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The APPLICATION PLACEMENT PROBLEM (APP) arises in clusters of servers that are used for hosting large,

distributed applications such as Internet services. Such clusters are referred to as hosting platforms. Hosting

platforms imply a business relationship between the platform provider and the application providers: the latter pay

the former for the resources on the platform. In return, the platform provider gives some kind of guarantees on

resource availability to the applications. This implies that a platform should host only applications for which it has

sufficient resources. The objective of the APP is to maximize the number of applications that can be hosted on the

platform while satisfying their resource requirements. We show that the APP is NP-hard. We show that restricted

versions of the APP admit polynomial-time approximation schemes. Finally, we present algorithms for the online

version of the APP.

1 Introduction

Server clusters built using commodity hardware and software are an increasingly attractive alternative to traditional

large multiprocessor servers for many applications, in part due to rapid advances in computing technologies and

falling hardware prices. We call such server clusters hosting platforms. Hosting platforms can be shared or dedicated.

In dedicated hosting platforms [1, 15], either the entire cluster runs a single application (such as a web search

engine), or each individual processing element in the cluster is dedicated to a single application (as in the hosting

services provided by some data centers). In contrast, shared hosting platforms [3, 17] run a large number of different

third-party applications (web-servers, streaming media servers, multi-player game servers, e-commerce applications,

etc.), and the number of applications typically exceeds the number of nodes in the cluster. More specifically, each

application runs on a subset of the nodes and these subsets may overlap. Whereas dedicated hosting platforms are



used for many niche applications that warrant their additional cost, economic reasons of space, power, cooling and

cost make shared hosting platforms an attractive choice for many application hosting environments.

Shared hosting platforms imply a business relationship between the platform provider and the application providers:

the latter pay the former for the resources on the platform. In return, the platform provider gives some kind of guar-

antees of resource availability to applications. This implies that a platform should admit only applications for which

it has sufficient resources. In this work, we take the number of applications that a platform is able to host (admit)

to be an indicator of the revenue that it generates from the hosted applications. The number of applications that a

platform admits is related to the application placement algorithm used by the platform. A platform’s application

placement algorithm decides where on the cluster the different components of an application get placed. In this

paper we study properties of the application placement problem (APP) whose goal is to maximize the number of

applications that can be hosted on a platform. We show that APP is NP-hard and present approximation algorithms.

The rest of the paper is organized as follows. Section 2 develops a formal setting for the APP and discusses

related work. Section 3 establishes the NP-hardness of the APP. Section 4 presents polynomial-time approximation

algorithms for various restrictions of the APP. Section 5 begins to study the online version of the APP. Section 6

discusses directions for further work.

2 The Application Placement Problem

2.1 Notation and Definitions

Say that we have a cluster of servers (also called nodes), . Each node has a given capacity (of

available resources). Unless otherwise noted, nodes are homogeneous, in the sense of having the same initial

capacities. The APP appropriates portions of nodes’ capacities; a node that still has its initial capacity is said to be

empty. Let denote the number of applications to be placed on the cluster and let us represent them as , ,

. Further, each application is composed of one or more capsules. A capsule may be thought of as the smallest

component of an application for the purposes of placement — all the processes, data etc., belonging to a capsule

must be placed on the same node. Capsules provide a useful abstraction for logically partitioning an application

into sub-components and for exerting control over the distribution of these components onto different nodes. If an

application wants certain components to be placed together on the same node (e.g., because they communicate a

lot), then it could bundle these as one capsule. Some applications may want their capsules to be placed on different

nodes. An important reason for doing this is to improve the availability of the application in the face of node failures

— if a node hosting a capsule of the application fails, there would still be capsules on other nodes. An example of

such an application is a replicated web server. We refer to this requirement as the capsule placement restriction. In



what follows, we look at the APP both with and without the capsule placement restriction.

In general, each capsule in an application would require guarantees on access to multiple resources. In this work,

we consider just one resource, such as the CPU or the network bandwidth. We assume a simple model where a

capsule specifies its resource requirement as a fraction of the resource capacity of a node in the cluster (i.e., we

assume that the resource requirement of each capsule is less than the capacity of a node). A capsule can be placed

on a node just when the sum of its resource requirement and those of the capsules already placed on the node does

not exceed the resource capacity of the node. We say that an application can be placed only if all of its capsules

can be placed simultaneously. It is easy to see that there can be more than one way in which an application may be

placed on a platform. We refer to the total number of applications that a placement algorithm could place as the size

of the placement.

Definition 1 The offline APP: Given a cluster of empty nodes , , , and a set of applications , ,

, determine a placement of maximum size.

Definition 2 The on-line APP: Given a cluster of empty nodes , , , and a set of applications , ,

, determine a placement of maximum size while satisfying the following conditions: (1) the applications should

be considered for placement in increasing order of their indices, and (2) once an application has been placed, it

cannot be moved while the subsequent applications are being placed.

Definition 3 Single-Capsule Application Placement Problem (DEC MAX CAP): Given empty nodes , ,

, a set of single-capsule applications , , , and an integer , determine if a placement of size exists.

Lemma 1 DEC MAX CAP is NP-complete.

Proof: The proof consists of two parts.

DEC MAX CAP is in NP: Given an instance of DEC MAX CAP and a placement, we can in polynomial

time verify — (a) if this is a valid placement — this involves checking for each node that the sum of the

requirements of all the capsules placed on it does not exceed the node capacity , and (b) if the size of the

placement is , i.e., could capsules be placed. Thus, we have shown that DEC MAX CAP is in NP.

BIN-PACKING reduces to DEC MAX CAP: Let us first state the decision version of the bin-packing problem

which is known to be NP-complete [11].

BIN-PACKING: Given a set of objects , , of sizes , , respectively, and an integer ,

determine if all the objects can be placed into bins, where each bin has unit capacity.



Consider the following polynomial-time reduction from BIN-PACKING to DEC MAX CAP. Given an input

to BIN-PACKING, we construct an input to DEC MAX CAP as follows. Corresponding to each object in the

input to BIN-PACKING, we construct a capsule whose requirement is equal to the size of the object. Next, we

construct nodes, each with unit capacity. These node- and capsule-sets along with the integer comprise

the input to DEC MAX CAP.

It is easy to see that the above is a reduction. Assume the input to BIN-PACKING had objects and the

integer . The input to DEC MAX CAP that we construct would have nodes, capsules and the integer .

If the objects can fit into bins, then clearly we can place the capsules in nodes. On the other hand, if

the objects cannot fit into bins, then the capsules cannot all be placed into the nodes.

This completes the proof.

Definition 4 Decision Version of the APP (DEC MAX APP): Given empty nodes , , , a set of

applications , , , and an integer , determine if a placement of size exists.

Lemma 2 DEC MAX APP is NP-complete.

Proof: Restrict DEC MAX APP to DEC MAX CAP by allowing only applications with one capsule.

Finally, we can show the NP-hardness of the APP.

Theorem 1 The APP is NP-hard.

Proof: DEC MAX APP is the decision version of offline APP. Therefore, the NP-hardness of DEC MAX APP

shown in Lemma 2 proves the NP-hardness of OFF PLACE.

Definition 5 Polynomial-time approximation scheme (PTAS): A set of algorithms , where each is a

( )-approximation algorithm and the execution time is bounded by a polynomial in the length of the input. The

execution time may depend on the choice of .

2.2 Related Work

Two generalizations of the classical knapsack problem are relevant to our discussion of the APP. These are the

Multiple Knapsack Problem (MKP) and the Generalized Assignment Problem (GAP). In MKP, we are given a set of

items and bins (knapsacks) such that each item has a profit and a size , and each bin has a capacity

. The goal is to find a subset of items of maximum profit that has a feasible packing in the bins. MKP is a

special case of GAP where the profit and the size of an item can vary based on the specific bin that it is assigned to.
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Figure 1: An example of the gap-preserving reduction from the Multi-dimensional Knapsack problem to the general

offline placement problem.

GAP is APX-hard (see [13] for a definition of APX-hardness) and [16] provides a -approximation algorithm for

it. This was the best result known for MKP until a polynomial-time PTAS was presented for it in [5]. It should be

observed that the offline APP is a generalization of MKP where an item may have multiple components that need to

be assigned to different bins (the profit associated with an item is 1). Further, [5] shows that slight generalizations of

MKP are APX-hard. This provides reason to suspect that the APP may also be APX-hard (and hence may not have

a PTAS). In Sections 3 and 4 we show that certain restrictions of the APP admit PTAS.

Another closely related problem is a “multidimensional” version of the MKP where each item has requirements

along multiple dimensions, each of which must be satisfied to successfully place it. The goal is to maximize the

total profit yielded by the items that could be placed. A heuristic for solving this problem is described in [12].

However, the authors evaluate this heuristic only through simulations and do not provide any analytical results on its

performance.

3 Hardness of Approximating the APP

In this section, we demonstrate that a restricted version of the APP admits a PTAS. The capsule placement restriction

is assumed to hold throughout this section.

Definition 6 Gap-preserving reduction: [8] Let and be two maximization problems. A gap-preserving re-

duction from to with parameters ( ), ( ) is a polynomial-time algorithm . For each instance of ,

algorithm produces an instance = of . The optima of and , say and respectively,

satisfy the following property:

(1)

(2)



Here and are functions of , the size of instance , and , are functions of . Also, , .

Suppose we wish to prove the inapproximability of problem . Suppose further that we have a polynomial time

reduction from to that ensures, for every boolean formula :

Then composing this reduction with the reduction of Definition 6 gives a reduction from to that

ensures:

In other words, shows that achieving an approximation ratio for is NP-hard. So a gap-preserving reduction

can be used to exhibit the hardness of approximating a problem. We now give a gap-preserving reduction from the

Multi-dimensional - Knapsack Problem [2] to a restricted version of the APP. We begin with definition of the

former problem (which is also known as the Packing Integer Problem [4]).

Definition 7 Multi-Dimensional - Knapsack Problem (MDKP): For a fixed positive integer , the -dimensional

knapsack problem is the following:

Maximize

Subject to

where: is a positive integer; each and ; the and are non-negative real numbers; all

. Define .

To see why the above maximization problem models a multi-dimensional knapsack problem, think of a -

dimensional knapsack with the capacity vector . That is, the knapsack has capacity along dimension

, along dimension etc. Think of items , each having a -dimensional requirement vector. Let the

requirement vector for item be . It is easy to see that the above maximization problem is equivalent

to the problem of maximizing the number of -dimensional items that can be packed in the -dimensional knapsack

such that for any ( ) the sum of the requirements along dimension of the packed items does not exceed

the capacity of the knapsack along dimension .



Hardness of approximating MDKP: For fixed there is a PTAS for MDKP [10]. For large the randomized

rounding technique of [14] yields integral solutions of value . [4] establishes that MDKP is hard to

approximate within a factor of for every fixed , thus establishing that randomized rounding essentially

gives the best possible approximation guarantees.

Theorem 2 For a fixed integer , there exists a PTAS for the offline placement problem that has the following

restrictions: (1) all the capsules have a positive requirement and (2) there exists a constant , such that

.

Proof: We explain later in this proof why the two restrictions mentioned above arise. We begin by describing the

reduction.

The reduction: Consider the following mapping from instances of -MDKP to offline APP:

Suppose the input to -MDKP is a knapsack with capacity vector . Also let there be items .

Let the requirement vector for item be . We create an instance of offline APP as follows. The cluster

has nodes . There are applications , one for each item in the input to -MDKP. Each of

these applications has capsules. The capsules of application are denoted . Also, we refer to as

the capsule of application . We now describe how we assign capacities to the nodes and requirements to the

applications we have created. This part of the mapping proceeds in stages. In stage , we determine the capacity of

node and the requirements of the capsule of all the applications. Next, we describe how these stages proceed.

Stage 1: Assigning capacity to the first node is straightforward. We assign it a capacity . The first

capsule of application is assigned a requirement .

Stage s ( ): The assignments done by stage depend on those done by stage . We first determine the

smallest of the requirements along dimension of the items in the input to -MDKP, that is, .

Next we determine the scaling factor for stage , as follows:

(3)

Recall that we assume that . Now we are ready to do the assignments for stage . Node is assigned

a capacity . The capsule of application is assigned a requirement .

This concludes our mapping. Let us now take a simple example to better explain how this mapping works.

Consider the instance of input to MDKP shown on the left of Figure 1. Here we have , . We create

nodes , and . We create applications , , and , each with capsules. Let us now consider how

the stages in our mapping proceed.

Stage 1: We assign a capacity of to and requirements of each to the first capsules of all four applications.



Stage 2: The scaling factor for this stage, is . So we assign a capacity of to and requirements of

each to the second capsules of the four applications.

Stage 3: The scaling factor for this stage, is . So we assign a capacity of . The third

capsules of the four applications are assigned requirements of and respectively.

Correctness of the reduction: We show that the mapping described above is a reduction.

( ) Assume there is a packing of size . Denote the items in the input to -MDKP as .

Without loss of generality, assume that the items in are . Therefore we have,

(4)

Consider this way of placing the applications that the mapping constructs on the nodes . If item ,

place application as follows: , place capsule on node . We claim that we will be able to place

all applications corresponding to the items in . To see why consider any node . The capacity

assigned to is times the capacity along dimension of the -dimensional knapsack in the input to -MDKP,

where . The requirements assigned to the capsules of all the applications are also obtained by scaling by

the same factor the sizes along the dimension of the items. Multiplying both sides of (4) by we get,

Observe that the term on the right is the capacity assigned to . The term on the left is the sum of the requirements

of the capsules of the applications corresponding to the items in . This shows that node can accommodate

the capsules of the applications corresponding to the items in . This implies that there is a placement of size

.

( ) Assume that there is a placement of size . Let the applications be denoted . Without

loss of generality, let the applications in be . Also denote the set of the capsules of the placed

applications by , .

We make the following key observations:

For any application to be successfully placed, its capsule must be placed on node . Due to the scaling by

the factor computed in Eq. (3), the requirements assigned to the ( ) capsules of the applications are

strictly greater than the capacities of the nodes . Consider the capsules of the applications

first. The only node these can be placed on is . Since no two capsules of an application may be placed

on the same node, this implies that the capsules of the applications may be placed only on .

Proceeding in this manner, we find that the claim holds for all the capsules.



Since for all ( ), the node capacities and the requirements of the capsules are scaled by the

same multiplicative factor, the fact that the capsules in could be placed on implies that the

items can be packed in the knapsack in the dimension.

Combining these two observations, we find that a packing of size must exist.

Time and space complexity of the reduction: This reduction works in time polynomial in the size of the in-

put. It involves stages. Each stage involves computing a scaling factor (this involves performing a division) and

multiplying numbers (the capacity of the knapsack and the requirements of the items along the relevant

dimension).

Let us consider the size of the input to the offline placement problem produced by the reduction. Due to the scaling

of capacities and requirements described in the reduction, the magnitudes of the inputs increase by a multiplicative

factor of for node and the capsules. If we assume binary representation this implies that the input

size increases by a multiplicative factor of , . Overall, the input size increases by a multiplicative

factor of . For the mapping to be a reduction, we need this to be a constant. Therefore, our reduction works

only when we impose the following restrictions on the offline APP: (1) and are constants, and (2) all the capsule

requirements are positive.

Gap-preserving property of the reduction: The reduction presented is gap-preserving because the size of the

optimal solution to the offline placement problem is exactly equal to the size of the optimal solution to MDKP. More

formally, in terms of the terminology used in Definition 6, we can set . Putting these values in

Equations 1 and 2, we find that the following conditions hold:

[OPT(MDKP) 1] [OPT(offline APP) 1]

[OPT(MDKP) 1] [OPT(offline APP) 1]

This proves that the reduction is gap-preserving. Together, these results prove that the restricted version of the

offline APP described in Theorem 2 admits a PTAS.

4 Offline Algorithms for APP

In this section we present and analyze offline approximation algorithms for several variants of the placement prob-

lem. Except in Section 4.4, we assume that the cluster is homogeneous, in the sense specified earlier.

4.1 Placement of Single-Capsule Applications

We consider a restricted version of offline APP in which every application has exactly one capsule. We provide a

polynomial-time algorithm for this restriction of offline APP, whose placements are within a factor of optimal.



The approximation algorithm works as follows. Say that we are given nodes , , and single-capsule

applications , , with requirements , , . Assume that the nodes have unit capacities. The algorithm

first sorts the applications in nondecreasing order of their requirements. Denote the sorted applications by , ,

and their requirements by , , . The algorithm considers the applications in this order. An application is

placed on the “first” node where it can be accommodated (i.e., the node with the smallest index that has sufficient

resources for it). The algorithm terminates once it has considered all the applications or it finds an application that

cannot be placed, whichever occurs earlier. We call this algorithm FF SINGLE.

Lemma 3 FF SINGLE has an approximation ratio of 2.

Proof: Denote by the number of single-capsule applications that FF SINGLE could place on nodes. Denote

by the number of single-capsule applications that an optimal algorithm could place.

If FF SINGLE places all the applications on the given set of nodes, then it has matched the optimal algorithm and

we are done.

Consider the case when there is at least one application that FF SINGLE could not place. Since all capsules have

requirements less than the capacity of a node, this implies that there is no empty node after the placement. Our proof

is based on the following key observation: if FF SINGLE could not place all the applications, then there can be at

most one node that is more than half empty. To see why, assume that there are two nodes and that are more

than half empty, . Since the application(s) (equivalently, capsule(s)) placed on can be accommodated in ,

the assumed situation can never arise in a placement found by FF SINGLE.

As a result we have the following:

The best that an optimal algorithm can do is to use up all the capacity on the nodes. So we have:

Since , the set , , would have at least as many applications as

the set , , . Consequently, FF SINGLE has placed at least half as many applications as an optimal

algorithm. This gives us the desired performance ratio of 2.

4.2 Placement without the Capsule Placement Restriction

Now we show that an approximation algorithm based on first-fit gives an approximation ratio of for multi-capsule

applications, provided that they don’t have the capsule placement restriction.



The approximation algorithm works as follows. Say that we are given nodes , , and applications

, , with requirements , , (the requirement of an application is the sum of the requirements of its

capsules). Assume that the nodes have unit capacities. The algorithm first orders the applications in nondecreasing

order of their requirements. Denote the ordered applications by , , and their requirements by , , .

The algorithm considers the applications in this order. An application is placed on the “first” set of nodes where it

can be accommodated (i.e., the nodes with the smallest indices that have sufficient resources for all its capsules).

The algorithm terminates once it has considered all the applications or it finds an application that cannot be placed,

whichever occurs first. We call this algorithm FF MULTIPLE RES.

Lemma 4 FF MULTIPLE RES has an approximation ratio that approaches 2 as the number of nodes in the cluster

grows.

Proof: Denote by the number of applications that FF MULTIPLE RES could place on nodes, completely

(meaning all the capsules of the application could be placed) or partially (meaning at least one capsule of the appli-

cation could not be placed). Denote by the number of applications that an optimal algorithm could place on

the same set of nodes.

If FF MULTIPLE RES places all the applications on the given set of nodes, then it has matched the optimal

algorithm and we are done.

Consider the case when there is at least one application that FF MULTIPLE RES could not place. Since all

capsules have requirements less than the capacity of a node, this implies that there is no empty node after the

placement. The set of applications placed by FF MULTIPLE RES is , , . Observe that except for the

last of these applications, namely , all the applications would have been placed completely. The application

may or may not have been completely placed. In either case, the following key observation would hold: if

FF MULTIPLE RES could not place all the applications, then there can be at most one node that is more than half

empty. To see why, assume that there are two nodes and that are more than half empty, . Since the

capsules placed on can be accommodated in , the assumed situation can never arise in a placement found by

FF MULTIPLE RES.

As a result we have the following:

where is the sum of the requirements of the capsules of application that could be placed on the cluster.

Since , this implies the following:
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Figure 2: An example of striping-based placement.

The best that an optimal algorithm can do is to use up all the capacity on the nodes. So we have:

Since , the set , , would have at least as many applica-

tions as the set , , . Discounting which may not have been completely placed, we find that

FF MULTIPLE RES guarantees to place one less than half as many applications as an optimal algorithm can place.

As the number of nodes grows, the performance ratio of FF MULTIPLE RES tends to .

4.3 Placement of Identical Applications

Two applications are identical if their sets of capsules are identical. Below we present a placement algorithm based

on “striping” applications across the nodes in the cluster and determine its approximation ratio.

Striping-based placement: Assume that the applications have capsules each, with requirements (

). The algorithm works as follows. Let us denote the nodes as . The nodes are divided into

sets of size each. Since , there will be at least one such set. The number of such sets is . Let

. Let us denote these sets as . Note that may be an empty set, .

The algorithm considers these sets in turn and “stripes” as many unplaced applications on them as it can. The set of

nodes under consideration is referred to as the current set of nodes.

We illustrate the notion of striping using an example. In Figure 2, we have three nodes and a number of identical

3-capsule applications to be placed on them. Striping places the first capsule of on , second on and third

on . For the next application , it places the first capsule on , second on and third on .

When the current set of nodes gets exhausted and there are more applications to place, the algorithm takes the

next set of nodes and continues. The algorithm terminates when the nodes in are exhausted, or all applications

have been placed, whichever occurs earlier. Note that none of the nodes in the (possibly empty) set are used

for placing the applications.
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Figure 3: A bipartite graph indicating which capsules can be placed on which nodes

Lemma 5 The striping-based placement algorithm yields an approximation ratio of for identical applica-

tions, where .

Proof: It is easy to observe that the striping-based placement algorithm places an optimal number of identical

applications on a homogeneous cluster of size (due to symmetry). Since the striping-based algorithm places appli-

cations on the sets and lets go unused, and since the nodes are homogeneous and the applications

are identical, its approximation ratio is strictly less than .

4.4 Max-First Placement

We have considered so far restricted versions of the offline APP and have presented heuristics that have approxi-

mation ratios of 2 or better. In this section we turn our attention to the general offline APP. We let the nodes in the

cluster be heterogeneous. We find that this problem is much harder to approximate than the restricted cases. We first

present a heuristic that works differently from the first-fit based heuristics we have considered so far. We obtain an

approximation ratio of for this heuristic, where is the maximum number of capsules in any application.

Our heuristic works as follows. It associates with each application a weight which is equal to the requirement

of the largest capsule in the application. The heuristic considers the applications in nondecreasing order of their

weights. We use a bipartite graph to model the problem of placing an application on the cluster. In this graph, we

have one vertex for each capsule in the application and for each node in the cluster. Edges are added between a

capsule and a node if the node has sufficient capacity for hosting the capsule. We say that the node is feasible for

the capsule. An example is shown in Figure 3. In Lemma 6 we show that an application can be placed on the cluster

if and only if there is a matching of size equal to the number of capsules in the application. We solve the maximum

matching problem on this bipartite graph [7]. If the matching has size equal to the number of capsules, we place the

capsules of the application on the nodes that the maximum matching connects them to. Otherwise, the application



cannot be placed and the heuristic terminates. We refer to this heuristic as Max-First.

Lemma 6 An application with capsules can be placed on a cluster if and if only there is a matching of size in

the bipartite graph modeling its placement on the cluster.

Proof: We prove each direction in turn.

( ) Consider a matching of size in the bipartite graph. It must have an edge connecting each capsule to a

node. Further, no two capsules could be connected to the same node (since this is a matching). Since edges denote

feasibility, this is clearly a valid placement.

( ) Suppose there is no matching of size in the bipartite graph. Then there must be at least one capsule that

can not be assigned to a node independent of the other capsules. In other words, there must be at least one capsule

that would need to share a node with some other capsule(s). Therefore this application can not be placed without

violating the capsule placement restriction.

This concludes the proof.

Lemma 7 The placement heuristic Max-First described above has an approximation ratio of , where is the

maximum number of capsules in an application.

Proof: Let represent the set of all the applications and . Denote by the number of nodes in the cluster

and the nodes themselves by . Let us denote by the set of applications that Max-First places. Let

denote the set of applications placed by any optimal placement algorithm. Clearly, . Represent by

the set of applications that both and place; that is, . Further, denote by the set of applications that

neither nor places.

The basic idea behind this proof is as follows. We focus in turn on the applications that only Max-First and the

optimal algorithm place (that is, applications in and ), and compare the sizes of these sets. A relation

between the sizes of these sets immediately yields a relation between the sizes of the sets and . (Observe that

and may both be empty, in which case we have the claimed ratio trivially.)

Consider the placement given by Max-First. Remove from this all the applications in , and deduct from the nodes

the resources reserved for the capsules of these applications. Denote the resulting nodes by . Do

the same for the placement given by the optimal algorithm, and denote the resulting nodes by . To

understand the relation between the applications placed on these node sets by Max-First and the optimal algorithm,

suppose Max-First places applications from the set on the nodes . Let us denote the



applications in by , where the applications are arranged in nondecreasing order of

the size of their largest capsule. That is, , being the requirement of the

largest capsule in application . From the definition of Max-First, the applications that it places are .

Also, the applications that the optimal algorithm places on the set of nodes must be from the set

. We make the following useful observation about the applications in the set :

for each of these applications, the requirement of the largest capsule is at least . Based on this we infer

the following: Max-First will exhibit the worst approximation ratio when all the applications in have

capsules, each with requirement , and all the applications in have capsules with requirement

0, and one capsule with requirement . Since the total capacities remaining on the node sets

and are equal, this implies that in the worst case, the set would contain times as many

applications as . Based on the above, we can prove an approximation ratio of for Max-First as follows:

This concludes our proof.

4.5 LP-Relaxation Based Placement

Say that we have nodes and applications. Each application can be thought of as having capsules (we can

add some capsules with requirement to an application with fewer than capsules). Denote by the requirement

of capsule of application and by the capacity of node . We construct the variable with the following

meaning:
if capsule of app is placed on node

otherwise

Additionally, define:

and

The placement problem can be recast as the following Integer Linear Program:

Maximize

Subject to



The first step of the LP-relaxation based placement consists of solving the Linear Program obtained by removing

the restriction and instead allowing to take real values in . Denote the value assigned to

in this step by . This is followed by a step in which are converted back to integers using the following

rounding:
if

otherwise

Finally, the capacities of some nodes may have been exceeded due to the above rounding. For such nodes, we

remove the capsules placed on them in nonincreasing order of their requirements till the remaining capsules fit in

the node. Observe that removing a capsule of an application implies also removing all of its other capsules.

5 The Online APP

In the online version of the APP, the applications arrive one by one. We require the following from any online place-

ment algorithm — the algorithm must place a newly arriving application on the platform if it can find a placement

for it without moving any already placed capsule. This captures the placement algorithm’s lack of knowledge of the

requirements of the applications arriving in the future. We assume a heterogeneous cluster throughout this section.

5.1 Online Placement Algorithms

The online placement algorithms consider applications for placement one by one, as they arrive. Consider the

situation the online placement algorithm is faced with on the arrival of a new application. We model this using a

graph, in which we have one vertex for each capsule in the application and for each node in the cluster. Edges are

added between a capsule and a node if the node has sufficient resources for hosting the capsule. We say that the node

is feasible for the capsule. This gives us a bipartite graph that we call the feasibility graph of the new application.

An example of a feasibility graph is shown in Figure 3. As described in Section 4.4, a maximum matching on this

graph can be used to find a placement for the application if one exists.

Let us denote by the class of greedy online placement algorithms that work as follows. Any such algorithm

considers the capsules of the newly arrived application in nondecreasing order of their degrees in the feasibility

graph of the application. If there are no feasible nodes for a capsule, the algorithm terminates. Otherwise, the

capsule is placed on one of the nodes feasible for it. After this, all edges connecting any unplaced capsules to this

node are removed from the graph. This is repeated until all capsules have been placed or the algorithm cannot find

any feasible nodes for some capsule.



We define two members of below.

Definition 8 Best-fit based Placement (BF): When faced with a choice of more than one node to place a capsule

on, chooses the node with the least remaining capacity.

Definition 9 Worst-fit based Placement (WF): When faced with a choice of more than one node to place a capsule

on, chooses the node with the most remaining capacity.

We can show the following regarding the approximation ratios of and , denoted and respec-

tively.

Lemma 8 can perform arbitrarily worse than the optimal.

Proof: Let be the total number of applications and the number of nodes and let . Let all the nodes

have a capacity of . Suppose that single-capsule applications arrive first, each capsule with a requirement .

puts them all on the first node. Next, -capsule applications arrive with each capsule having non-

zero requirement. Since the first node has no capacity left, will not be able to place any of these. would

have worked as follows on this input. Each of the first single-capsule applications would have been placed on a

separate node, resulting in each of the nodes having a remaining capacity , available for the -capsule

applications. Therefore,

Also, since is optimal for this input, we have

Since can be arbitrarily larger than (by making the -capsule applications have capsules with requirements

tending to 0), cannot be bounded from above.

Lemma 9 for an -node cluster.

Proof: Say that the cluster has nodes, each with unit capacity. Consider the following sequence of application

arrivals. Suppose that single-capsule applications arrive first, each capsule with a requirement that approaches

0. places each of these applications on a separate node, resulting in each of the nodes having a remaining

capacity . Next, single-capsule applications arrive, each capsule with a requirement of . Since no node



N1

N3

N2

N4

N1

N3

N4

N2
C1

C3

C2
C3

C2

C1

C4

0.1

0.2

0.2

0.10.1

0.1

0.3

1

1

1

1

Figure 4: An example of reducing the minimum-weight maximum matching problem to the minimum-weight per-

fect matching problem.

is fully vacant, none of these applications can be placed. Here is how would work on this input. The single-

capsule nodes would be placed on the first node. Then, of the subsequently arriving applications would be

placed on the fully vacant nodes, and the last application would be turned away. Therefore we have,

Since is optimal on this input, this gives us,

This gives the claimed lower bound as grows without bound.

5.2 Online Placement with Variable Preference for Nodes

In some scenarios, it may be useful to be able to honor any preference a capsule may have for one feasible node over

another. In this section, we describe how online placement can take such preferences into account. We model such

a scenario by enhancing the bipartite graph representing the placement of an application on the cluster by allowing

the edges in the graph to have positive weights. An example of such a graph is shown in Figure 4. In this graph

lower weights mean higher preference. A valid placement corresponds to a placement of size equal to the number

of capsules .

The online placement problem therefore is to find the maximum matching of minimum weight in this weighted

graph. We show that this can be found by reducing the placement problem to the Minimum-weight Perfect Matching

Problem. We will first define this problem and then present the reduction.

Definition 10 Minimum-weight Perfect Matching Problem: A perfect matching in a graph is a subset of edges

such that each node in is met by exactly one edge in the subset. Given a real weight for each edge of , the

minimum weight perfect matching problem is to find a perfect matching of minimum weight .



Our reduction works as follows. Assume that all the weights in the original bipartite graph are in the range (0, 1)

and that they sum to 1. This can be achieved by normalizing all the weights by the sum of the weights. If an edge

had weight , its new weight would be . Denote the number of capsules by and the number of nodes

by , . Construct capsules and add edges with weight 1 each between them and all the nodes. We call

these the dummy capsules.

Figure 4 presents an example of this reduction. On the left is a bipartite graph showing the normalized preferences

of the capsules for their feasible nodes. We add another capsule shown on the right to make the

number of capsules equal to the number of nodes. Also shown on the right are the new edges connecting to all

the nodes. each of these edges has a weight of 1. The weights of the remaining edges do not change, so they have

been omitted from the graph on the right.

Lemma 10 In the weighted bipartite graph corresponding to an application with capsules and a cluster with

nodes , a matching of size and cost exists if and only if a perfect matching of cost exists

in the graph produced by reduction described above.

Proof: ( ) Suppose that there is a matching of size and cost in . We construct a perfect matching

in as follows. has all the edges in . Next we add to edges that have the dummy capsules incident on

them. For this, we consider the dummy capsules one by one (in any order). For each such capsule, we add to

an edge connecting it to a node that is not yet on any of the edges in . Since there is a matching of size in

, and since each dummy capsule is connected to all nodes, will have a matching of size (that is a perfect

matching). Further, since each edge with a dummy capsule as its end point has a weight of and there are

such edges, the cost of is .

( ) Suppose there is a perfect matching of cost in . Consider the set that contains

all the edges in that do not have a dummy capsule as one of their end points. There would be such edges.

Since was a perfect matching, would be a matching in . Moreover, the cost of would be the cost of

minus the sum of the costs of the edges that we removed from to get . Therefore, the cost of is

.

This concludes the proof.

[9] gives a polynomial-time algorithm (called the blossom algorithm) for computing minimum-weight perfect

matchings. [6] provides a survey of implementations of the blossom algorithm. The reduction described above,

combined with Lemma 10, can be used to find the desired placement. If we do not find a perfect matching in the

graph , we conclude that there is no placement for the application. Otherwise, the perfect matching minus the

edges incident on the newly introduced capsules gives us the desired placement.



6 Conclusions and Future Work

6.1 Summary of Results

In this work we considered the offline and the online versions of APP, the problem of placing distributed applications

on a cluster of servers. This problem was found to be NP-hard. We used a gap preserving reduction from the Multi-

dimensional Knapsack Problem to show that a restricted version of the offline placement problem has a PTAS.

Designing a PTAS for the offline APP is part of our ongoing work. A heuristic that considered applications in

nondecreasing order of their “largest component” was found to provide an approximation ratio of , where was

the maximum number of capsules in any application. We also considered restricted versions of the offline APP in

a homogeneous cluster. We found that heuristics based on “first-fit” or “striping” could provide an approximation

ratio of or better. Finally, an LP-relaxation based approximation algorithm was proposed.

For the online placement problem, we provided algorithms based on solving a maximum matching problem

on a bipartite graph modeling the placement of a new application on a heterogeneous cluster. These algorithms

guarantee to find a placement for a new application if one exists. We also allowed the capsules of an application

to have variable preference for the nodes on the cluster and showed how a standard algorithm for the minimum

weight perfect matching problem may be used to find the “most preferred” of all possible placements for such an

application.

6.2 Directions for Future Work

There are several interesting directions along which we would like to work. Our reduction from the Multi-dimensional

Knapsack Problem in Section 4.4 worked only when we assumed that was fixed and made some assumptions about

the behavior of the input to the offline APP. We would like to determine the hardness of approximating the APP in

the absence of these assumptions. The second interesting direction is to analyze the approximation ratio of the

LP-relaxation based approximation algorithm proposed in Section 4.5 and evaluate its performance through sim-

ulations. We have focused on the applications’ requirement for a single resource. Realistic applications exercise

multiple resources (such as CPU, memory, disk, network bandwidth) on a server, and hence may want guarantees on

access to more than one resource. Our approach for online placement can be extended in a straightforward manner

to this scenario. Recall that in the online version of the problem we were satisfied with finding a placement for a

new application if one existed. We can ensure this even when applications have requirements for multiple resources.

A node is now said to be feasible for a capsule if and only if it has enough resources of each type to be able to

meet the capsule’s requirement. A maximum matching on the resulting bipartite graph would yield a placement

for a new application if one exists. For the offline placement, however, our goal was to maximize the number of



applications that we could place on the cluster. Solving the offline problem when multiple resources are involved

would be interesting future work.
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