss are impacted solely by the

packet scheduler, as the data has already been retrieved before it is to be sent over the network. The mean bit

rate however, is a result of the combined impact of the disk scheduler and the packet scheduler, as it is takes

accounts for the data retrieval rate from disk, packet scheduling as well as packet loss. Figure 11 (a) shows that

the mean inter-arrival time of packets increases for both vanilla Linux and QLinux as one increases the load

in the best-effort class, however due to isolation provided by the packet scheduler the increase is less gradual

in QLinux. Figures 11 (b) and (c) show that an increase in the number of best-effort clients results in increase

of packet loss and a drop in the average bit rate in Linux; effective application isolation in QLinux isolates the

performance of the streaming media server application, and it observes no packet loss and is able to stream at

the real-time rate.

3.6 Combined Impact of H-SFQ CPU and Packet Schedulers

To demonstrate the combined benefits of the CPU and packet schedulers, we considered a scenario consisting

of a loaded web server and several I/O intensive applications. We created two classes in the CPU and packet

scheduler hierarchies. We ran a simulated web server in one CPU/packet scheduler class and ran all the I/O-

intensive Net inf applications in the other CPU/packet scheduler class. Our simulated web server consisted of

a sender application that reads an actual web server trace and sends data using TCP (each send corresponds to

an http request in the trace file; the timing and size of each request was taken directly from the information

specified in the traces). The publicly-available ClarkNet server traces were employed to simulate the web server

workload [4]. We increased the number of Net inf applications in the best-effort class and measured their impact
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Figure 11: Impact of the H-SFQ packet scheduler and the Cello disk scheduler on video workloads.

on the throughput of the web server. The experiment was then repeated for vanilla Linux. Figure 12 depicts our

results. Observe that, the web server simulates the http protocol which runs on TCP. TCP employs congestion

control mechanisms that back off in the presence of congestion. Consequently, as the load due to Net inf ap-

plications increases, congestion builds up in the ethernet switch interconnecting the senders and receivers (due

to the presence of limited buffers at switches), causing TCP to reduce its sending rate. Both QLinux and Linux

experience this phenomenon, resulting in a degradation in throughput for the web workload. However, since the

QLinux CPU and packet schedulers reserve bandwidth for the web server, they can effectively isolate the web

workload from the Net inf applications. Hence, the degradation in throughput in QLinux is significantly smaller

than that in Linux. This demonstrates that use of fair, predictable schedulers for each resource in an OS can

yield significant performance benefits to applications.
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3.7 Microbenchmarking QLinux: Scheduling Overheads

In the previous sections, we demonstrated that applications can benefit from the sophisticated resource manage-

ment techniques employed by QLinux. In what follows, we measure the overheads imposed by these mecha-

nisms using microbenchmarks.

To measure the overhead imposed by the CPU scheduler, we created a leaf node and ran a solitary Inf process

in that class. We then progressively increased the depth of the scheduling hierarchy (by introducing intermediate

nodes between this leaf and the root) and measured the bandwidth received by Inf in each case. Observe that,

increasing the depth of the scheduling hierarchy may increase the scheduling overhead (since H-SFQ recursively

calls the scheduler at each intermediate node until a thread in the leaf class is selected). A larger scheduling

overhead will correspondingly reduce the bandwidth received by applications (since a larger fraction of the CPU

time would be spent in making scheduling decisions). Figure 13(a) plots the number of iterations executed by

Inf in 300 seconds as we increase the depth of the scheduling hierarchy. As shown in the figure, the bandwidth

received by Inf is relatively unaffected by the increasing scheduling overhead, thereby demonstrating that the

overheads imposed by H-SFQ are small in practice.

We then performed a similar experiment for the H-SFQ packet scheduler. The experiment consisted of run-

ning the Net inf process in a scheduling hierarchy with increasing depth and measuring the bandwidth received

by Net inf in each case. As in the case of the CPU scheduler, the bandwidth received by Net inf was rela-

tively unaffected by the scheduling overhead (see 13(b)). Together, these experiments show that hierarchical

schedulers such as H-SFQ are feasible in practice.
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Figure 13: Microbenchmarking QLinux: overheads imposed by the CPU and Packet Schedulers

Table 4: Lmbench Results

Test QLinux Linux
syscall overhead 1 s 1 s

fork() 400 s 400 s
exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 4 s 1 s
Context switch (16 proc/ 64KB) 286 s 283 s

Local UDP latency 47 s 53 s
File create (0 KB file) 21 s 21 s
File delete (0 KB file) 2 s 2 s

3.8 Benchmarking QLinux

In our final experiment, we employed the widely used Lmbench benchmark to compare QLinux and Linux.

Lmbench is a sophisticated benchmark that measures several aspects of system performance, such as system call

overheads, context switch times, network I/O, file I/O and memory performance [9]. We employed Lmbench

version 1.9 for our experiments. We first ran Lmbench in the default best-effort class on QLinux and then

repeated the experiment on Linux. In each case, we averaged the statistics reported by Lmbench over several

runs to eliminate experimental error. Table 4 summarizes our results (Lmbench produces a large number of

statistics; we only list those statistics that are relevant to QLinux).

Note that the QLinux code is untuned, while Linux code is carefully tuned by the Linux kernel developers.

Table 4 shows that the performance of QLinux is comparable to Linux; however, the increased complexity of
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the QLinux schedulers do result in a larger overhead. For instance, the context switch overhead increases from

1 s to 4 s for two active processes; however this overhead is still several orders of magnitude smaller than the

quantum duration of 100 ms. The network latency for TCP and UDP, as well as file I/O overheads and system

call overheads are comparable in both cases.

4 Related Work

The growing popularity of the multimedia applications has resulted in several research efforts that have focused

on the design of predictable resource allocation mechanisms. Consequently, in the recent past, several techniques

have been proposed for the predictable allocation of processor [6, 8, 13, 20, 21], network interface [3, 5, 7, 17]

and disk [1, 10, 22] bandwidth. While each effort differs in the exact mechanism employed to provide predictable

performance (e.g., admission control, rate-based allocation, fair queuing), the broad goals are similar—add

quality of service support to an operating system. The key contribution of QLinux is to synthesize/integrate

many of these mechanisms into a single system and demonstrate the benefits of this integration on application

performance. Whereas the mechanisms instantiated in QLinux are based on our past work in this area, we believe

that it would have been relatively easy to implement some other predictable resource allocation mechanisms and

demonstrate similar benefits.

Some other recent operating system efforts have also focused on the design of predictable resource allocation

mechanisms. The Nemesis operating system, for instance, employs mechanisms that provide quality of service

guarantees when allocating processor, network and disk bandwidth [1, 15]. Unlike QLinux, which employs

weights to express resource requirements, Nemesis requires applications to specify their resource requirements

in terms of tuples , where units of the resource are requested every units of time, and is the ad-

ditional bandwidth requested, if available. Nemesis is a multi-service multimedia operating system that was

designed from the grounds up; QLinux, on the other hand, builds upon the Linux kernel and benefits from the

continuing enhancement made to the kernel by the Linux developers. The Eclipse operating system, based on

FreeBSD, is in many respects similar to QLinux [2]. Like QLinux, Eclipse employs hierarchical schedulers

to allocate OS resources (the actual scheduling algorithms that are employed are, however, different). Eclipse

employs a special file system called /reserv that is used by applications to specify their resource require-

ments [2]. QLinux and Eclipse are independent and parallel research efforts, both of which attempt to improve

upon conventional best effort operating systems. Finally, many commercial operating systems are beginning to

employ some of these features. High end versions of Solaris 2.7, for instance, include a resource manager that

enables fine-grain allocation of various resources to processes and process groups [19].
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5 Concluding Remarks

Emerging multimedia and web applications require conventional operating systems to be enhanced along sev-

eral dimensions. In this paper, we presented the QLinux multimedia operating system that enhances the resource

management mechanisms in vanilla Linux. QLinux employs three key components: the H-SFQ CPU scheduler,

the H-SFQ packet scheduler, and the Cello disk scheduler. Together, these mechanisms ensure fair, predictable

allocation of processor, network and disk bandwidth. We experimentally demonstrated the efficacy of these

mechanisms using benchmarks as well as common multimedia and web applications. Our experimental results

showed that multimedia and web applications can indeed benefit from predictable resource allocation and ap-

plication isolation offered by QLinux. Furthermore, the overheads imposed by these mechanisms were shown

to be small. Based on these results, we argue that all conventional operating systems should be enhanced with

such mechanisms to meet the needs of emerging applications.

As part of future work, we plan to enhance QLinux along several dimensions. In particular, we are designing

resource allocation mechanisms that will enable QLinux to scale to large symmetric multiprocessors and clusters

of servers.
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