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Abstract

This paper presents a method for appearance-based object detection that works well in the presence of signif-
icant clutter and scale changes. It uses differential point features extracted using an outlier detection technique
borrowed from data mining. The approach is based on the observation that the features at finer scales tend
to merge together at the coarser ones, which can be expressed as topological parent-child relationships between
features. We can thus view the set of features in an image as a directed acyclic graph consisting of a number
of trees. The trees are used as groups of features, or constellations, resulting in a rough segmentation of an
image. The constellations in the reference and target images are matched by a three phase procedure. In the first
phase the primitive features are matched based solely on their individual similarity. The second phase discards
spurious matches using the topological relationships among features. We verify the topological consistency of the
matches by reducing the tree matching problem to the problem of finding a maximum clique in the corresponding
association graph. The third phase further refines the matches using the geometric arrangement of the primitive

features.

1 Introduction

In this paper we address the problem of object detection in greyscale images of cluttered scenes. We present a novel
approach, based on matching differential point features across images, which works well in the presence of significant
clutter and scale changes. This paper’s focus is appearance-based object detection. We assume that no explicit model
of the object of interest, such as a CAD model, exists. Instead we are given an image of an object (the reference)
and are asked to locate it in an image of a cluttered scene (the target), assuming that the object is indeed present

in the scene.



The crux of this work is the observation that multi-scale differential features in an image have topological rela-
tionships that can be described by a directed acyclic graph. These relationships are invariant to translation, scaling,
and in-plane rotation. They should also be largely preserved under small out-of-plane rotations (up to 20 degrees).
We use these relationships as a constraint for feature matching.

Actually, the graph formed by the features in an image is usually not a single tree, but a forest. We can refer to a
set of features in the same tree as a constellation. This allows us to match each constellation in the reference image to
each constellation in the target, to find the corresponding ones, instead of considering all features at once. Grouping
features into constellations is essentially a segmentation procedure, even though a constellation may encompass
several nearby objects or occupy a part of a single object.

The problem of matching constellations reduces to finding the isomorphism between the corresponding trees.
The constellations in the reference and target images are matched by a three phase procedure. In the first phase
the primitive features are matched based solely on their individual similarity. The second phase discards spurious
matches using the topological relationships among features. We verify the topological consistency of the matches by
reducing the tree matching problem to the problem of finding a maximum clique in the corresponding association
graph. The third phase further refines the matches using the geometric arrangement of the primitive features. This
is done using a voting scheme based on the Generalized Hough Transform [1]. An example of a constellation matched
between a pair of images is shown in Figure 1.

Even though we use a heuristic approach to solve the maximum clique problem, it is still quite expensive. To speed
up our system we can first compare the constellations using a cheaper method, namely the Hausdorff distance, which
does not require explicit correspondences between the primitive features. We can then only keep top n candidate
constellation correspondences for further verification by the topological and geometric constraints.

We have tested our approach using two different feature representations. The first one is a vector of responses of
the first and second derivatives, and the second one is a vector of the first and second order differential invariants.
Both are taken at three consecutive scales. The second representation is invariant to the in-plane rotation, while
the first one is not. We used both to show that our approach is general enough to work with different feature

representations.



Figure 1: Matching Trees.




2 Appearance-based Object Detection

2.1 Global Similarity Metrics

Appearance based object recognition methods often use global similarity metrics. The simplest one, is the correlation
between the reference and the target image, which is not very robust with respect to just about any change in the
object’s appearance. Examples of more sophisticated global metrics are eigenspaces [27], [17], support vector machines
[18], and histograms of differential image features [25]. These methods typically expect the image being recognized to
contain a single object with little or no background, and thus are not well suited for the problem of object detection.
They can often be adopted for detection by sliding a window of varying size along the target image and running the
recognition procedure for each location and size of the window. This, however, results in a very large search space,

and may not be practical for large images or a large object database.

2.2 Local Features

Another class of object recognition and detection methods use local image features [23], [14], [15], [24], [20], [16].
This requires a pre-processing step, in which salient features with well-defined image locations are extracted, followed
by a feature matching procedure. In [14], [15], and [20] feature correspondences are established using the generalized
Hough transform [1], i. e. using their geometric arrangement in the image. In [24] and [16] sophisticated probabilistic
matching procedures are used.

The advantage of such approaches is that matching point features for recognition also results in finding the
location of the object, i. e. detection. Mainly for this reason we use local features in this work, as opposed to global
techniques. Another important advantage of using point features, is the possibility of using an indexing scheme for
efficient retrieval of the nearest neighbors of a query feature [5]. This greatly speeds up the matching process and
allows the system to scale up to handle a large object database. We are currently evaluating indexing methods for
high-dimensional spaces, e. g. [10], for applicability to our domain. Additionally, point features allow for a possibility
of inferring a CAD-like geometric model of an object, in addition to an appearance-based one. Such a model can be
useful for 3d reconstruction, pose recovery, and vision-assisted robotics.

It is pointed out in [20] that even an imperfect grouping of features that are likely to belong to the same object can
greatly reduce the computation requirements for matching. In this paper we propose to group multi-scale differential

image feature using the topological relationships among them to help avoid spurious matches.



3 Feature extraction

3.1 Multi-scale Differential Features

In this work we use Gaussian scale-space representation of images [12]. The isotropic zero-mean Gaussian function

with variance 0% of a two-dimensional parameter space at a point x = [z,y]” is defined as

G(x,0) L e 22, (1)
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The Gaussian and its derivatives form a family of basis filters for the scale space. Convolving an image with Gaussians
of successively larger o generates a set of scale planes with decreasing amount of detail. In each scale plane structures
of a particular size, roughly corresponding to o become prominent.

The derivatives of the image are an effective description of the local behavior of a patch of the intensity surface.
Image features are often represented using the image derivatives or some combinations thereof. In this paper we use
two different feature representations based on image derivatives, which we shall refer to as raw derivatives and invari-
ants respectively. The first one defines a primitive feature at a pixel z,y and scale o; as a vector of Gaussian derivative
responses at 3 consecutive scales: 0;41,0;,0;—1. We use the first and second derivatives (I, Iy, Iz, Iyy, Isy), result-

ing in a 15-element vector [13], [23]. The second representation uses the first and second order differential invariants,

similar to [28] and [29]:

Gradient Magnitude : /IZ +I2 (2)

Laplacian : Iz + I, (3)
L2 + Iy I2 — 21,1, I,
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(IZ +13)
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which are also computed at 3 consectuve scales. In both represenations the feature vectors are normalized by their
magnitudes, which makes them invariant to linear lighting changes. After normalization we use Euclidean distance
to compare the features.

The second representation is invariant to in-plane rotation, while the first one is not. However, the raw derivatives

carry the local orientation information, which increases the robustness of recognition in tasks when we do not a priori



expect to have significant in-plane rotation, such as face recognition. Also, we use both representation to show the

generality of our approach.

3.2 Salient Image Points

Both the raw derivatives and the invariants are defined at every image pixel at every scale. However, it is clearly
infeasable to use all features at every possible location. Because of that, it is necessary to select a small subset of
features that nevertheless preserve enough of the image’s appearance for matching. Typically such a subset consists
of features computed at interest points in the image, also referred to as salient points.

Most often salient image points are defined as the local extrema of some function of the image. One example
is using corners, or points of high curvature [30]. Also, local maxima of “blobs” (the trace of the Hessian) and
the gradient magnitude can be used [23]. Since such functions are combinations of image derivatives they can be
computed very fast. Another commonly used saliency definintion is the difference of Gaussians [14], which can also
be computed very cheaply.

Harris combined edge and corner detector [6] is a more sophisticated method of interest point detection often

used for matching. The salient points in this case are defined as the local maxima of the Harris function:

2 Ll
R = det(A) — atrace?(A), with A = G(0) x , (6)
LI, I

where « is a scalar and G(o) is a Gaussian kernel with the standard deviation of 0. Another interesting example
of a saliency definition is presented in [26], where a multiscale decomposition of an image is computed using a 1D

wavelet at various orientations, and the local maxima of the sum of the wavelet responses are used as salient features.

3.3 Dynamic Saliency

In this work we find the salient points using the method described in [13]. We treat the problem of finding salient
features as being equivalent to finding outliers in a high-dimensional data set, and use a method known in the data-
mining literature as the Local Outlier Factor [3]. Rather than being some pre-selected function of the image, our
definition of saliency also depends on the feature representation and the feature distance metric. For example, points
that are salient if we use raw derivatives as our feature representation may not be salient in the case of the invariants.

Since our definition of saliency adapts itself to a particular feature representation, we call it dynamic saliency.



Local outlier factor uses the average of the ratios of the local density of the set at a data point p to the densities
at its neighbors to assign a degree of being an outlier to p. It is pointed out in [13] that the blurring of the
derivatives causes the space of all features in the image to be smooth, which is especially evident at coarser scales.
The smoothness property of the feature space allows us to treat a feature’s neighbors in the image as its neighbors
in the feature space, which makes finding salient points a linear-time algorithm in the size of the scale volume. This
definition of saliency is closely related to the one described in [28], which also uses the density of the feature space. It
also follows the reasoning similar to that of [9], which defines saliency in terms of the local complexity of the image.

However, in [9], the features are defined as image patches of varying size, rather than points.

4 Topology of Multi-scale Feature Sets

We can see intuitively that multi-scale features form a hierarchy. As detail is removed at coarser scales, features
that existed at the finer scales either disappear or merge together. This notion has been formalized for the case of
blobs by Lindeberg in [11]. He describes a representation called the scale-space blob tree which is used to analyze
the spacial extent of blobs, as well as their extent across scales. The representation is applied to edge detection,
histogram analysis, and junction classification. Lindeberg also mentions that this representation has a potential to
be used for feature grouping and object detection and matching. It is precisely this idea that forms the basis of our
paper.

This idea is further developed by Bretzner and Lindeberg in [2], where a hierarchical multi-scale model is used for
object tracking. The model consists of blobs and ridges and is created by hand. If a feature is lost during tracking
then its topological relationships to other features are used to generate a hypothesis of its location.

One example of utilizing the topology of multi-scale features for object recognition is presented by Shokoufandeh
et al. in [26]. In this case a wavelet pyramid of an image is computed using 1D oriented quadrature bandpass filters
at 16 different orientations. The filter responses are summed over the orientations, and the resulting values are used
as a measure of saliency. The peaks of this saliency map are considered to be salient features, each one assumed to
be a circle centered at a peak with the radius defined by its scale.

The hierarchical relationships between features are defined as follows: a feature f is a parent of a feature f' if
and only if the scale of f is coarser than that of f’, and the center of f’ lies within the circle defined by f. Under

this definition the appearance of an object is represented as a directed acyclic graph called the Saliency Map Graph



(SMG), with features being the vertices, and the parent-child relationships being the edges. The topology of SMG
is clearly invariant to translation and in-plane rotation and is assumed to be largely preserved under small view
changes. We use essentially the same structure in our approach as well. However, we define our primitive features
differently, and we use a different matching procedure.

The authors assume that the object has roughly the same size in the reference and the target images, which means
the scale plane o in the reference correspond to the scale plane ¢ in the target. The features in the corresponding
planes are matched using the maximum weight bipartite matching, while taking into account their topological
relationships in the SMG.

The main disadvantage of this approach is that it hinges on the correspondence between scale planes, and thus
cannot handle scale changes. Also it has been demonstrated to work on images with little or no clutter, and it is not
clear whether it will work for object detection in cluttered scenes. In our approach we do not assume the tree level

correspondence, and, therefore, we are forced to use a more sophisticated tree matching method described below.

5 Feature Grouping

We now need to establish a correspondence between R and T'. In [13] this is done using a feature similarity measure
and a self-consistency constraint. Feature r € R is matched to feature ¢ € T if r and ¢ are mutually maximally
similar. This procedure works well when the object in the target image is on a reasonably uniform background. In
the presence of clutter, however, the chances of similar salient features existing at multiple locations in the image
are high. Because of that a significant number of the correspondences obtained this way is likely to be wrong.

A reasonable strategy to deal with this problem is to group the features in an image in some meaningful way into
smaller sets, often referred to as compound features or feature constellations. We can then assume that if two features
in the reference are in the same constellation, then the same must be true about their counterparts in the target.
This way we can look for correspondences between constellations, which would help us avoid some of the spurious
matches between primitive features. In fact, Piater reports in [23] that using compound features has significantly
increased matching accuracy.

As we mentioned in section 4, our method is based on the idea that the multi-scale features form a directed
acyclic graph. We now build a structure identical to the Saliency Map Graph [26], but using a different type of

salient features. We treat a feature at scale o as a circle of radius o. Let f be a feature at scale o;. Let ;41 be the



scale of the next coarser level. Feature f’ at scale o;11 is the parent of f if and only if the center of f is within the
circle defined by f’, and the center of f’ is the closest to the center of f. We then identify connected components of
this graph, which, of course, are trees. We use these trees as compound features, or feature constellations.

We also introduce the notion of the saliency of a constellation, defined as the mean of the saliency values of
its constituent primitive features. We can then reduce the computational requirements of our system by discarding

constellations whose saliency is lower than some threshold.

6 Feature Matching

6.1 Matching Constellations

Let Rq,..., R, be the constellations from R. Let T, ...,T;, be the constellations from 7. We match R; to T} if T}
is the most similar to R;. In this case the self-consistency constraint is not applicable, since the correspondence
between constellation is not necessarily 1-to-1. It may be the case, especially due to scale change, that several trees
in the reference correspond to a single tree in the target, or vice versa. We will define similarity(R;, T;), the measure
of similarity between two constellations, later in this section. After the constellation are matched, we utilize the

geometric relationships between their constituent primitive features in a voting scheme to discard spurious matches.

6.2 Candidate Feature Correspondences

To compare two constellations we first establish a set of candidate correspondences between features in R; and Tj.
For every feature r € R; we find a feature ¢ € T; that minimizes ||r — t||. Again we do not use the self-consistency
constraint described in [13] because the topological constarint applied later (Section 6.3) to discard spurious matches
seems to be more effective. This set of candidate correspondences can also be a starting point for an alternative

method for matching constellation using the Hausdorff distance described in Section 6.5.

6.3 Topological Constraint

In our approach we have a somewhat original way to deal with the time complexity of tree matching. We simply
avoid doing it. Instead, we take the set of matches computed in the previous step and attempt to find its largest
subset that is consistent with respect the topological relationships among features. In essence, we only need to verify

the topological constraints, which can be done in polynomial time. This is done by using a thresholded association
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Figure 2: Path string.

graph, based on the association graph from [22] (Section 6.3.1).

6.3.1 Tree Matching

The hierarchical structure of multi-scale features can be described by a graph, which is a forest, a set of connected
components, that are trees. Thus the problems of object recognition and detection reduce to the problem of tree
matching. To simplify the problem of tree matching various heuristics and constraints are often used. For example,
as we mentioned earlier, the approach described in [26], which essentially performs tree matching, assumes the
correspondence of tree levels, reducing the complexity to polynomial. A more general approach to tree matching is
presented in [22]. It reduces the problem of tree matching to an equivalent problem of finding the maximum clique
in an association graph, described below.

The approach performs the reduction by defining an association graph [22], whose set of vertices is a Cartesian
product of the sets of nodes of the two trees being matched. Two vertices in the graph are connected by an edge
if their constituent nodes from the first tree have the same relative topology as those from the second tree. The
relative topology is defined by the path from one node to the other in the tree.

Formally, [22] defines a notion of a path string:

Let u and v be two distinct nodes of a rooted tree T, and let v = zgz;...z,, = v be the (unique) path joining
them. The path string of u and v, denoted by str(u,v), is the string s;s2...s, on the alphabet {-1,4+1} where for all
i=1..n,s; = level(z1) — level (z;—1)-

In a rooted tree there is a unique path connecting any two nodes. The path string encodes this path as a sequence
of elementary operations required to reach node v from u. Intuitively it corresponds to the degree of relationship
between two relatives in a "family” tree [22]. For example in Figure 2 in tree T1 sir(u,v) = “-1,-1,1”, which is the

same as str(w, z) in T2, while str(w,z) = “1,-1,1,1".
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The path string is used to define the association graph:

The association graph of two rooted trees T7 = (Vi1, E1) and Ty = (Va, E2) is the graph G = (V, E) where

V:V1><V2 (7)

and, for any two nodes (u,w) and (v,z) in V, we have

(u,w) ~ (v, 2) & str(u,v) = str(w, 2). (8)

In other words, every vertex in the association graph corresponds to a pair of nodes, one from each tree. An

edge between two vertices signifies that the corresponding nodes from T; and T3 have the same relationships in their

respective trees. For example, the association graph resuling from the trees in Figure 2 would have an edge between
(u,w) and (v, z), but not between (u,w) and (v, z).

The authors then prove that a maximal (maximum) subtree isomorphism between T; and T> induces a maximal

(maximum) clique in the corresponding association graph G.

6.3.2 Kinship: relationship of nodes in a tree.

We describe the relationship between two nodes in a tree in a way which is similar to a path string, but which is much
simpler. Let v and v in a tree G. Let a be the closest common ancestor of both v and v. kinship(u,v) is then defined
as an ordered pair (z,y), where z is the distance (number of levels) between u and a, and y is the distance between
v and a. Let u,v be a pair of nodes in tree G; and u',v’ be a pair of nodes in tree Gs. Let kinship(u,v) = (z,y)
and kinship(u',v') = (z',y’). We can now compare the topological relationship between v and v to that of u’ and

v’ as follows:

kinship(u,v) — kinship(u',v') = /(z — 2')2 + (y — y')? (9)
Let u and v have the same topological relationship as v’ and v’ if
kinship(u,v) — kinship(u',v') < t, (10)

where ¢ is some threshold.

Besides being simpler than the path string, this definition provides additional flexibility. We can now compare
the kinships by computing the Euclidean distance between them. If the two kinships are identical this distance will
be equal to 0. If not, it will increase gracefully as the kinships become increasingly different. For example if u is the

parent of v and ' is a the grandparent of v’ then kinship(u,v) — kinship(u',v") = 1.
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6.3.3 Thresholded association graph.

The thresholded association graph of two directed acyclic graphs 77 = (Vi,E;) and To = (Va, E») is the graph
G = (V, E) where

V= V1 X V2 (11)

and, for any two nodes (u,w) and (v,z) in V, we have
(u,w) ~ (v, z) & kinship(u,v) — kinship(w, z) < t, (12)

where ¢ is some threshold.

If t = 0, meaning that the pairs of nodes in two trees must have identical kinships to yield an edge in the graph,
then our graph is identical to the association graph from [22]. However, we have determined experimentally that a
threshold of 0 is too restrictive and does not work well in the presence of clutter, scale change, and 3D rotation. In
our implementation we use a threshold of 1.75.

We now use a heuristic approach to find the maximum clique in this graph. We simply keep removing the vertex
with the smallest degree from the graph, until the remaining subraph is fully connected. This approach does not
guarantee that the resulting clique is the maximum, but it works well enough for our purposes.

An example of using this method of tree matching is shown in Figure 3. The large tree in the background is the
constellation from the target image, with the relevant portion enlarged on the right. The target image itself is the
first image of Figure 4, with the features of the constellation in question shown as bright circles. The small tree on
the left is the constellation from the reference (the third image in Figure 4). The matched nodes in the trees are
numbered and are represented as circles. We can see that nodes 1, 2, 6, 4 and 9 have exactly the same relationship in
the reference and the target. On the other hand node 3 is the parent of node 8 in the reference, while in the target 3
is the grandparent of 8. Also in the reference node 5 is the parent of 7, while in the target nodes 5 and 7 are siblings.
This shows that our thresholded association graph approach with a relaxed kinship constraint is robust with respect
to small perturbation of the trees being matched. The last two images of Figure 4 show an enlarged view of some of

the matched features in the target and the reference, respectively.

6.4 Similarity between Constellations

Finally we can define the similarity measure for constellations. Let R; and T} be the two constellations. Recall that

we have obtained a set of primitive feature matches from R; to T} using the topological constraint described above.
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Figure 3: Tree Matching.
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Figure 4: Corresponding trees in reference and target.
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Let f € R; and f' € T be a pair of matched primitive features. As we mentioned in section 3.1 we use the Eucledian
distance to compare two feature vectors, denoted by d(f, f'). Let a match score between f and f' be 1 —d(f, f’),
to make it a measure of similarity rather than distance. We then compute similarity(R;,T;) by summing up the
match scores for all primitive feature matches from R; to T};. This metric, referred to as the match score of the two
constellations, rewards the cases when a large number of features got matched from one constellation to the other.
In practice we take top n matches for every constellation R; € R into T and then use a geometric verification step

discussed in Section 6.6 to decide which one, if any, is indeed correct.

6.5 Comparing Constellations with Hausdorff Distance

Hausdorff distance [7] is a similarity measure between two finite sets of points A and B. It was originally defined as

h(A, B) = maxmin||a - b (13)

where ||a — b|| is some measure of distance between two given points. The advantage of using this metric is that
it lets us compare two sets of points without having to establish explicite correspondences. However, the Hausdorff
distance as it was originally defined is extremely sensitive to noise. In fact, even one noisy point may significantly

affect the resulting distance. Because of that we can define the partial Hausdorff distance [7] as follows:

k Ao
h*(A, B) = kiz 4 min||a — b], (14)
where k%% , refers to the k-th largest value, rather than the maximum. This definition effectively allows for k

points to be outliers or noise, and makes the distance much more robust for practical purposes. If £ = .5||A||, where
||A|| is the cardinality of set A, then h* is called the median Hausdorff distance.

The Hausdorff distance has been primarily used in computer vision for matching of edge-based object models [7],
[4]. It has also been applied in the context of eigen-space methods [8], and it has been reformulated in a probabilistic
framework [21].

We can also use a potentially less accurate but a much cheaper way of comparing constellations by utilizing
the Hausdorff Distance We can take our set of candidate correspondences and simply use the k-th largest distance
between a matched pair of primitive features as the distance between the two constellations, without computing

the topological constraint. Using the Hausdorff distance we can still find the top n matches for every constellation

14



R; € R into T. We would still have to compute the topological constraint for those matches, because the geometric

verification step (Section 6.6) requires reliable correspondences between primitive features.

6.6 Geometric Verification

We assume that the object of interest is rigid, so that the geometric arrangement of the features is largely preserved
from the reference to the target. Our method uses this assumption to identify and discard spurious constellation
matches. It employs a scheme similar to that of [14] and [15] based on generalized Hough transform [1]. Lowe in
[14] and [15] assumes a rigid transformation from the reference to the target. He then computes the transformation
parameters for each triple of the matched features and stores them in a hash table. After that he finds the hash bin
with the highest number of entries, and considers the corresponding parameters to be the correct ones. Finally, the
matches that do not fit the transformation are discarded.

One disadvantage of this approach is its time complexity. In [14] the 6-parameter affine transformation is used,
which means that every triple of features needs to be considered. The complexity is thus O(n3) in the number of
matched features. In [15] the problem is somwhat alleviated by using the 4-parameter similarity transformation,
which only requires looking at all pairs of features, reducing the complexity to O(n?). In our system, the matches
are already grouped into a relatively small number of larger constellations, as opposed to the triples or pairs, greatly
reducing the time complexity regardless of the transformation chosen. This builds upon the idea of using imperfect
feature grouping with Hough transform, outlined in [20].

In this work we use the similarity transformation, which, according to [15] is better suited to handle out-of-plane
rotation of the object. The transformation maps a point [z,y] to a point [u,v] in terms of scaling by a factor s,

in-plane rotation by an angle 6, and in-plane translation [¢;,¢,]:

u scosf —ssinf z te
= + : (15)

v ssinf  scos@ y Ly

Let m = scosf and n = ssinf. Substituting m and n into Equation 15 we get

= + . (16)

Since we need to slove for the parameters we can collect them into a single vector, rewriting the equation as

follows [15]:
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This describes a single feature match, but any number of additional matches can be incorporated, by adding two
more rows to the first and the last matrix for each one. It is clear, that a minimum of two matches are required to
solve for the four unknowns.

To obtain the solution we write the system as

Az = b, (18)

and solve the corresponding normal equations [15]:
x = [AT A7t ATb, (19)

which minimize the mean squared distance error between the transformed points [z,y] and their corresponding
[u,v].

We thus solve for the transformation parameters for each constellation, and then store them in the hash table.
The bin sizes are 10 pixels for ¢, and t,, 30 degrees for §, and V2 for s. Each entry is placed into two adjacent bins in
each dimension, as it is done in [14] to avoid the problem of boundary effects. Outliers can be removed by checking
for the spacial error between the transformed reference constellation and the target one. A matched constellation is
discarded if the mean error is greater than 15 pixels. Instead of choosing the bin with the greatest number of entries,
we sum up the “match scores” of the constellations in each bin, and choose the one that yields the largest sum. The
computational complexity of this procedure is O(n), where n is the number of all matched primitive features in all

matched constellations.

7 Experiments

7.1 Experiment 1

Our first experiment is based on 20 objects from the Columbia Object Image Library (COIL-20) [19]. It uses a target

image composed of the front views of all 20 objects (Figure 5). We matched 5 reference images of each object against

16



Figure 5: COIL-20 target image.

the target. In the first reference image the object has the same orientation as in the target. In each subsequent
image the object is rotated to the right at 5 degree increments spanning 20 degrees.

The first part of the experiment compared our results to those achieved by Moghaddam et al. in [16], which
describes a statistical approach to object detection. It is a fair comparison because [16] uses object from the COIL-
100 image set, which includes all the objects from COIL-20, but contains color images. Mohgaddam’s approach
uses the Harris corner detector [6] as the interest point operator and a vector of differential invariants as the feature
representation. It does not, however, appear to be able to handle scale changes. Because of that, for this part of the
experiment the objects have the same size in the reference and target images. The results are summarized in table
1. The first column lists the detection accuracy for Moghaddam’s approach. The second one shows the results of
our system using the raw derivatives, and the third one shows the accuracy using the invariants.

The second part of the experiment tested our method’s ability to handle scale changes, by reducing the target
image to 50% of its original size in both dimensions. The detection accuracy under scale change is presented in figure
6. The horizontal axis represents the out-of-plane rotation from 0 to 20 degrees, and the vertical axis represents
the accuracy as percentage. We have tested our algorithm using raw derivatives and the invariants as the feature

representation, and also using the Hausdorff matching (Section 6.5), which actually somewhat improved the accuracy.

7.2 Experiment 2

In this experiment we detect a wooden elephant on a cluttered desk (Figure 7). We used 3 reference images of the

elephant taken at roughly 10 degree intervals in azimuth, the middle one having the same orientation as in the target.
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Table 1: Experiment 1. Benchmark against Moghaddam et al. No change in scale.

Moghaddam approach | Raw Derivatives | Invariants
0 degrees 100% 100% 100%
5 degrees 96% 100% 100%
10 degrees 94% 100% 100%
15 degrees 91% 95% 100%
20 degrees 86% 95% 100%

Figure 6: Experiment 1. Accuracy under scale change.
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Figure 7: Experiment 2. Target Image.

Figure 8: Experiment 2. Detection results.

-10 degrees. 0 degrees. +10 degrees.
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Reference Target Reference Target Reference Target

In Figure 8 each reference image is shown next to a cutout from the target image displaying the matched features as

bright cirles.

7.3 Experiment 3

In this experiment we detect a mobile robot in a cluttered lab environment. (Figure 9). Again we used 3 reference
images, but taken at approximately 15 degree intervals in azimuth. In Figure 10 each reference image is shown next
to a cutout from the target image displaying the matched features as bright cirles. Notice that the robot in the

target image is partially occluded by the chair.
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Figure 9: Experiment 3. Target Image.

Figure 10: Experiment 3. Detection results.
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8 Future Work

8.1 Performance Enhancements

In the current implementation or our system we have to compare each feature from the reference image to each
feature from the target. This becomes a problem if we want to be able to detect and recognize a large number of
different objects. There is extensive literature on indexing of high-dimensional spaces, e. g. [10], which is clearly
applicable. For example [5] puts all features from images of several different object into an index structure called
k-d-b tree for efficient retrieval of a required number of nearest neighbors of a query feature. It is certainly possible
to adopt a similar scheme to our features to make the matching much more efficient.

It is also possible to speed up the entire system by dividing the computation among several processors. The
compute-intensive components of the system are embarassingly parallel. Feature extraction can easily be done in
parallel at the grain-level of scale planes. To extract the salient features from a scale plane we only require the
information from the two adjacent planes. We can therefore divide the scale volume into sets of planes overlapping
by one to be processed independently. Only the original image needs to be communicated to the processors to start
the computation, and only the resulting subsets of salient features need to be retrieved upon its completion.

Feature matching can also be easily parallelized, especially using an index structure. We can simply have several
instances or copies of the indexed feature database so that a set of queries can be prosessed simultaneously. With

these modifications the system may be able to achieve real-time performance.

8.2 Probabilistic Learning

Currently, given a reference image of an object our system can locate it in the target image, provided that it is indeed
present there. However, it cannot answer more complicated questions, such as ”Is an object present in this image?”,
or ”Which of these objects are present and which are not?”, or "How many instances of an object are present?”.

In order to be able to answer such questions we need to be able to determine the probability of an object being
present in the target image. At its present state the system can output a “match score”, which is not very informative
by itself. We have to start back at the level of the primitive features and be able to map a feature distance to the
probability of a feature match being correct. This was done in [23] using the Kolmogorov-Smirnoff distance, but a
more sophisticated scheme can be used. For example we could estimate the distribution of the feature distance given

wrong or correct matches, and then use the Bayes rule to compute the probability of the match being correct given
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the distance.

We then need to propagate this information from the primitive feature matches to the level of constellations, the
compound features. In [23] this is handled by a Bayesian network, which seems to be a very appropriate method.
A probabilistic framework could provide a more elegant way of integrating individual feature similarity with the
topological and geometric relationships among features in a constellation, as well as creating a model of an object
from multiple views, as in [23] and [15].

If we convert our system to this probabilistic framework we should also be able to have a learning procedure
that would determine which primitive features and which constellation are actually useful for matching. This could

compress the representation of the object and increase the robustness of matching.
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