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ABSTRACT
While garbage collection’s software engineering benefits are indis-
putable, its performance impact remains controversial. Garbage
collection proponents argue that its benefits outweigh its costs, but
it is widely believed that garbage collection imposes an unaccept-
ably high runtime and space performance penalty. This paper aims
to settle this debate. We present the first empirical comparison of
the performance costs of automatic versus explicit memory man-
agement in a garbage-collected language. Using a tracing and sim-
ulation based oracular memory manager, we execute unaltered Java
programs as if they used explicit memory management. We exam-
ine the runtime, space consumption and virtual memory footprint
of Java benchmarks across a range of general-purpose allocators
and both copying and non-copying garbage collectors. We show
that, at large heap sizes and under no memory pressure, the runtime
performance of some garbage collection algorithms is competitive
with the Lea memory allocator and occasionally outperforms it by
up to 4%. However, our results confirm that garbage collection re-
quires six times the physical memory to achieve this performance
and suffers order-of-magnitude performance penalties when paging
occurs.

1. Introduction
Automatic memory management, or garbage collection, provides
significant software engineering benefits over explicit memory man-
agement. Garbage collection frees the programmer from the bur-
den of memory management and improves modularity, while pre-
venting accidental memory overwrites (“dangling pointers”) and
security violations [36, 45]. However, garbage collectors must per-
form more work than explicit memory managers, which rely on
the programmer to indicate when to deallocate individual objects.
Garbage collectors, on the other hand, must periodically identify
objects reachable by pointer traversal, and reclaim those that are
unreachable (the garbage).
Previous researchers have measured the runtime performance

and space impact of conservative, non-moving garbage collection1
in C and C++ programs [17, 48]. For these programs, comparing
1In particular, the Boehm-Demers-Weiser collector [13].
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the performance of explicit memory management to that of a suit-
able garbage collector is a simple matter of linking with the garbage
collection library.
Unfortunately, measuring the performance trade-off of garbage

collection in languages designed for garbage collection is not so
straightforward. One cannot simply replace garbage collection with
an explicit memory manager. Since programs written in these lan-
guages never explicitly deallocate objects, the result would be a
rapid exhaustion of available memory. While one can measure the
costs of garbage collection itself [18, 25, 29, 42], because garbage
collection alters application behavior both by visiting and reorga-
nizing memory, it is impossible to subtract out its effects [9]. Ex-
trapolating the results of previous studies is inadequate because gar-
bage collected languages typically permit the use of precise, copy-
ing garbage collectors. These collectors, especially generational
variants, consistently outperform conservative non-relocating gar-
bage collectors [9, 12]. The result is that while the software engi-
neering benefits of garbage collection are indisputable, in the ab-
sence of empirical data, its performance impact remains a matter
of religious debate.
In this paper, we aim to settle this debate. We conduct what

we believe to be the first direct comparison of garbage collection
to explicit memory management in a garbage-collected language.
Our key insight is the following. We use exact object reachability
traces [27, 28] as an oracle to indicate when objects should be deal-
located. By implementing this oracle inside a detailed architectural
simulator, we can execute and precisely measure unaltered Java
applications as if they were written using explicit memory man-
agement.
We use this oracular memory management framework to mea-

sure the impact of garbage collection versus explicit memory man-
agement on runtime performance, cache-level and page-level local-
ity. We perform these measurements across a wide range of bench-
marks, five garbage collectors (including copying and non-copying
collectors), and two explicit memory managers (the Kingsley and
Lea (GNU libc) allocators [34, 46]). Our framework allows us to
use the actual C implementations of these explicit memory man-
agers.
We find that at large heap sizes, the Appel-style generational col-

lector [5] consistently provides runtime performance that is com-
petitive with explicit memory management, performing on aver-
age just 4% slower and occasionally outperforming it by up to 4%.
However, this runtime performance requires over six times as much
physical memory as a program using explicit memory manage-
ment. We also find that explicit memory management has substan-
tially better page-level locality, generally requiring half or fewer
pages to run with the same number of page faults.



We believe these results will have a significant impact both on
the acceptance of garbage collection and on the direction of future
memory management research. While we show that little opportu-
nity remains to improve throughput when memory is plentiful, our
results demonstrate a substantial performance gap both in terms of
space consumption and page-level locality.
The remainder of this paper is organized as follows. We dis-

cuss related work in Section 2. We present our oracular memory
management framework in detail in Section 3. In Section 4, we
discuss our experimental methodology and we report performance
and space results across different garbage collectors, and explicit
memory managers in Section 5. We discuss planned future work
in Section 6 and conclude in Section 7 with a discussion of the
implications of these results.

2. Related Work
In this section, we first illustrate the conventional wisdom on this
topic, and then discuss the key areas of related work: direct mea-
surement of garbage collection and of explicit memory manage-
ment, comparisons of conservative garbage collection to explicit
memory management in C and C++, and compile-time garbage col-
lection.

2.1 Conventional wisdom
The view that explicit memory management provides superior per-
formance to garbage collection is widespread. The reasons that
authors generally cite for this advantage are cache locality and run-
time overhead (including unpredictable pause times), rather than
space overhead or page-level locality. Linus Torvalds pungently
asserts that garbage collection has especially deleterious effects on
cache locality: “there just aren’t all that many worse ways to [ex-
pletive deleted] up your cache behaviour than by using lots of al-
locations and lazy GC to manage your memory”, adding that “GC
sucks donkey brains through a straw from a performance stand-
point” [41]. Dan Sugalski, the architect of the Perl 6 interpreter,
states that garbage collection will be beaten “by a manual tracking
system’s best case performance”, although he believes that GC is
“normally more cache friendly” [39]. The Wikipedia entry “Com-
parison of Java to C Plus Plus” argues that a disadvantage of Java is
that “automatic garbage collection and mandatory virtual members
make Java performance unsuitable for some applications” [44]. In
his book Inside the Java Virtual Machine, Venners states that “a
potential disadvantage of a garbage-collected heap is that it adds an
overhead that can affect program performance”, and that “[garbage
collection] will likely require more CPU time than would have been
required if the program explicitly freed unnecessary memory” [43].
We show here that the conventional wisdom expressed above is
largely inaccurate.

2.2 Garbage collection measurements
Researchers have long appreciated that garbage collection can ac-
count for a significant fraction of program execution, and there are
several studies that attempt to measure its cost. Ungar [42] and
Steele [25] observed garbage collection overheads in LISP account-
ing for around 30% of application runtime. Using trace-driven sim-
ulations of six SML/NJ benchmarks, Tarditi et al. concluded that
generational garbage collection accounts for 19% to 46% of appli-
cation runtime [18].
Recent research has focused on using garbage collection to im-

prove application performance. Wilson, Lam and Moher exploit
the relocation phase of garbage collection to reorder data to im-
prove page-level locality [47]. Chilimbi and Larus use on-line ref-
erence behavior to guide the reorganization of objects for improved
cache-level locality [15], and Adl-Tabatabai et al. use a combina-

tion of a hardware performance monitoring unit, static analysis,
and garbage collection to inject prefetches into program code [2].
A comparison of explicit memory management with such strategies
is beyond the scope of this paper, but our results suggest that these
approaches will lead garbage collection to consistently outperform
explicit memory management.

2.3 Explicit memory management measurements
Many researchers have examined the cost of explicit memory man-
agers, starting with Knuth’s simulation-based study [32]. Korn and
Vo compare a number of different explicit memory management al-
gorithms and find that buddy allocation was consistently the fastest
and most space-efficient [33]. Zorn examines the impact of dif-
ferent memory managers and a conservative garbage collector on
runtime performance, memory consumption, and reference local-
ity [48]; we discuss this work in Section 2.4. Johnstone and Wil-
son measure the space consumed by several conventional explicit
memory managers and find that they yielded nearly zero fragmen-
tation, or wasted memory beyond that induced by object headers
and alignment restrictions [31]. They also conclude that the Lea
allocator is the best overall allocator in terms of the combination
of speed and memory usage. Berger et al. measure the runtime
and space consumption of a range of benchmarks when using the
Lea and Kingsley allocators as well as their counterparts written
in the Heap Layers framework [7], and subsequently measure the
time spent in memory operations for a range of benchmarks [8].
They find that programs using general purpose memory managers
can spend up to 13% of program runtime in memory operations. As
we show here, this apparently lower cost does not necessarily trans-
late to improved runtime performance when compared to copying
garbage collection.

2.4 Comparisons with conservative garbage collection
Previous comparisons of garbage collection to explicit memory man-
agement have understandably taken place in the context of conser-
vative, non-relocating garbage collectors and C and C++. In his
thesis, Detlefs compared the performance of garbage collection to
explicit memory management for three C++ programs [17, p.47].
He found that garbage collection generally resulted in poorer per-
formance (from 2% to 28% overhead), but also that the garbage-
collected version of cfront performed 10% faster than a version
modified to use general-purpose memory allocation exclusively.
However, the garbage collected version still ran 16% slower than
the original version of cfront using its custom memory allocators.
Zorn performed a direct empirical comparison of the cost of con-

servative garbage collection to explicit memory management in
the context of C programs [48]. He found that the runtime per-
formance of code using conservative garbage collection (specifi-
cally, the Boehm-Demers-Weiser collector [13]) was occasionally
faster than explicit memory allocation. Moreover, the memory con-
sumed by the BDW collector was almost always higher than that
consumed by explicit memory managers, ranging from 21% less
to 228% more. While these prior studies examine conservative
garbage collectors running within C and C++ programs, our re-
search focuses on the performance of code written from the outset
to use garbage collection. We are thus able to examine the impact
of precise copying garbage collectors, which typically have higher
throughput than non-relocating garbage collectors [9].

2.5 Compile-time garbage collection
The goal of compile-time garbage collection is to avoid garbage
collection altogether. The idea is to employ static analyses to de-
termine when it is safe to deallocate objects, and to insert explicit
deallocation calls at the appropriate point in the program. This line
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Figure 1: An overview of our oracular memory management
framework. Using exact object reachability tracing and de-
tailed architectural simulation allows us to quantify the perfor-
mance of unaltered Java programs with automatic and explicit
memory management.

of research dates back to Barth’s description how a compiler could
eliminate certain GC activities [6]. In addition to allowing us to
evaluate the performance impact of garbage collection versus ex-
plicit memory management, our work represents a limit study for
compile-time garbage collection. The oracular memory manager
precisely simulates the impact of a perfect compile-time garbage
collector, and so establishes the opportunity for performance im-
provement and space reduction available to compile-time garbage
collection.

3. Oracular Memory Management
Figure 1 presents an overview of our oracular memory manage-
ment framework. The framework consists of three parts: a lightly-
modified Java virtual machine, exact object reachability traces, and
a detailed architectural simulator.

3.1 The VM
For the Java virtual machine, we use the Jikes RVM, version 2.0.3,
configured to target AIX and produce PowerPC code [3, 4]. Jikes
is a widely-used research platform (formerly known as Jalapeño)
that is written almost entirely in Java. A key advantage of Jikes
is that it allows us to use a number of garbage collection algo-
rithms, including those built using the University of Massachusetts
Garbage Collection Toolkit (GCTk). These include classical algo-
rithms such as semispace and an Appel-style generational collec-
tor [5], as well as recent garbage collectors such as Beltway [11]
and Mark-Copy [35]. We also use the mark-sweep collector dis-
tributed with Jikes.
To provide predictable runs, we use the “Fast” configuration of

Jikes. This configuration optimizes as much of the system as pos-
sible and compiles it into a prebuilt virtual machine. In addition, it
uses the optimizing compiler on all code at runtime. While Java vir-
tual machines normally use an adaptive system that only optimizes
“hot” methods, previous work has shown that this skews results
for short running programs [19]. To ensure reproducibility, we use
deterministic thread switching, which switches threads based upon
the number of methods executed.

3.2 The Oracle
To decide when to free objects without performing garbage collec-
tion, we need an oracle to inform us when these objects become
unreachable. The oracle in this case is the exact object reachability
that the Merlin algorithm provides [27, 28]. Merlin efficiently and
precisely computes object reachability information by timestamp-
ing objects with the last time that they were known to be reachable.
Our extended version of DSS generates traces that we subsequently
use to compute exact object lifetimes with an offline implementa-
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Figure 2: The lifetime of an object, showing when an explicit
memory manager or an automatic memory manager might re-
claim it. The oracular memory manager frees the object just
before it becomes unreachable, which is the last possible time
an explicit memory manager could free it.

tion of the Merlin algorithm. For each object allocated, we com-
pute exactly when (in allocation time) is last reachable. We run
each benchmark twice, first to generate the trace we post-process
and use as our oracle, and then to simulate explicit memory man-
agement.
Immediately before allocating a new object, the oracular mem-

ory manager frees any object that has just become unreachable, as
Figure 2 shows. This policy is theoretically a worst-case approxi-
mation of explicit memory management, because the last possible
moment that a program using explicit memory management can
deallocate an object is just before it becomes unreachable. In prac-
tice, however, it is an excellent approximation. Programs often visit
each object in a linked data structure before deallocating it. Shaham
et al. measure the average impact of inserting null assignments in
Java code, simulating nearly-perfect placement of “explicit deallo-
cations” [37]. Their study includes five of the SPECjvm98 bench-
marks we examine here. They report an average difference in space
consumption of just 15% over deallocating objects when they be-
come unreachable, showing that the policy of freeing objects when
they become unreachable is close to the best achievable by a pro-
grammer.

3.3 The Simulator
Executing the oracle inside a Java virtual machine would distort
program runtimes and space consumption. Object lifetime traces
are quite large (several gigabytes), and the cost of processing these
traces would dominate execution time. Therefore, we need a method
of obtaining the information that the oracle provides at zero cost.
We accomplish this by executing the program on top of a simula-

tor and placing the oracle code and processing inside the simulator.
We use the Dynamic SimpleScalar detailed architectural simula-
tor [30]. Dynamic SimpleScalar, or DSS, is an extension of the
SimpleScalar superscalar architectural simulator [14] that permits
the use of dynamically-generated code, a requirement for simulat-
ing the Jikes RVM. DSS executes the application and measures var-
ious performance characteristics including cycle count and cache
miss rate. We branch into the simulator in order to execute the
oracle with no measured cost, as we describe below.

3.4 Key Modifications
In order to create the oracular memory manager, we needed to
make a number of significant changes to the Jikes RVM and Dy-
namic SimpleScalar. These modifications allow us to compute ob-
ject reachability information, detect memory allocation operations,
and insert explicit deallocation calls without distorting the simu-
lated execution of the program.



Modifications to the Jikes RVM
We first need a number of modifications to compute object lifetimes
using the Merlin algorithm offline. This algorithm requires that we
capture all object allocations and intra-heap pointer updates as well
as the current program roots at each object allocation. A key diffi-
culty is determining when allocations occur and where objects are
allocated. This determination cannot be done through simple tricks
such as waiting for an allocation function to be executed, because
the optimizing compiler inlines the allocation fast-path to improve
system performance. Instead, we rely on minimal modification to
the Jikes compiler.
The Jikes RVM has intermediate representations that differenti-

ate between method calls within the VM and calls to the host op-
erating system. While Jikes uses these parallel IR representations
to minimize modifications needed to support OS calling conven-
tions, we build upon this by adding a third set of nodes to represent
calls to malloc. Our extension insures the compiler treats calls
to malloc like any other function call, while also allowing us to
emit a new, illegal opcode instead of the usual branch instruction.
Because our new opcode is illegal, it cannot otherwise occur in any
program. This provides us with a unique method to identify when
new objects are allocated.
Replacing normal opcodes with illegal ones is at the heart of

our approach for non-intrusively generating the needed heap traces.
As with calls to malloc, we modify the Jikes RVM to replace
intra-heap reference stores with other illegal instructions. These
changes enable detecting object allocations and intra-heap pointer
updates without inserting any trace-specific code. While this does
require modifications to Java code within Jikes, their only effect
is the substitution of our illegal opcodes for the normal PowerPC
codes. Since we always use the simulator, our modified operations
are included both for runs using the garbage collector and for those
using the general-purpose allocators.

Modifications to DSS
The changes to Jikes described above required corresponding changes
to DSS. These modifications generate the heap trace and insert
free calls. When using illegal opcodes, detecting the heap pointer
updates and object allocations is simple. We added code to the sim-
ulator to emit the size and address of newly allocated objects upon
returning from a branch to malloc and to record the source and
target of a pointer store instruction. Root references are also needed
to accurately compute reachability information. We added to DSS
code duplicating the Jikes RVM’s register, stack and static scan-
ning code, but working within the simulated memory structures.
The simulator scans and emits root references into the heap trace
without affecting the running Java program. In sum, these modifi-
cations allow us to generate the program heap trace without having
any apparent effect on the benchmark.
The final change needed to Dynamic SimpleScalar is to insert

calls to free when prompted by the oracle. We implement this
by one last manipulation to our new opcode calling malloc. Be-
fore branching to the allocation function, we check if any objects
must be freed. When jumping to malloc, our code caches the
branch instruction return address. After allocating the new object
with malloc, the simulator jumps to this return address for exe-
cution. By waiting for the simulator to execute this instruction, the
address of the newly allocated object is discovered. When an ob-
ject must be reclaimed before an allocation, we save the jump target
and replace it with the address of free. The simulator also stashes
the current function parameter and substitutes the previously saved
address of the object to free. Finally, our branch is changed so
that, once finished, execution returns to the malloc call instruc-
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Figure 3: A detailed diagram of the oracular memory manage-
ment framework. We first execute the Java program to mea-
sure it and to collect traces, which we process with the Merlin
analysis to obtain exact object reachability information (“death
records”). We then execute the program again, this time replac-
ing allocation by calls to malloc and invoking free on objects
when they become unreachable.

Garbage collectors
Appel variable-sized nursery using two generations [5]
Beltway generalized copying GC framework [11]
Mark-Copy space-efficient copying using two generations [35]
Mark-Sweep non-relocating, non-copying single-generation
SemiSpace two-space single-generation

Explicit memory managers
Kingsley segregated fits [46]
Lea approximate best-fit with coalescing [34]

Table 1: Garbage collectors and explicit memory managers ex-
amined in this paper. All of the garbage collectors are copying
collectors except Mark-Sweep.

tion. When the branch is again reached, the simulator checks if
more frees are needed. While frees are needed, the register and
return values are again hijacked and the needed objects released.
Once there are no objects to be reclaimed, the original register and
branch target values are restored and allocation continues as nor-
mal.

4. Experimental Methodology
We compare the performance of 7 benchmarks across a variety
of garbage collectors and allocators. Table 2 presents our bench-
marks, which are primarily drawn from the SPECjvm98 benchmark
suite [16]. We exclude two SPECjvm98 benchmarks, both of which
are ray-tracing applications that cannot run in our framework due
to limitations in the DSS floating point implementation. Ipsixql is
a persistent XML database system from the University of Colorado
benchmark suite.
Table 1 lists the garbage collectors and explicit memory man-

agers we analyze in this study. When using oracular memory man-
agement, we used the Kingsley [46] and Lea [34] allocators as the
explicit memory managers.
The Kingsley allocator is a segregated fits allocator: all alloca-

tion requests are rounded up to the nearest size class. This rounding
can lead to severe internal fragmentation (wasted space inside allo-
cated objects), because in the worst case, it allocates twice as much
memory as requested. Once an object is allocated for a given size,
it can never be reused for another size: the allocator performs no



Benchmark statistics
Benchmark Total Bytes Alloc Max. Bytes Live Alloc/Live URL
201 compress 174,617,204 8,793,452 19.86 http://www.specbench.org/osg/jvm98
202 jess 432,237,544 5,442,552 79.42 ibid
209 db 151,308,296 10,677,544 14.17 ibid
213 javac 521,763,424 11,802,216 44.21 ibid
222 mpegaudio 102,667,248 4,382,192 23.43 ibid
228 jack 480,765,676 5,327,612 90.24 ibid
ipsixql 128,955,804 4,485,088 28.75 http://systems.cs.colorado.edu/colorado bench

Table 2: Memory usage statistics for our benchmark suite.

splitting (breaking large objects into smaller ones) or coalescing
(combining adjacent free objects). This algorithm is well known to
be among the fastest memory allocators although it is among the
worst in terms of fragmentation [31].
We modified the Kinglsey allocator to make it suitable for use in

the context of Java. In its original form, the Kingsley allocator uses
power of two size classes. This choice results in catastrophic inter-
nal fragmentation for Java applications. We modified the allocator
to include exact size classes for every multiple of four bytes up to
64 bytes, and then use powers of two for larger objects.
The Lea allocator is an approximate best-fit allocator that pro-

vides both high speed and low memory consumption. It forms the
basis of the memory allocator included in the GNU C library [23].
The current version (2.7.2) is a hybrid allocator with different be-
havior based on object size. Small objects (less than 64 bytes) are
allocated using exact-size quicklists (one linked list of freed objects
for each multiple of 8 bytes). Requests for a medium-sized object
(less than 128K) and certain other events trigger the Lea allocator
to coalesce all of the objects in these quicklists in the hope that
this reclaimed space can be reused for the medium-sized object.
For medium-sized objects, the Lea allocator performs immediate
coalescing and spliting and approximates best-fit. Large objects
are allocated and freed using mmap. The Lea allocator is the best
overall allocator (in terms of the combination of speed and memory
usage) of which we are aware [31].
We compare the performance of explicit memory management

to a number of copying garbage collectors: SemiSpace [20], an
Appel-style generational collector [5], Beltway [11], and Mark-
Copy [35]. We use the versions of these collectors as implemented
in the GCTk memory management framework2. We also use one
non-copying collector, the Mark-Sweep collector included with the
Jikes distribution. Space does not permit a full description of each
of these garbage collectors, but Table 1 sums up their key charac-
teristics.

5. Experimental Results
We run each benchmark and garbage collector combination with
heaps ranging from the smallest heap size needed by the collector
to a heap six times larger. We base our memory configuration on the
PowerPC G5 processor [1], and assume a 2 GHz clock. We use a
4K page size, as in Linux and Windows. When accounting for the
cost of page faults, we assume an aggressive 5 millisecond page
fault service time. Table 3 presents the architectural parameters we
use in this study.

2GCTk has been superseded by the MMTk (formerly JMTk)
toolkit [10], but at the time of this writing, it was not possible to
use MMTk in our framework.

Memory hierarchy
L1, I-cache 32K, 2-way associative, 3 cycle latency
L1, D-cache 64K, direct-mapped, 3 cycle latency
L2 (unified) 512K, 8-way associative, 11 cycle latency

All caches have 128 byte lines
Main memory

RAM 200 cycles (100ns)

Table 3: The architectural parameters used in this paper, based
on the PowerPC G5 microprocessor.

5.1 Runtime
Figure 5(a) shows the relative performance of the best garbage col-
lection strategy to explicit memory management. Assuming no
memory pressure, garbage collection adds only 3% to the total
execution time on average and improves the performance of jess
by 4%. However, this figure assumes that one could select the
fastest memory allocator and best collector configuration. Soman et
al. present a dynamic selection mechanism for application-specific
garbage collection that might be useful here [38].
At the largest heap sizes, garbage collection performance varies

dramatically between collectors. Mark-Sweep is slightly faster then
the Lea allocator on javac and performs as well as the Kingsley al-
locator on db. Mark-Sweep is also the fastest garbage collector
on mpegaudio, which performs relatively little allocation. Appel
runs jess faster then any other memory manager. Beltway is the
fastest garbage collector for ipsixql and compress, while Mark-
Copy is fastest on jack. While at the largest heap sizes the Appel
and Mark-Copy collectors run ipsixql 5% faster than the Lea allo-
cator, at all other heap sizes, all garbage collectors increase runtime
by at least 9% over both explicit memory managers. When memory
pressure is low and space is plentiful, explicit memory management
rarely shows a clear improvement over garbage collection.
Figure 4 presents our runtime results across all garbage collec-

tors and benchmarks. Each graph within this figure compares a
particular garbage collector and explicit memory manager. Points
in the graph represent the number of heap pages (the x-axis) and
runtime (y-axis) for the garbage collection algorithm relative to
the explicit memory manager. These graphs compactly summarize
these results and present the time-space tradeoff involved in using
garbage collection.
Figure 4 focuses on the Lea allocator3. As these graphs show,

even at the largest heap sizes, the Lea allocator is faster on aver-
age then each GC algorithm. Figure 5(c) compares each collector’s
average performance versus the two memory allocators when con-

3compress triggers degenerate allocation behavior in the Lea allocator so
we do not include it within these averages.
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Figure 4: Runtime of garbage collectors versus the Lea allocator. For all but db and compress, the runtime of the Lea and Kingsley
allocators are similar, but where they differ, the Lea allocator is superior. On average, MarkCopy outperforms all other garbage
collectors at the largest heap sizes, but the Appel collector actually improves over explicit memory manager performance by 4% on
jess.



(a) Runtime performance of the best garbage collection versus
the best explicit memory management.

(b) Memory consumption of the smallest heap for garbage col-
lection versus the least space needed for explicit memory man-
agement.

(c) Average best runtime by garbage collector. (d) Average relative heap size for the best runtime at each bench-
mark.

Figure 5: A summary of runtime and memory consumption results.

sidering only the collector’s best run on each benchmarks. At the
largest heap sizes, MarkCopy requires an average of 3% longer and
Appel 4% longer than the Lea allocator to run our benchmarks.
When we only consider heap sizes three times the collector’s min-
imum required size, the results are quite different. MarkCopy now
imposes an average runtime overhead of 9% over the Lea alloca-
tor, while Mark-Sweep and Appel add an average 10% and 17%
runtime overhead, repectively. These results, however, are heavily
influenced by db. This benchmark is very sensitive to cache per-
formance and is the one benchmark where the Lea allocator shows
better L1 D-cache locality then all the garbage collectors. Exclud-
ing db, MarkCopy is 1% faster than the Lea allocator at the largest
heap size only 5% slower than the Lea allocator at the smaller heap
sizes. Relative to the Kingsley explicit memory manager, the Appel
collector runs only 2% slower andMarkCopy only 1% slower when
heap space is most plentiful. SemiSpace’s performance does help
explain the concerns over garbage collection’s runtime. Even at the
largest heap size SemiSpace’s runtime is within 10% of that needed
for explicit memory manager for only compress andmpegaudio.
On average, SemiSpace is over 20% slower than both allocators
with the largest heaps heap six and imposes an over 60% runtime
overhead with heaps three times the minimum size it needs. How-
ever, SemiSpace is rarely, if ever, used in a production system and

its results should not be considered within any debate.

5.2 Memory consumption
While garbage collection execution time can compare favorably to
that of the explicit memory managers, memory consumption is a
less favorable comparison. Figure 5(b) shows the smallest garbage
collected heap requires far less space then that of an explicit mem-
ory managers. While copying collection consumes more memory,
this space is often not significantly greater. This does not consider
the runtime increase required for garbage collection to maintain
these smallest heaps. Figure 5(d) shows the average memory con-
sumption with the heap using the best runtime for each collector.
Mark-Sweep is the only garbage collector that performs well

while using less memory then either explicit memory manager.
As Figure 5(d) shows, Mark-Sweep needs 4% less space then the
Kingsley allocator and, when limited to the smaller heap sizes, only
5% more space then the Lea allocator. The Lea allocator allocates
in 8-byte increments. Because Java allocates a large number of
very small objects, this results in substantial internal fragmenta-
tion. More importantly, Mark-Sweep does not add the object head-
ers that both explicit memory managers prefix to every allocation.
Every other garbage collector, when running at its fastest heap

size, needs at least three times as much memory as even the space-
inefficient Kingsley allocator. Because our method of freeing ob-



-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 10  20  30  40  50  60  70  80  90

%
 C

ha
ng

e 
in

 M
iss

 R
at

e

Heap Size (in MB)

Change in DL1 Miss Rate for Javac

Appel vs. Lea
Appel vs. Kingsley
Beltway vs. Lea
Beltway vs. Kingsley
SemiSpace vs. Lea
SemiSpace vs. Kingsley
MarkCopy vs. Lea
MarkCopy vs. Kingsley
MarkSweep vs. Lea
MarkSweep vs. Kingsley

Figure 6: javac L1 D-cache miss rates.
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Figure 7: jess L1 D-cache miss rates.

jects also marks the earliest time a garbage collector can reclaim
an object, some increase in memory consumption may not be sur-
prising. However, the extent of this increase shows an area where
garbage collection clearly needs improvement.

5.3 Cache performance
Figure 6 shows every run of javac using a copying collector had at
least a 30% lower miss rate to the L1 D-cache then the Kingsley
and Lea allocators. This improvement is highly correlated with
copying collections, which place linked objects close to each other
and generally reduce the space between live objects. Collectors
copying larger portions of the heap, like Appel and SemiSpace,
have the lowest miss rates, while Mark-Sweep has the highest rate.
For all but Mark-Sweep, locality is best when garbage collection is
most frequent, that is, at the smallest heap sizes.
Runs of jess show garbage collection improving the L1 D-cache

rate even further. Figure 7 shows every run using garbage collec-
tion improving the cache locality. This figure also shows how the
improvement to cache locality is tightly correlated to the fraction
of the heap that can be moved with each collections. Only for runs
of db does the Lea allocator consistently show a lower L1 D-cache
miss rate. Runs of this benchmark have very little opportunity to
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Figure 8: mpegaudio L2 cache miss rates.

collect garbage and thereby relocate objects. Beltway, SemiSpace
andMarkSweep do improve the miss rate for the Kingsley allocator
with db.
While garbage collection improves L1 cache locality, it hurts L2

cache locality. Figure 8 compares L2 cache locality for runs of
mpegaudio, which is representative. Because the collector must
examine a region far larger than the simulated L2 cache (512K),
garbage collection increases the L2 miss rate. When garbage col-
lections occur frequently, the L2 cache miss rate increases dramat-
ically. Evidence for this is seen in the over 1500% increase for the
smallest heap size of MarkCopy. As heap sizes increase, the L2
miss rates drop.

5.4 Page-level locality
We present the results of our page-level locality experiments in the
form of miss curves. Assuming that the virtual memory manager
observes an LRU discipline, these graphs show the number of page
faults occurring for every possible number of pages allocated to the
process.
Figure 9 compares the miss curves for both explicit memory

manager versus an optimal garbage collector for each benchmark.
The optimal garbage collector is one, given the benchmark and
number of available memory pages, that selects the algorithm and
heap size minimizing the number of page faults. Note that this heap
size is often pessimal with respect to runtime. The x-intercept for
these graphs corresponds to the smallest value for the maximum
virtual memory footprint for each process. Every graph in Figure 9
shows the Lea and Kingsley allocators having smaller footprints
then even this optimal garbage collector. Only in Figure 9(e) and
Figure 9(f) are there garbage collectors with a footprint close to
that of the explicit memory managers. These graphs also show that
garbage collection has worse page locality for almost every exper-
iment we performed. Only towards the left edge of the graphs of
db (Figure 9(b)) and javac (Figure 9(c)) are there instances where
garbage collection limits the number of page faults.
This analysis assumes that such an optimal garbage collector

exists. Figure 10 shows the miss curves for the Appel collector
running at a variety of heap sizes. As can be seen in this graph,
the smallest footprint and number of page faults can often be seen
in the smallest heap sizes. However, virtual memory footprint in-
creases as heap sizes grow. Unfortunately, it is only at the largest
heap sizes, and hence largest virtual memory footprints, that gar-
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Figure 9: Page-level miss curves for six of the benchmarks (note that the y-axis is log-scale). Even if we select the optimal garbage
collector and heap size, both explicit memory managers yield smaller footprints and fewer page faults at almost all reasonable
physical memory sizes. Note that these “optimal” points are for the smallest heap sizes and so yield nearly pessimal throughput.
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Figure 10: Page-level miss curves for the Appel collector run-
ning jess. Larger heap sizes improve throughput but cause
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Figure 11: Execution time including paging costs for compress
(the y-axis is log-scale). Garbage collection suffers from paging
problems much quicker.

bage collection achieves runtime performance comparable to ex-
plicit memory management.
Figure 11 presents total execution times, including the cost of

servicing page faults for compress. In this graph, the optimal
garbage collector selects the garbage collector configuration that
minimizes total execution time. There is little difference between
the best possible GC configuration and the Kingsley allocator at
the start. However, garbage collection performance quickly suffers
from paging problems, and only again becomes comparable after
paging slows execution by over an order of magnitude.

6. Future Work
While we have shown that garbage collectors can be competitive
with and occasionally outperform explicit memory management,
we have only addressed individual object management. Region-
style custom memory allocators can dramatically improve the per-
formance of applications using explicit memory management. [8,
26]. Regions are also increasingly popular as an alternative or com-
plement to garbage collection [21, 22, 24, 40]. We plan to use our
framework to examine the impact of the use of regions and a hybrid

allocator, reaps [8], as compared to garbage collection.
In this study, we study two explicit memory allocators that place

8-byte object headers prior to each allocated object. As we discuss
in Section 5.2, these headers lead to excessive space consumption
compared to the Mark-Sweep collector. We plan to evaluate mem-
ory allocators that use bitmaps or BiBoP (big bag of pages) alloca-
tion, which we expect to yield substantially lower space consump-
tion.

7. Conclusion
The controversy over garbage collection’s performance impact has
long overshadowed the software engineering benefits it provides.
This paper introduces a tracing and simulation-based oracular mem-
ory manager. Using this framework, we execute a range of unal-
tered Java benchmarks using both garbage collection and explicit
memory management. Comparing runtime, space consumption,
and virtual memory footprints, we find that when space is plen-
tiful, the runtime performance of garbage collection can be com-
petitive with explicit memory management, and can even outper-
form it by up to 4%. We find that copying garbage collection can
require six times the physical memory as the Lea or Kingsley allo-
cators to provide comparable performance. We also show that gar-
bage collection suffers orders-of-magnitude performance penalties
when paging occurs. This first-ever comparison of explicit memory
management and copying garbage collection shows where garbage
collection must improve in the future. While we expect the incorpo-
ration of L3 caches to minimize the impact of garbage collection’s
poor L2 locality, the relative cost of disk latency continues to grow.
Improving the space efficiency and page-level locality of garbage
collection will thus become increasingly important.
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