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Abstract

Trust negotiation is a process that establishes mutual trust by the exchange of digital credentials
and/or guiding policies among entities who may have no pre-existing knowledge about each other. Moti-
vated by the desire to disclose as little sensitive information as possible in practice, this paper investigates
the problem of minimizing the “cost” of the credentials exchanged during a trust-negotiation protocol.
A credential or a policy is assigned a weighted cost, referred to as its sensitivity cost. We formalize an
optimization problem, namely the Minimum Sensitivity Cost problem, whose objective is to minimize
the total sensitivity costs of the credentials and policies disclosed by a trust-negotiation protocol. We
study the complexity of the Minimal Sensitivity Cost problem and propose algorithms to solve the prob-
lem efficiently, in both cases when policies are cost-sensitive and cost-insensitive. A simple inite tate

achine model of trust-negotiation protocols is presented to model various trust-negotiation protocols,
and used to provide a quantitative evaluation of the number of exchange rounds needed to achieve a
successful negotiation, and the probability of achieving a successful negotiation under various credential
disclosure strategies.
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1 Introduction

In an electronic environment (e.g., the Internet, electronic commerce, and digital government) in which

entities may have no pre-existing knowledge about each other, trustworthiness is of critical concern. The

concept of trust has been addressed within many disciplines. It is complex and multidimensional [5]. A gen-

eral definition of trust from [8] is that “trust is a legal arrangement in which an individual (the trustor) gives

fiduciary control of property to a person or institution (the trustee) for the benefit of beneficiaries.” Here, we

focus on trust in an electronic environment [5, 7, 10]. We will use the definition in [3] that “trust is usually

considered a belief or cognitive stance that could eventually be quantified by a subjective probability.” This

subjective probability is built upon evidence. In real life, people establish a trust relationship based on paper

credentials, e.g., an employment ID or a Social Security Number (SSN). These paper credentials act as the

foundation upon which a person builds trust with others. Trust relationships in an electronic environment

is typically established by exchanging digital credentials [16, 22, 25], the analogue of paper credentials.

Digital credentials are digitally signed assertions by the credential issuer about the credential owner [1, 20].

For instance, an X.509 certificate, which contains a digital signature of the issuer, the identity and the public

key of the owner, and an expiration date etc., is a common digital credential.

Entities can establish one-direction trust or mutual trust. Most current Internet applications establish

one-direction trust, e.g., a client provides information to a server in order for the server to trust the client; it

is implicitly or explicitly assumed that the client trusts the server. To make this concrete, consider a customer

registering at amazon.com. The customer needs to provide a mailing address, phone number, etc. When the

customer purchases a book, he/she also needs to provide credit card information. However, Amazon does

not need to authenticate itself to the customers. In one-direction trust, one of the negotiators, generally the

server, is assumed to be trusted and only the other negotiator (the client) needs to provide authentication

information. However, establishing mutual trust is often desirable in electronic environment. This is typi-

cally achieved through the process of trust negotiation [21]. For example, in the DIAMETER protocol [4], a

client seeking access to network resources in dial-up PPP, wireless AP, or Mobile IP environment, exchanges

Capabilities-Exchange-Request and Capabilities-Exchange-Answer messages with a network access server

in order to negotiate a “mutually acceptable service” based on their capabilities.

During trust negotiation, an entity may not want to disclose credentials freely, since credentials can be

sensitive. An access control policy (policy, for short) for a credential consequently specifies the prerequisite

conditions that must be satisfied in order for that credential to be disclosed. For example, a customer

may have a policy for disclosing his/her SSN that specifies that the SSN will only be disclosed when an
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authorization certificate issued by the Social Security Administration is received.

In real life, people treat their paper credentials with different levels of sensitivity. For example, an SSN

will be more sensitive than a telephone number. Given multiple credential-exchange sequences achieving a

same result, it is desirable to pick the sequence that discloses a set of less sensitive credentials. For example,

when a customer is asked to disclose either a telephone number or an SSN, the customer would likely choose

the former. Policies themselves may also be considered sensitive [2, 14, 24]. We can thus associate a cost or

weight with each credential or policy. A credential with a high cost is more sensitive. We can then define the

sensitivity cost to be the total cost of the disclosed credentials and policies in a particular exchange sequence.

In this report, we formulate and study the Minimal Sensitivity Cost problem of minimizing the total

sensitivity cost of credentials and policies disclosed during a trust-negotiation protocol’s execution. When

policies have no sensitivity cost (i.e., they can be freely disclosed), the Minimal Sensitivity Cost problem

is shown to be NP-complete. Fortunately, we find that heuristic algorithms based on Dijkstra’s algorithm

perform quite well, achieving around 95% of optimal for the cases considered. When policies themselves

have a sensitivity cost, solving the Minimal Sensitivity Cost problem becomes even more computationally

complex. Thus, we consider a greedy algorithm to solve this problem approximately. We also describe

a inite tate achine model that provides a simple framework for analyzing the number of exchange

rounds needed to achieve a successful negotiation, and the probability of achieving a successful negotiation

under various credential-disclosure strategies.

The rest of the report is organized as follows. In Section 2, we briefly overview the literature of trust

negotiation. We formulate the Minimal Sensitivity Cost (MSC) problem in Section 3. Section 4 attacks the

MSC problem when policies have no disclosure cost. Section 5 is devoted to solving the MSC problem when

policies are themselves sensitive. We discuss related optimization problems in Section 6. A FSM model is

described in Section 7. Section 8 presents related work. Finally, we conclude the paper in Section 9.

2 Background

During trust negotiation, the disclosure of a credential is guided by an access control policy that specifies

the prerequisite conditions that must be satisfied in order for credential to be disclosed. Typically, the

prerequisite conditions are a set of credentials , where is the set of all credentials.

In this paper, policies are modelled using propositional formulas. Specifically, for each credential

, we introduce a boolean variable . Every policy has the form: where
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is a normal formula consisting only of literals , the Boolean operators and , and

parentheses as needed1. is referred to as the target of , and the condition of .

Given a set of credentials , we denote as the value of given

. For example, if , then and . Policy

is satisfied by a set of credentials iff . During trust negotiation, a negotiator can

disclose credential if where is the set of credentials that the negotiator has received

from the opposing negotiator. In the rest of paper, for notational simplicity, we will replace with in

policies, following the notation used in [16, 22, 23, 25]. The in the example above is thus represented as

.

A trust-negotiation protocol is normally initiated by a negotiator (typically, a client) requesting particular

services from another negotiator (a server). Trust is established if the initially requested services are granted

and all policies for disclosed credentials are satisfied [22]. In this case, the credential-exchange sequence is

a successful negotiation. Otherwise, it is a failed negotiation.
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Figure 1: An example of exchange sequence of credentials.

Figure 1 shows a successful trust-negotiation process initiated by a client requesting service from a

server. The client’s access control policies are shown at the left, and the server’s access control policies

are shown at the right. The client begins by revealing credential , since no previously-received server

credentials are needed in order for the client to disclose . The server then discloses (which has no

precondition) and (which requires the earlier receipt of client credential ). The credential-exchange

process continues as shown in the center of the figure. Note that at each round, all policies for disclosed

credentials are satisfied.

The sequence of exchanged credentials depends on the decisions of each negotiator, referred to as a strat-

egy. A strategy is based on local credentials, local policies, requests for local credentials from the opposing

negotiator, and credentials received from the opposing negotiator. A strategy controls which credentials are
1Usually, monotonicity of policy languages [15, 25] is also assumed such that no negative operators ( ) appear in policies.
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disclosed and when, and when to terminate a negotiation [25].

Two negotiation strategies: an eager strategy and a parsimonious strategy are proposed in [19]. With

eager strategies, two negotiators take turns disclosing a credential to the other side as soon as access control

policy restrictions for that credential are satisfied. For example, the negotiation process in Figure 1 is

achieved using an eager strategy. Conversely, with a parsimonious strategy, neither negotiator will disclose

a credential until both of them know there exists a successful negotiation via an initial exchange of policies

only. As a consequence, only credentials are exchanged using eager strategies, while under parsimonious

strategies, both policies and credentials may be exchanged. Figure 2 shows the corresponding negotiation

process of Figure 1 with a parsimonious strategy.
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Figure 2: An exchange sequence of credentials for the negotiation in Figure 1 using a parsimonious strategy.

A strategy is safe if, under the strategy, all policies for credential disclosure are satisfied whenever a

credential is disclosed [14]. Consider in Figure 1. . When

either , or both and , are received, is satisfied and can be disclosed safely. When a credential

can be disclosed without the receipt of any credentials from the opposing negotiator, we use the policy

. Instead, if a negotiator does not have a credential , we have , which is

generally omitted.

When negotiators applying a particular strategy are able to find a successful credential-exchange se-

quence, whenever such a sequence exists, the strategy is a complete strategy [22].

There is a large body of work in the literature on trust negotiation [14, 19, 22, 25]. In this previous work,

however, credentials are treated without preference (i.e., all credentials are assumed to be of equal value to a

negotiator, in that a negotiator does not have a preference about whether to disclose credential or when

given a choice) in the work. In this report, we are concerned with the preference of credentials.
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3 Problem formulations

Given the problem setting in Section 2, we formulate the trust negotiation problem in this section.

Definition 1: Given a set of credentials and policies processed by a negotiating server, and

and by a client, the general trust negotiation problem initiated by a request for from the client, is

to find an exchange sequence of credentials and policies , such that

(1) ;

(2) or , for ; and

(3) and , for

all .

Condition (1) expresses the requirement that the sequence should achieve a successful negotiation, i.e.,

that the initially requested service is granted. Condition (2) indicates that, at each exchange round, both

parties exchange credentials or requests for credentials. These requests for credentials are in the form of

policies that have credentials in the conditions of the policies. Condition (3) requires that every disclosure

of a credential is safe, i.e., that the corresponding policy is satisfied when the credential is disclosed. In the

above, is called the number of exchange rounds.

Definition 1 is based on existing work [14, 16, 22], although no explicit formal definition is provided

there. Similar to Definition 1, we have the following definition incorporating the sensitivity costs of creden-

tials and policies.

Definition 2: Given a set of credentials and policies processed by a negotiating server, and

by a client, and a sensitivity cost for any credential or policy , the Minimum

Sensitivity Cost (MSC) problem initiated by a request for from the client, is to find an exchange

sequence of credentials and policies , such that

(1) ;

(2) or , for ;

(3) and , for

all ; and

(4) is minimum.

For now, we assume that only credentials are protected by policies. Note, however, the formulations can
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be extended to the case that policy disclosures themselves are protected by other policies [14].

In the remainder of this report, we assume that there is no cost to disclose the names or IDs of credentials

to the opposing negotiator. In other words, only the disclosure of the contents of credentials incurs sensitivity

costs. In most cases, possessing a credential is not sensitive, e.g., everyone is known to have an SSN although

the SSN number is sensitive to disclose. By doing this, we exclude possession-sensitive credentials discussed

in [16, 18, 23], which we leave as a direction for future work.

4 Solving the MSC problem

We will investigate the complexity of solving the MSC problem defined in Section 3 under two scenarios.

In the first scenario, policies have no sensitivity costs and can be freely disclosed. This section is devoted to

this first case. In the second scenario, which is discussed in Section 5, policies themselves are sensitive and

disclosing a policy incurs a positive cost.

4.1 Policy-graph-based Strategy

When policies have no sensitivity costs, we propose a straightforward strategy, namely the policy-graph-

based strategy, to solve the MSC problem. The strategy consists of four steps:

(1) Both negotiating parties first disclose all policies and the costs of local credentials to the other side;

(2) A policy graph based on the exchanged policies is constructed;

(3) The negotiators then apply algorithms to find, if it exists, a solution with minimum sensitivity cost;

(4) Both negotiators conduct the actual exchange sequence of credentials based on the resulting solution.

In this subsection, we briefly describe these four steps; the following subsection focuses on a complexity

analysis of this strategy.

A policy graph consists of two kinds of nodes: circle nodes corresponding to credentials and rectangle

nodes corresponding to “ ” operators in the policies. Consider a formula in policy . We

assume that all are represented in a disjunctive normal form, a disjunction (sequence of ORs) consisting

of one or more disjuncts, each of which is a conjunction (AND) of one or more credentials. If a disjunct

consists of a single credential , there is a direct edge from node to node . If a disjunct consists of several
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Figure 3: Examples of policies and corresponding policy graphs.

credentials, each credential has a directed edge to a rectangle node , which further has a directed edge to .

Figure 3 shows three policy graphs and their corresponding policies.

//Assuming conditions of all policies are represented in a disjunctive normal form
Construct-Negotiation-Graph( , )
(1) credentials in the condition of ; // is the policy for originally requested service ;
(2) ;
(3) BuildGraph( , target of , condition of );
(4) WHILE ( is not empty)
(5) Pick from ;
(6) IF (there is a policy s.t. is the target of )
(7) BuildGraph( , target of , condition of );
(8) credentials in the condition of ;
(9) ELSE
(10) BuildGraph( FALSE);
(11) ;
(12) RETURN ;

BuildGraph( , target, condition)
(13) IF (target ) Create a node for target;
(14) IF (condition==FALSE)
(15) Prune( , );
(16) return;
(17) FOR (each disjunct of condition)
(18) IF ( is a conjunct consisting of more than one literals)
(19) Create a rectangle node in ;
(20) Link to the node of target;
(21) FOR (each element of )
(22) IF ( ) Link a direct edge from to ;
(23) ELSE Create a circle node for and link a direct edge from to ;
(24) ELSE // is a single credential
(25) IF ( ) Link a direct edge from to the node of target;
(26) ELSE Create a circle node for and link a direct edge from to the node of target;
(27)

Figure 4: Pseudo-code for constructing a policy graph.

Figure 4 presents the pseudo code of the algorithm constructing a policy graph, , given the input of the

server policies ( ) and the client policies ( ). Note that each credential has at most one corresponding

circle node; however, there exists a unique rectangle node for each “ ” operator. Every credential that
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can be disclosed without cost has an incoming edge from a node that corresponds to “TRUE.” When

a credential appears multiple times in the policies, its corresponding node has multiple outgoing edges.

Consequently, there may exist cycles in a policy graph, as shown in Figure 5(b), which presents the policy

graph constructed in step (2) for the server and client policies shown in Figure 5(a).

2c 2s 3s
3c
4c
5c

1c 1s 3s s
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2c 3c 2c 4c
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Figure 5: A policy graph (b) constructed based on the policies (a).

Once both negotiators have constructed a policy graph based on the exchanged policies, they conduct

searching algorithms to find a successful solution with minimum cost in the graph. The MSC problem can

be translated into the following Minimum Directed-Acyclic-Graph problem.

Definition 3: Given a directed graph , a node is reachable from a node if there exists

a sequence such that , and for .

Definition 4: Given a directed graph , where the node set consists of circle nodes

and rectangle nodes , i.e., , a directed acyclic graph (DAG) starting from a node and ending

at a node is a subgraph such that

(1) is acyclic and ;

(2) There are no incoming edges to and no outgoing edges from in ;

(3) For all , is reachable from ; and

(4) If a rectangle node is in , then for all .

Note that condition (4) in Definition 4 ensures that, if a rectangle node, , is in a DAG, all its child nodes,

nodes that have outgoing edges to , must also be in the DAG.
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Definition 5: Given a directed graph , , a source node , a destination node

, and a cost map , the Minimal DAG problem is to find a DAG, denoted as , starting from

and ending at with minimum cost, i.e.,

(1)

To solve the MSC problem, we need to find a minimum in the constructed policy graph, where

is the node corresponding to “TRUE” and represents the initially requested service. As we shall describe

in the next subsection, the complexity of finding a minimum DAG depends on the policy graph. More

specifically, if all nodes in the graph are circle nodes, it is polynomial solvable; however, the problem is

NP-hard if the graph includes rectangle nodes.

Once a is found in a policy graph, there exists a successful negotiation. Both negotiators exchange

sequences of credentials according to this , achieving a successful outcome. The exchange can be initi-

ated by a negotiator who has freely-disclosed credentials, i.e., one of the parent nodes of node in the policy

graph. If both negotiators have such freely-disclosed credentials, either can initiate the exchange sequence.

A credential in can be disclosed by a negotiator if the negotiator has received all credentials appearing

as the predecessors of in from the opposing negotiator.

Proposition 1. The policy-graph-based strategy is safe and complete.

Proof: Condition (4) in Definition 4 guarantees that any node in a has at least one of its child

nodes, which corresponds to a disjunct in , in the . Credential can be disclosed only when credentials

corresponding to ’s child nodes in the are received, which means is satisfied. If a successful solution

exists, there exists a in the policy graph. Thus the strategy is complete.

4.1.1 Pruning the policy-graph

We observe that for a rectangle node in a policy graph to be in a , all its child nodes must be in the . If

a negotiator does not have credential , i.e., , node can not be in any . Consequently

we can prune node and all its child edges. Furthermore, if such node is a child node of a rectangle node

, can also not appear in a . Thus during the procedure of constructing a policy graph, when node

with policy is encountered (step (15) in Figure 4), a procedure Prune is called

to prune the graph, but the pruned graph still contains all valid . Figure 6 show the pseudo-code of the
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pruning procedure.

Prune( , )
(1) ;
(2) WHILE ( is not empty)
(3) Pick from ;
(4) FOR (each parent of )
(5) IF ( is a rectangle node)
(6) ;
(7)
(8) ;
(9) Delete and all outgoing edges from from ;
(10)

Figure 6: Pseudo-code for pruning the policy graph during construction.

With this pruning, the pruned policy graph of the one in Figure 5(b) is shown in Figure 7.

1s3s

1c

5c

2c

2s

3c

4c

T

: cycle

s

Figure 7: The pruned policy graph for policies shown in Figure 5(a)

4.2 Complexity Analysis

In this subsection, we analyze the complexity of the policy-graph-based strategy. In particular, we focus on

the algorithm for constructing the policy graph, and algorithms for finding the minimum in the resultant

graph.

Proposition 2. The running time of the algorithm for constructing a policy graph is polynomial in the

number and the length of policies and .

Proof: We define the length, , of a policy , as the number of credentials in the condition of the

policy. For example, policy has length of 3 since there are total 3 credentials in the
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condition of . Let be the maximum length of all policies, i.e., .

Consider steps (4) to (11) in the WHILE loop. Since set only includes credentials appearing in

policies, . During each execution of the loop, step (8) or (11) deletes one

element from , thus the loop is at most executed times.

Next consider procedure BuildGraph(). The FOR loop from step (17) to (25) has at most executions

since each execution deals with one disjunction in the condition. Assume that the policy-graph is stored in

an adjacency matrix, where is the number of nodes in the output graph. Deciding whether a node

has been in (step (13), (21) and (24)) requires complexity of . Since at least two credentials are

required to incur an operator, a policy with length of generates at most rectangle nodes. Thus the

resulting graph has at most rectangle nodes and circle nodes

(corresponding to credentials), i.e., . Consequently, the

running time of procedure BuildGraph() is at most .

As a result, the algorithm in Figure 4 will have a total running time that is at most

.

Although a policy graph can be constructed in polynomial time, finding the minimum in the graph

is more complicated.

Compute-Cost( , )
// is the cost matrix for all credentials/services
// and store the LABEL and the cost of node respectively
// is the set of nodes that are parent nodes of nodes in
(1) ; ;
(2) ; ; //for all other nodes except nodes
(3) ;
(4) For (each parent of node )
(5) Compute and ;
(6) If ( is finite) ;
(7) WHILE ( ) or ( is not empty)
(8) Pick with minimum cost;
(9) ; ;
(10) For (each parent of node )
(11) Compute and ;
(12) If ( is finite) ;
(13)
(14) If ( is finite) return and ;
(15)

Figure 8: Pseudo-code of variational Dijkstra’s algorithm for finding a minimum in a policy-graph .

Proposition 3. If a policy graph does not include rectangle nodes, the Minimum DAG problem can be

solved using a variation of Dijkstra’s algorithm, shown in Figure 8.

Proof: When Dijkstra’s algorithm in [6] is used, costs are associated with edges in the graph. When a

12



variation of Dijkstra’s algorithm shown in Figure 8 is used, costs are associated with nodes rather than edges.

But in both algorithms, costs are non-negative and the variation of Dijkstra’s algorithm shown in Figure 8

operates exactly the same as Dijkstra’s algorithm in [6]. The correctness of Dijkstra’s algorithm in [6]

guarantees that the variation of Dijkstra’s algorithm returns a DAG with a minimum cost .

When rectangle nodes exist in a policy graph, however, the MSC problem turns to be a NP-complete

problem.

Proposition 4: The general Minimum DAG problem is NP-complete.

Proof: It is easy to show that the Minimum DAG problem NP. Given a , validating condition (1)

and computing the cost of can be done in polynomial time. To show that it is NP-hard, we prove that

3-SAT is polynomially reducible to the Minimum DAG problem.

Given an instance of 3-SAT with clause set and variable set ,

we can formulate an instance of the Minimum DAG problem in Figure 9:

v1 v2

x1 x2 xnx1 x2 xn
...

l 2l 1 ...... ml

u

vn

r

u’

Figure 9: An instance of the Minimum DAG problem formulated from an instance of the 3-SAT problem

Construct circle nodes for literals, circle nodes for

variables, and circles nodes for clauses. Construct a rectangle nodes , a source node and a

destination node .

Connect directed edges as shown in Figure 9. Note that a clause circle node, , has three incoming

edges from three literal nodes appearing in the clause.

All literal nodes have cost 1. Other nodes have cost 0.

The constructed Minimum DAG problem is to find a with cost subject to condition (1).
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By solving this Minimum DAG problem in Figure 9, we can solve the given 3-SAT problem. If there is a

with cost , we answer “YES” for the given 3-SAT problem and the literal nodes in the are

assigned TRUE. Otherwise we answer “NO” for the 3-SAT problem.

Now, we want to show that there is a with cost in Figure 9 if and only if there is a truth

assignment satisfying the 3-SAT instance.

“ ”. If a with cost exists, since is a rectangle node, all clause and variable nodes must be in

the . Consequently, one and exact one node from each literal-node pair must be in the . We

then assign those literal nodes in the with TRUE. Since every clause node is in the , at least one of

the three literal nodes appearing in a clause is also in the , which means the assignment above satisfies

all clauses of the 3-CNF sentence.

“ ”. If there exists a truth assignment satisfying the 3-CNF sentence, we can put all nodes in Figure 9

in a except those literal nodes that are NOT assigned TRUE. Such a is a valid DAG starting from

and ending at since each variable node has exact one child node in the and each clause node has at

least one component literal node in the . The also has a cost equal to .

4.3 Heuristic Algorithms

Given the NP-completeness of the Minimum Sensitivity Cost problem even when policies can be disclosed

freely, in this subsection, we describe two heuristic algorithms, followed by a performance study for these

heuristics via simulation.

As we described in Section 4.2, a variation of Dijkstra’s algorithm in Figure 8 can be used to solve

the Minimum DAG problem when there are no rectangle nodes in the policy graph. So we consider that

algorithm as the first heuristic, referred to as Dijkstra’s heuristic, for the general Minimum DAG problem.

Notice that, applying Dijkstra’s heuristic, the cumulative cost of a rectangle node is the sensitivity cost of

plus the cumulative costs of all the child nodes of , i.e., if is a rectangle node, step (11) in Figure 8 is

replaced by , where is a child node of .

To evaluate the performance of Dijkstra’s heuristic, we randomly generate a set of client policies, server

policies and credential costs with the following assumptions:

The server has credentials and a service that is initially requested by the client; the client has

credentials.
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Formulas of all policies are in a disjunctive normal form; a formula for a protected credential

has disjuncts and each disjunct consists of credentials from the

opposing negotiator. When , can be disclosed freely, i.e., .

For the server, each of credentials has the same probability of appearing in a disjunct of a policy

formula of the client. Similar assumptions are made for the client credentials.

A credential has an integer cost if is not freely-disclosed.

and are all uniformly distributed in and , respectively.

100 sets of policies are randomly generated and for each set, we create 100 different cost assignments

for credentials. Among these experiments, 8600 experiments have successful solutions2. We define the

error percentage, , to denote the performance of the heuristic algorithms, where

is the cost of the solution returned by Dijkstra’s heuristic and is the optimal solution3.

Figure 10 shows the performance of Dijkstra’s heuristic with input parameters

and . Dijkstra’s heuristic performs quite well in that it finds the solution with minimum

cost in 8133 of the 8600 experiments. Figure 10(a) shows the number of experiments that had a given error

percentage. Roughly, as the error percentage increases, the corresponding number of experiments decreases.

Figure 10(b) shows the corresponding cumulative distribution of the number of experiments with a given

error percentage, from which, one can see that all solutions returned by Dijkstra’s heuristic have an error

percentage that is less than 54%. We also simulated the eager strategy for the same 8600 experiments. The

average cost achieved by the eager strategies, denoted as , is more than two times the cost returned

by Dijkstra’s heuristic, denoted as (e.g. and ). Note that in the 1400

experiments that have no successful solutions, Dijkstra’s heuristic does not disclose any credential but eager

strategies will disclose a set of credentials till the negotiation is found to be failed.

To further improve the performance of the first heuristic, consider the policy graph in Figure 11(a) with

the costs shown in the center. Dijkstra’s heuristic chooses node rather than in the resultant since

. However, must be in the s because of the rectangle node. Consequently choosing as

the predecessor of in the has less cost than choosing .

To remedy this situation, a node with outgoing edges to rectangle nodes has a remedied cost

. This remedied cost , is then used when searching for a using Dijkstra’s heuristic.
2The existence of successful solutions is determined by the polices, disregarding cost assignments. This means that roughly 86

out of 100 sets of policies were found to have successful solutions.
3The optimal solution is achieved by enumerating all possible DAGs, which requires exponentially computational complexity.
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Figure 10: Simulated performance of Dijkstra’s heuristic
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Figure 11: Two policy-graphs.

The cost of the resultant is still calculated using . However, cost remediation may result a worse

than the one without remediation. For example, consider the policy graph in Figure 11(b). Here, the

algorithm chooses in the resultant with cost remediation even though the optimal includes

instead of . Thus the second heuristic algorithm, referred to as the hybrid Dijkstra’s heuristic, is to run

the algorithm in Figure 8 twice: once with cost remediation and once without, and return the with the

smaller cost.

Simulation results in Figure 12 show that the hybrid Dijkstra’s heuristic provides some improvement

over the first heuristic algorithm. For example, it finds the solution with minimum cost in 8243 of the 8600

experiments with input parameters: and .
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Figure 12: Compared performance of two heuristic algorithms

5 The MSC problem with policy-disclosure costs

In Section 4 we considered the solution of the MSC problem when policies are free to disclose. This section

discusses the case when policies are themselves sensitive, i.e., there is a cost in policy disclosure.

As described earlier, with eager strategies, both negotiators immediately disclose a credential once that

credential’s conditions are satisfied. As a result, no policies are exchanged during the negotiation process.

On the other hand, using policy-graph-based strategies, both negotiators exchange all policies and find a

successful with minimum sensitivity cost and thus only disclose a smaller set of credentials. It is pos-

sible that the minimum cost achievable using policy-graph-based strategies (including the cost of exchange

policies) is higher than the cost under eager strategies. However, without knowledge of all policies, it is

impossible to find a successful solution with minimum cost. For this reason, we propose a greedy strategy

to approximately solve the MSC problem when policies are themselves sensitive.

The greedy strategy is based on eager strategies and consists of two steps. In the first step, both nego-

tiators exchange the names and corresponding accumulative costs of credentials using eager strategies, i.e.,

a negotiator will disclose the name of a credential if the credential is satisfied by the names of credentials

received from the opposing negotiator4. At the end of the first step, the negotiation is determined to have a

successful solution or not. If a successful solution exists, the negotiation process evolves to the second step

in which both negotiators construct the solution and exchange the contents of the credentials. These two

steps are detailed in the following.
4We assume that both negotiators have consistent names of credentials.
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5.1 Step One

In the first step, the negotiation process begins by one negotiator disclosing the names and cumulative costs

of free credentials. The cumulative cost for a freely-disclosed credential is zero. After this initial step, both

negotiators use eager strategies. More specifically, when a credential (except the initially request service

, for reasons that will be described shortly), is satisfied by the names of the credentials received from

the opposing negotiator, its name and cumulative cost are disclosed. The cumulative cost of a satisfied

credential is the sum of the cost of the credential, , and the cumulative costs of all credentials appearing

in a satisfied disjunct of . If multiple disjuncts are satisfied, the one currently with minimal cumulative

cost is chosen. The exchange process of names and cumulative costs continues till both negotiators have

no more credentials to disclose. If the initially requested service is not satisfied, it is a failed negotiation;

otherwise, it is a successful negotiation. The reason for not disclosing the name of immediately when is

satisfied is to find other possible solutions satisfying with a smaller cost.
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Figure 13: An exchange sequence using greedy strategies.

Figure 13 shows a simple two-step exchange using greedy strategies. The policies and cost are shown in

Figure 13(a). Figure 13(b) shows the information exchanged during step one of the greedy strategies. The

actual exchange of credentials conducted in step two is shown in Figure 13(c).

In Figure 13(b), the server begins the negotiation by disclosing , where the names

of the credentials, and , are followed by their cumulative costs, which are both 0. After the client

receives , it discloses in the names and cumulative costs of all credentials satisfied by , i.e.,

. Then the server discloses . Consider . The cumulative

cost of is if is satisfied, or if is satisfied. If is satisfied by both and ,

the one with a smaller cumulative cost is chosen. So when the server receives , is satisfied by either
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or , and is chosen due to its smaller cumulative cost. Also note that is satisfied by in , but the

server did not disclose the name of immediately in . Indeed, another solution was found in a

later disclosure with a smaller cost. When both negotiators have no more names of credentials to disclose

and is satisfied, the negotiation has a successful solution and the negotiation process enters the second

step.

5.2 Step Two

In the second step of the greedy strategy, both negotiators construct a successful exchange sequence and

conduct the actual exchange of credentials. To construct the sequence, the server sends the client the names

of credentials that are chosen to satisfy , which are referred to as a counter-request, denoted as , e.g.,

in the example shown in Figure 13. When a negotiator receives , the negotiator replies

with that includes the names of credentials chosen to satisfy the credentials in . The process stops

when consists of only freely-disclosed credentials (recall that is the number of exchange rounds).

consequently form a successful exchange sequence. In the example shown in Fig-

ure 13, and . The consequent exchange

of credentials is conducted according to this sequence except that all credentials are disclosed at most once,

i.e., if the name of a credential appears in and ( ), and the credential is disclosed in , the

credential will not be disclosed again in . For example, as shown in Figure 13(c), appears in both

and . is disclosed at the first round (when is disclosed) and is not disclosed again at the third

round (when is disclosed). Note that symbols for credentials in Figure 13(b) represent the names of the

credentials whereas symbols in Figure 13(c) represent the contents of the credentials.

Clearly, it is not guaranteed that the solution achieved under greedy strategies be the optimal solution.

Our simulation results in Figure 14 show that the greedy strategy finds the solution with minimum cost in

7611 of the 8600 experiments with input parameters: and . The

greedy strategy generates a higher error percentage (more than 200%) compared to the performance of the

two heuristics described in Section 4. This is because the negotiators have no knowledge about the policies.

It should be noted that, since no information of the is included in in step one, a credential may

incur multiple copies of sensitivity cost in the cumulative costs if the credential appears multiple times in a

solution. For example, incurs cost for and incurs cost again for in Figure 13. However, only one copy

of the cost is calculated in computing the cost of a solution in the simulation. The average cost achieved by

the eager strategies ( ) is around two times the average cost returned by the greedy strategy
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Figure 14: Simulated performance of greedy strategies

( ).

Policy Inference Under greedy strategies, although no policies are explicitly disclosed, partial information

about the policies can be inferred based on the behaviors of the negotiators. For instance, in the example

shown in Figure 13, the client may infer that is one disjunct of based on . This form of

policy inference can be concealed if the server adds other mask credentials into . However, as pointed

out in [23], the question of how to prevent policy inference deserves more consideration in the future work.

We conclude this section with the following proposition.

Proposition 5: The greedy strategy is safe and complete.

Proof: In step one of the greedy strategy, both negotiators exchange the names of credentials using the

eager strategy. Because of the completeness of the eager strategy [19], a successful sequence is guaranteed

to be found if it exists. Thus the greedy strategy is complete. A counter-request includes a set of

credentials that satisfy credentials in . In step two of the greedy strategy, since credentials in are

disclosed earlier than the credentials in , the strategy is safe.

6 Discussion

Thus far, we have focused on the MSC problem minimizing the total cost of credentials and policies dis-

closed by two negotiators during trust negotiation. In this section, we discuss related formulations of this

problem.
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6.1 The MSC Problem for One Negotiator

Consider an online-drug purchase during which a customer and an online store establish mutual trust fol-

lowed by a transaction. A successful transaction is most important to the store and the store may not care

about the negotiation cost. However, the customer may still prefer the solution that minimizes the customer’s

cost. In this case, the goal of the optimization problem is to minimize the cost of only one negotiator, which

can be defined as the Minimum Sensitivity Cost problem for One Negotiator (MSCON).

Definition 6: Given a set of credentials and policies processed by a negotiating server, and

by a client, and a sensitivity cost for any credential or policy , the Minimum

Sensitivity Cost problem for One Negotiator (MSCON) initiated by a request for from the client, is

to find an exchange sequence of credentials and policies , such that

(1) ;

(2) or , for ;

(3) and

, for all ; and

(4) is minimum or is minimum.

In the proof of Proposition 4, we showed the NP-completeness of the MSC problem by reducing a

general 3-SAT problem to a MSCON problem, which is a special case of the MSC problem. Thus the

MSCON problem is also NP-hard even when policies are freely-disclosed. The policy-graph-based strategy

and the greedy strategy proposed earlier can be used to approximately solve the MSCON problem when

policies are free and with cost, respectively, by having the cost of all credentials and policies of the opposing

negotiator to be 0.

6.2 The MSC Problem with Selfish Negotiators

The MSC problem minimizes the total cost of credentials and policies disclosed by both negotiators dur-

ing trust negotiation. However, an optimal solution for the MSC problem may not give the minimal cost

for a single negotiator. When negotiators are selfish, a negotiator’s goal is to minimize his/her own cost

disregarding the cost of the opposing negotiator. These considerations result in the following problem:

Definition 7: Given a set of credentials and policies processed by a negotiating server, and

by a client, and a sensitivity cost for any credential or policy , the Selfish-
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Minimum Sensitivity Cost (SMSC) problem initiated by a request for from the client, is to find an

exchange sequence of credentials and policies , such that

(1) ;

(2) or , for ;

(3) and

, for all ; and

(4) is minimum and is minimum.

Since a successful sequence minimizing one negotiator’s cost may not minimize the cost of the other

negotiator, the SMSC problem may have no solution even though there exists a successful negotiation.

Thus we revise the problem such that either negotiator safely discloses a set of credentials and policies that

minimize the remaining cost at each step.

Definition 8: The remaining cost, , of a disclosure, , of credentials and policies for a negotiator is

defined as the minimum cost of credentials and policies that the negotiator needs to disclose after disclosing

to achieve a successful outcome if there exists. If there is no successful negotiation, for any

.

Definition 9: Given a set of credentials and policies processed by a negotiating server, and

and by a client, and a sensitivity cost for any credential or policy , the

Minimum Remaining Sensitivity Cost (MRSC) problem initiated by a request for from the client, is

to find an exchange sequence of credentials and policies , such that

(1) ;

(2) or , for ;

(3) and

, for all ; and

(4) is minimum for each .

Before a negotiator discloses any credentials and policies, the remaining cost is exactly the optimal

solution of the MSCON problem. Thus finding the remaining cost of a particular disclosure even when

policies have no disclosure cost is NP-hard. Consequently, the MRSC problem is also NP-hard. We can first

apply heuristic evaluation functions to approximate the remaining cost, followed by a minimini algorithm

similar to the minimax algorithm in [13] to find a approximation solution for the MRSC problem.
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6.3 Minimal Exchange Round Problem

When negotiators are concerned with the speed of trust negotiation rather than the cost, it is desirable to

minimize the number of exchange rounds. This problem can be easily defined and the eager strategies

proposed in [19] achieve the minimum number of exchange rounds. In the following section, a inite tate

achine is proposed to analyze the performance of a particular negotiation process in terms of the number

of exchange rounds.

7 Modeling trust negotiation

In previous sections, we considered the computational complexity of solving cost optimization problems

associated with credential disclosure in trust negotiation protocols. In this section, we turn our attention

from credential disclosure costs to the time needed to successfully complete a negotiation protocol. Our

goal will be to quantify the number of rounds needed to complete a negotiation under various credential

disclosure policies.

7.1 Varied Strategies without Policy Knowledge

Let us begin by considering a trust negotiation process in which the server has a requested service and

credentials, among which, credentials are freely-disclosed. The client has credentials, of which

are freely-disclosed. We further assume that neither negotiator has knowledge of its opponent’s policies,

i.e., that policies are hidden [14] or sensitive [2].

Recall that under an eager strategy, both negotiators immediately disclose a credential once that creden-

tial’s conditions are satisfied. Eager strategies thus achieve the minimum number of exchange rounds. The

price paid for this minimum number of exchange rounds, however, is that a negotiator may disclose many

more credentials than what is minimally required to successfully complete the negotiation. In contrast, un-

der a prudent strategy, a negotiator discloses only one satisfied credential (specifically, the credential with

minimum sensitivity cost) at each round. The goal of the prudent strategy is to minimize the number of cre-

dentials disclosed. Note that a prudent strategy differs from the parsimonious strategies [19] we considered

earlier in that a prudent strategy has no knowledge of the opponent’s policies.

Prudent strategies disclose as few credentials as possible. However, in the absence of policy knowledge,

the credential disclosed by a negotiator may not satisfy any of the opponent’s credential’s policies. In
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other words, the disclosure of a single credential under a prudent strategy may not be sufficient to allow

a negotiation continue if the opposing negotiator has no satisfied credentials to disclose at the next round.

As a compromise, at each round, a negotiator may disclose as few credentials as possible, but enough to

advance the negotiation. A natural way to achieve this is to define a threshold . A negotiator will

calculate the corresponding probability, , that the opponent is able to continue the negotiation at the

next round, given that the negotiator will disclose credentials. Clearly, increases as increases. The

negotiator consequently discloses a minimum number, , of credentials such that . If a negotiator

has satisfied credentials and , the negotiator will disclose all credentials. We will refer to this

strategy as a threshold strategy with threshold Note that when , the threshold strategy is the same

as the prudent strategy; when , the threshold strategy is the same as the eager strategy.

Prudent strategies and threshold strategies can reduce the number of credentials disclosed, but have a

higher number of exchange rounds. Thus, there exists a trade-off between the number of exchange rounds

and the number of credentials disclosed. To quantitatively study this tradeoff, we describe a simple inite

tate achine to model the rounds of credential exchange in the trust negotiation process.

7.2 A Non-deterministic Finite State Model

Rather than consider a specific set of client and server credential disclosure policies, we seek here a more

general model in which the disclosure of credentials by one negotiator can lead to several different states

for the other negotiator. Roughly speaking, this non-determinism models the fact that the server’s policies

are unknown to the client, and consequently (depending on the specific disclosure policies implemented

by the server) a client’s disclosure of a set of credentials can result in any number of server credentials

becoming satisfied as a result of the client’s disclosure. Thus, a non-deterministic Finite State Model similar

to the probabilistic verification technique in [12] will be appropriate to model a trust-negotiation process in

absence of policy knowledge.

The inite tate achine is a 5-tuple where is a finite set of states; is the

initial state; is a non-deterministic state transition function; is a probability

function; and is a set of accepting states.

A state consists of 5 elements: , where is the number of exchange rounds to

reach this state; ( ) is the number of credentials disclosed by the server (client) to the client (server);

and ( ) is the number of server’s (client’s) credentials available, i.e., satisfied, but not disclosed to
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the client (server). Note that and . The initial state is . A

successful state is one in which the initially requested service is satisfied. A failed state is a state that is not

a successful state and, in which both and are zero (meaning that none of the negotiators can continue

the negotiation by disclosing new credentials.) The set of accepting states, , consists of all successful

states. States that are neither successful states nor failed states are referred to as transient states.

When the FSM is in a transient state , it may be the server’s or the client’s turn to

continue the negotiation by disclosing satisfied (but previously undisclosed) credentials. If it is the server’s

turn, the FSM may transition into state , which indicates that

the server discloses satisfied credentials and the client has

credentials that are not satisfied at the th round, but are satisfied at the th round. Similarly, if it

is the client’s turn, the FSM may transition into state , where

and .

Consider the transition: with

the disclosure of credentials by the client to the server. The number, , of the server’s credentials that are

satisfied by the client’s disclosure is determined by the server’s policies. Without knowledge of policies, the

transition is non-deterministic, depending on the value of . Let be the probability associated

with the transition . If is 1, the transition is a deterministic transition, i.e., there is only

one outgoing transition from state . If , the transition is a non-deterministic transition.

Correspondingly, has multiple outgoing transitions. There are no transitions from a state to itself, i.e.,

. Note that, for any , .

Corresponding to the three strategies described in Section 7.1, we have the following transition functions

.

With an eager strategy, at the th round, a negotiator discloses all credentials that are satisfied at

the th round. Thus all transitions are:

when it is the server’s turn, and when

it is the client’s turn, where and .

With a prudent strategy, only one credential is disclosed at each round. Consequently, we have the

following transition: when it is

the server’s turn, or when it is

the client’s turn, where and .

25



For threshold strategies, we need to determine the associated probability for the transi-

tion from to , which depends on the server’s policies and the client’s . With specific

assumptions on the set of all possible policies, we can determine as describe this the

following subsection. Once we compute , the transitions under threshold strategies are

when it is the server’s turn,

or when it is the client’s

turn, where ( ) is the number of credentials that the server (client) needs

to disclose such that, with probability , the negotiation process can continue, i.e.,

or , respectively.

7.3 State Transition Probabilities

To compute the transition probabilities , we make the following assumptions for tractability.

(1) All the server’s policies have the same disjunctive normal form. Each formula for the policy for

satisfying a server credential has disjuncts and each disjunct independently has

distinct client credentials. Similar assumptions are made for client credentials, i.e., each formula for

the policy for satisfying a client credential has disjuncts and each disjunct independently has

distinct server credentials.

(2) Each of the server credentials independently has the same probability of appearing in a disjunct

of a client formula. Similar assumptions are made for the client’s credentials.

Throughout the following analysis, we only consider the server, i.e., we assume that the transition:

corresponds to the client’s turn. The results for the client are similar.

Since all policies are in disjunctive normal form, a policy is satisfied if at least one disjunct is satisfied.

Consider a disjunct consisting of credentials chosen from a total of credentials of the client. If the

client has disclosed credentials to the server, because of assumptions (1) and (2) above, the probability

that the credentials satisfy this disjunct is,

if

otherwise
(2)
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The probability that a policy is satisfied by the credentials is thus

(3)

Consider a transition from to , i.e.,

the client has disclosed a total of credentials to the server as of the th round and will disclose

more credentials to the server at the th round. The credentials may satisfy a server credential

that is not satisfied by the credentials at the th round, with probability

is satisfied by credentials is not satisfied by credentials
is satisfied by credentials AND is not satisfied by credentials

is not satisfied by credentials
is satisfied by credentials is satisfied by credentials

is not satisfied by credentials

(4)

Since all the server’s policies have the same disjunctive normal form (assumption (1)), is also the

probability that the initially requested service is satisfied in , i.e., is an accepting state. Let be

the probability that is an accepting state. We have .

If is not an accepting state, i.e., the initially requested service is not satisfied in , let

be the probability that the credentials satisfy server credentials that do not include the initially

requested service. We have

(5)

If is not an accepting state and both and ,

is a failed state. Let be the probability that is a failed state. We have

(6)

where
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Note that the sum of all the outgoing transition probabilities from is equal to 1, i.e.,

(7)

Based on the computed in (4), we are now able to compute the transition probabilities, ,

for the three strategies described earlier in Section 7.1.

The eager strategy Under the eager strategy, state is and . Consequently, we

have

(8)

(9)

(10)

The prudent strategy Under the prudent strategy, is equal to 1. Thus, we have

(11)

(12)

(13)
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Note that under the prudent strategy, if state is and , which means that

the client has no satisfied credentials to disclose, deterministically transitions to state

, i.e., (since ). Transient state transitions

to state with probability , which means

that, at the th round, the client discloses nothing to the server and at the th round, the server

discloses one satisfied credential to the client.

The threshold strategy Given threshold in transient state , the client will disclose

a minimum of credentials to the server such that (i.e., is an accepting

state) or (i.e., the server has at least one credential satisfied with a probability greater than

), where

(14)

(15)

Recall that if and , the client will disclose all of the credentials.
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Figure 15: State exploration of the FSM using eager strategies.

Figure 15 shows the state exploration of the FSM using prudent strategies with parameters

, , , and with initial state , i.e., both the server and the client

have two freely-disclosed credentials. The negotiation begins with the client’s disclosure of credentials.

In the figure, each transition is labelled with a transition probability. Beginning from the initial state, the

FSM will eventually terminate in a failed (FAIL) state or a successful (SUCC) state. Each terminal state
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has a probability (positioned below the state) that the FSM will reach the state, equal to the product of the

transition probabilities along the path from the initial state to the terminal state. Note that the sum of the

outgoing transition probabilities of a transient state is equal to 1. The sum of the probabilities of all terminal

states is also equal to 1.
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Figure 16: State exploration of the FSM using prudent strategies.

Figure 16 and Figure 17 show the state explorations of the FSM with the same parameters using prudent

strategies and threshold strategies, respectively. Note that in Figure 16, in state , the client has

no available credentials to disclose. With probability 1, the FSM goes to state , which means

that the client informs the server that the client can not further the negotiation. Since the server still has

one available undisclosed credential, the negotiation process continues with the server’s disclosure of the

credential; the FSM goes to state .
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Figure 17: State exploration of the FSM using threshold strategies .

It is clear that the FSM explores more states under a prudent strategy than under the eager strategy
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and the threshold strategy. The FSM generates the minimal number of states under the eager strategy.

Figure 18 shows the number of states that the FSM explores under different strategies with the number of

freely-disclosed credentials ( and ), given and .

The number of the explored states decreases exponentially as and increase. Note that for a transition

, we have

since . Consider two initial states and

such that and . With , the FSM does not explore states satisfying

, which are explored by the FSM with . Thus, with more freely-disclosed

credentials in the initial state, the FSM only explores proportional of the states that the FSM explores with

less freely-disclosed credentials in the initial state.

We also observe that, using threshold strategies with , the FSM only explores around 1/10 of

the states explored using eager strategies. Note that the prudent strategies are the threshold strategies with

; the eager strategies are the threshold strategies with .
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Figure 18: Number of states explored by the FSM using different strategies

7.4 Probability of a Successful Negotiation, and a Quantitative Comparison of Credential

Disclosure Strategies

In this section, we use the transient FSM model to quantitatively investigate the probability that a negotiation

ends in success (as a function of the number of freely-disclosed credentials) and then compare the expected

number of rounds needed to reach a successful negotiation under the eager, prudent, and threshold strategies.

The probability that a negotiation is successful, i.e., the FSM terminates in an accepting state, is defined
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as

FSM accepts in state (16)

The expected number of exchange rounds when a negotiation terminates (either a successful negotiation

or a failed negotiation) is defined as

FSM terminates at the th round (17)

Note that is not conditioned on whether or not the negotiation is successful. We thus further define

the expected number of exchange rounds given that the negotiation is successful, i.e.,

FSM accepts at the th round FSM accepts

FSM accepts at the th round
(18)
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Figure 19: with the number of freely-disclosed credentials.

Figure 19 shows the probability, , that a negotiation is successful as a function of the number

of freely-disclosed credentials and , given and .

For a particular configuration , is determined once and are given,

independent of the policy-disclosure strategy. Observe that when and , is 0. We
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also observe that, given that , increases rapidly with when .

Ideally, indicates the probability that an initial state can lead to an accepted sate whereas

represents how quickly the FSM reaches an accepted state from an initial state.
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(b) Prudent strategies
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(c) Threshold strategies
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Figure 20: Comparison of numerical results of three strategies

Figure 20(a), 20(b) and 20(c) show the expected number of successful exchanging rounds, ,

with and using eager, prudent and threshold ( ) strategies respectively, given parameters:

and . Figure 20(d) shows that from a particular initial

state, the eager strategy has a smaller expected number of steps to reach a successful state than

the threshold strategy, which in turn requires a smaller than a prudent strategy. Observe that,
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with a small threshold , threshold strategies require only half of compared to prudent

strategies.

8 Related work

There is a growing body of work on trust negotiation, as summarized in [21]. This work can be broadly

classified into two groups, depending on whether the policies are considered sensitive or insensitive to

disclosure. In [9, 11, 19, 22], policies are assumed to be insensitive and thus freely-disclosable. Work

in [2, 14] considers protecting sensitive policies. Yu et al. [24] proposed a unified scheme to model both

situations. This paper consequently addresses the MSC problem separately in the case that policies are

freely-disclosed and in the case that policies themselves are sensitive.

Two negotiation strategies, namely the eager strategy and the parsimonious strategy, were proposed

in [19]. Greedy strategies proposed in this paper are based on the eager strategy, but as we have seen, take

sensitivity costs into account at each exchange round.

Our policy graph is similar to the AND/OR tree used by a brute-force backtracking strategy in [22].

As Yu et al. have noted, an AND/OR tree may have exponential size. Consequently, an efficient and

complete strategy, referred to as PRUNES, is proposed in [22]. However, there are difference between a

policy graph and an AND/OR tree. First, a policy graph is directed and may have cycles. Second, by

making each credential appear at most once in the graph, and with a fine-grained improvement using the

pruning technique, a policy graph is guaranteed to be of polynomial size. Last, an AND/OR tree is virtual

to negotiators, i.e., the search of the AND/OR tree is actually conducted in a distributed manner by the

negotiators at two sites and each negotiator only has partial information about the tree. Conversely, when

policies are freely-disclosed, both negotiators will construct the same policy graph. We also note that the

PRUNES strategy [22] finds only a single solution without regard to cost, whereas we show that finding a

solution with minimum sensitivity cost is an NP-complete problem. Indeed, the fact that credentials have

been treated without preference in previous work motivated our work in this paper. We assign a non-negative

sensitivity cost to a credential and policy to reflect the need that, in practice, people want to disclose as little

sensitive information as possible.

When policies are sensitive, partial information about policies can be inferred based on negotiators’

behaviors. This form of information leakage is studied in [16, 17, 18, 23] and deserves further consideration

in the future.
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9 Conclusion and future work

In this report we have formulated and studied the Minimum Sensitivity Cost (MSC) problem in trust-

negotiation protocols, where a non-negative sensitivity cost is assigned to the disclosure of each credential

or policy. Even when policies can be freely-disclosed, the MSC problem is shown to be NP-complete. For-

tunately, a variation of Dijkstra’s algorithm can be used to solve the problem efficiently, achieving 95% of

optimal in simulation for the cases studied. We proposed a safe and complete strategy known as the greedy

strategy, to solve the MSC problem approximately when policies themselves are sensitive. Our simulation

results showed that the greedy strategy achieves 88.6% of optimal for the cases studied. Finally, a simple

FSM model of trust-negotiation protocols was developed and used to provide a quantitative evaluation of

the number of exchange rounds needed to achieve a successful negotiation, and the probability of achieving

a successful negotiation under various credential disclosure strategies.

This work can be extended in a number of different directions. We have assumed that credential names

can be freely disclosed in the greedy strategy. However, possession-sensitive credentials may exist in prac-

tice [16, 18, 23]. Disclosure of possession-sensitive credential names thus has a cost. Modeling and under-

standing to consequences of this cost is an interesting avenue for future research. Our FSM model presently

does not include the sensitivity cost in the state descriptions, and thus can not be used to compare the sensi-

tivity cost of different trust-negotiation protocols. This, together with a relaxation of the assumptions made

to compute the FSM transition probabilities are also potential areas for future research. Also of interest is to

prevent policy inference that can be made based on the behaviors of the negotiators during trust negotiation.
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