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Abstract

Relational data offer a wealth of information for identifying groups of
similar items. Both attribute information and the structure of relations
can be used for clustering. If the data contain communities—groups of
items that have similar attributes and are also highly inter-connected—a
clustering technique that exploits both sources of information simulta-
neously should produce more meaningful clusters. We investigate this
hypothesis in the context of a spectral graph partitioning technique de-
veloped for image segmentation. We consider six similarity metrics: one
using attributes in isolation, one using only link structure, and four hy-
brid metrics that combine both sources of information. Through simula-
tion, we find that two of the hybrid metrics achieve superior performance
over a wide range of data characteristics. To investigate the mechanisms
underlying this achievement, we analyze the spectral decomposition al-
gorithm from a statistical perspective and show that the successful hybrid
metrics use the link and attribute information to increase the separation
between noisy clusters. We apply the algorithm, using the best hybrid
metric, to number of relational datasets and show that resulting clusters
exhibit significant community structure. Finally, as objective evaluation,
we show that the hybrid clusters can be used to significantly improve
performance in a related classification task in the genomic domain.

1 Introduction

Clustering is a descriptive task that seeks to identify natural groupings in data. Developing
techniques to automatically discover such groupings is an important part of knowledge
discovery and data mining research. The majority of data routinely captured by businesses
and organizations are relational in nature yet few clustering techniques have been developed
to take advantage of both the attribute information and the structure of relationships in
the data. Relations between instances indicate an affiliation in the same way that similar
attribute values indicate an connection. As such, clustering algorithms that incorporate
relational information should be able to produce better groupings than those that examine
attribute information in isolation.

Relational data consist of objects (representing people, places, and things) connected by
links (representing persistent relationships among objects). For example, a relational



dataset could represent information about the motion picture industry, with objects rep-
resenting studios, movies, and people (e.g., actors, directors, and producers) and links
representing relationships (e.g., actor-in and remake-of). Clustering algorithms are used
primarily to describe the data in a set of higher-level patterns (i.e. the clusters themselves).
However, clustering algorithms may also be included as a component in a larger knowl-
edge discovery system. In this case, cluster labels may be used to create new attributes for
learning predictive models. For example, clustering actors in the movie data may produce
groupings that represent abstract types such as action-hero or teenage-idol. Actor type
could then be used to improve predictions of a movie’s box office success.

Both data clustering and graph partitioning techniques can be used to cluster relational
data—relationships in the data provide graph structure and attribute values on objects pro-
vide data information. Conventional data clustering algorithms identify groups of similar
items in a dataset based on their attribute values (e.g., [2, 10]). For example, actors can
be clustered based on their age, gender and nationality. Traditional graph partitioning al-
gorithms use the structure of a graph to find highly connected components (e.g., [1]). For
example, actors may be clustered by the edges that represent starred-with relationships to
group actors that star in many movies together. Either approach, used independently, may
offer insight into the data but there are also potential benefits to examining attribute and
relations at the same time.

This work is focused on finding communities in relational data. Community clusters iden-
tify groups of items that have similar attributes and are also highly inter-connected. For
example in genomic data, a group of genes with similar attributes and many common in-
teractions may all be involved in a similar function in the cell. The underlying assumption
is that there is a latent (hidden) cluster variable for each object that influences both the
attribute values intrinsic to the object and its relationships to other objects. In particular,
objects are more likely to link to other objects in the same cluster than objects in other
clusters, and pairs of objects within a cluster are more likely to have similar attribute val-
ues than pairs spanning different clusters. An algorithm that examines both link structure
and attributes simultaneously should be more robust to noise—combining both sources of
information will improve the clustering results.

In this paper, we investigate methods of adapting a spectral graph partitioning technique to
incorporate both link structure and attribute information. In particular, we focus on recent
work by Shi and Malik on a divisive, hierarchical clustering algorithm that uses spectral
partitioning with a normalized cut objective function [21]. This technique has been suc-
cessfully applied in a number of domains, including image segmentation [21] and docu-
ment clustering [8], and has prompted further investigation into the properties of spectral
clustering. Recent findings—facilitated by a long history of work in spectral graph the-
ory (e.g., [4])—include a connection to random walks [17] and preliminary performance
bounds [14].

There has been very little work applying spectral techniques to relational domains with a
combination of link and attribute information. Existing techniques use either: (1) a com-
plete graph where attribute similarity is calculated for all n x n pairs of objects, or (2)
a nearest neighbor graph, where an attribute similarity is calculated for n x d pairs of
objects—each object is connected to a fixed number of other objects determined by spatial
locality. Our work differs in that we are specifically trying to include the relational graph
structure in the similarity metric. Specifically, we will investigate the design of similarity
metrics that can incorporate the two sources of information and explore the characteristics
that underlie successful metrics.

The remainder of this paper is organized as follows: First, we provide a statement of the
problem, and contrast relational clustering with conventional data clustering and graph par-
titioning. Next, we describe the spectral clustering algorithm, define six similarity metrics,



and outline the conditions under which algorithm performance will be exact. Then, we
analyze performance using synthetic datasets, show that two of the hybrid metrics achieve
superior performance, and explore the reasons for these performance gains. Next, we evalu-
ate performance, using the best hybrid metric, on three real-world relational datasets, show
that resulting clusters exhibit significant community structure, and demonstrate significant
performance gains when using the resulting clusters in a related classification task. Finally,
we discuss related work in probabilistic modeling and web-page clustering, and conclude.

2 Clustering Relational Data

The goal of this work is to discovering a natural typing over objects (e.g., find groups of
similar objects) in relational data. This is an unsupervised learning problem where the
correct grouping is unknown. There are two basic reasons for interest in unsupervised
learning problems. The first is that such exploratory data analysis often leads to insight
into the nature of the data. The second, is that it may lead to the discovery of features that
are useful for future classification tasks.

Conventional clustering algorithms use attribute information to group examples under the
assumption that two instances are related if they have similar attribute values. However,
relational data have more information available to disambiguate groupings. We hypoth-
esize that links confer a relationship between two instances in the same way that similar
attribute values indicate a relationship. As such, clustering algorithms that incorporate link
information should be able to produce better groupings. Co-citation analysis [22] is based
on a similar hypothesis—if many pages point to a set of pages, then the set pages are likely
to address the same topic. Likewise, if a set of pages all point to the same pages, then the
set of pages are likely to be semantically related.

Both data clustering and graph partitioning techniques can be used to cluster relational
data—relationships in the data provide graph structure and attribute values on objects and
links provide data information. Each approach used independently may offer insight into
the data but there are also potential benefits to examining attribute and relations at the same
time.

First, attributes and structure can be used to cluster for objects playing similar roles in the
data. Clusters such as these identify groups of items that are similar both in their attributes
and their relations to other types of instances. For example, leading-ladies have similar
gender and salary attributes and also star in many blockbuster movies.

Second, attributes and structure can be used to cluster for communities in the data. Com-
munity clusters identify groups of items that have similar attributes and are also highly
inter-connected. For example in citation data, a group of papers with similar terms and
many intra-group citations may indicate an emergent research topic. In genomic data, a
group of genes with similar attributes and many common interactions may all be involved
in a similar function in the cell.

This work is focused on finding communities in relational data. The underlying assumption
is that there is a latent (hidden) cluster variable for each object that influences both the
attribute values intrinsic to the object and its relationships to other objects. In particular,
objects are more likely to link to other objects within the same cluster than objects in other
clusters and objects within a cluster are more likely to have similar attribute values than
objects in different clusters.

Given noise-free data generated from the underlying process described above it should be
possible to recover the cluster structures using either data clustering or graph partitioning
alone. However, noise in either the attribute values or the link structure could reduce the
accuracy of clusterings formed from only a single source of information. In the presence of



noisy data, an algorithm that examines both structure and attributes simultaneously should
achieve superior results by combining both sources of information.

Both data clustering and graph partitioning techniques can be used to cluster relational
data—relationships provide graph structure and attribute values provide data information.
Conventional data clustering algorithms identify groups of similar instances in a dataset
based on their attribute values (e.g., [2]). Given a dataset of NV independent instances,
and a set of £ attributes, the algorithms assign the objects to a set of clusters such that
objects within clusters are similar and objects in different clusters are dissimilar. There
are many different measures of similarity, which are a function of the instances’ attribute
values—for example, Euclidean distance, cosine similarity, Dice’s coefficient, or Jaccard’s
coefficient. Traditional graph partitioning algorithms, on the other hand, use the structure
of a graph to find highly connected components (subgraphs) (e.g. [1]). Given a graph
G = (V, E) the algorithms assign the vertices V' to a set of k partitions (clusters) in such
a way that prescribed properties such as minimum cutsize or maximum connectivity are
optimized. Graph partitioning techniques were developed for use on graphs where most of
the information is contained in the structure—edge and node weights are the only attribute
information that is considered.

This paper will examine adaptations to an existing spectral graph partitioning technique to
consider both link structure and attribute information. Graph partitioning techniques are
often designed to operate on V' x V matrix of edge weights. The general goal is to partition
the graph such that weights within clusters are maximized and weights between clusters
are minimized. These techniques can be used for data clustering problems providing the
data are represented as an N x NN matrix of similarity scores (entry n;; is the similarity
of instances 7 and 7). In this situation, the data forms a complete graph—every pair of
instances has a weighted edge between them. We will follow this approach, and consider
a number similarity metrics that incorporate both link structure and attribute information
into the weight matrix.

3 Spectral Clustering

Spectral clustering originated in the 70s with graph partitioning techniques that exploited
the connection between eigenvectors and algebraic properties of a graph [9, 11]. Although,
finding an optimal partition is in general NP complete, the eigenvector corresponding to the
second smallest eigenvalue of the Laplacian matrix of the graph provides some informa-
tion that can be used to guide an approximate solution. Experimental evidence has shown
this heuristic approach to often work well in practice. Recently Shi and Malik presented
a new clustering algorithm that uses spectral partitioning to optimize a normalized cut ob-
jective function (see equation 1) [21]. This technique has been successfully applied in a
number of domains, including image segmentation [21] and document clustering [8], and
has prompted further investigation into the properties of spectral clustering techniques. We
investigate the application of this algorithm to relational domains. Specifically, we will
investigate the design of similarity metrics that can incorporate the two sources of informa-
tion and explore the characteristics that underlie successful metrics.

3.1 Algorithm

Spectral partitioning algorithms cluster weighted graphs through eigenvalue decomposition
of a weighted adjacency matrix. We base our approach on the normalized cut spectral parti-
tioning algorithm introduced by Shi and Malik for image segmentation [21]. The algorithm
is a divisive, hierarchical clustering algorithm, which takes a graph G = (V| E), a set of
k attributes A = {Al,--- A*}, where A¥ = {af : v; € V}, and a similarity function
S, where S(i, j) defines the similarity between v;,v; € V, and recursively partitions the



graph, minimizing the normalized cut objective function. We outline the algorithm below
and describe the similarity metrics in section 3.4:

e Input: G, A, S, m,c
o Algorithm:

1. Let W be an N x N matrix with W; = S(, j).

2. LetDbean N x N diagonal matrix with d; = >~y S(i, ).

3. Solve the eigensystem (D — W)x = ADx for the eigenvector x; associated
with the second smallest eigenvalue ;.

4. Sort x7.

5. Consider m evenly spaced entries in x1. For each value x1,,,:

(a) Bipartition the nodes into (A, B) suchthat ANB =0and AUB=V
and x1, < x1,, YV, € A.
(b) Calculate the normalized cut objective function J (A, B):

J(A,B) _ %t(A,B) + cut(A,B)

icA di jeij (1)

where cut(A,B) =34 jep S(i,7)

6. Partition the graph into the (A, B) that minimizes J.
7. Calculate the stability' of the current cut, if stability > c stop recursing.
8. Recursively repartition A and B if necessary.

In general, it takes O(n®) operations to solve for all eigenvalues of an arbitrary eigen-
system. However, if the weight matrix is sparse, the Lanczos algorithm can be used to
compute the solution in O(n'*) operations [20, 7], and approximate algorithms can com-
pute the solution in O(| F'|) operations [14]. Similarity metrics that produce sparse matrices
are preferable for this reason.

3.2 Algorithm Correctness

The algorithm outlined above is an approximate solution that minimizes the normalized
cut criterion; finding an optimal solution is, in general, an NP-hard problem [21]. Shi and
Malik [21] have shown that when there is a partition (A, B) of V such that:

a, 1€A )
X1 = ﬂ, icB ()

then (A, B) is the optimal partition—it minimizes the normalized cut criterion. Further-
more, the value of the cut itself is equal to ;.

This result indicates that when the eigenvector x; is piecewise linear with respect to a
partition (A, B), the algorithm will correctly identify the partition. Recent analysis has
focused on achieving a more thorough understanding of the algorithm’s performance. For
example, under what conditions will x; be piecewise linear?, and what is the impact on
algorithm performance as piecewise linearity degrades? We will examine these questions

"We use the stability calculation and threshold proposed in [21]. The eigenvector values are
binned into m evenly spaced bins; the stability value is the ratio of the size of the bin with the
minimum number of values, to the size of the bin with the maximum number of values. This measure
is intended to stop partitioning when the distribution of eigenvector values is too uniform—indicating
that the eigenvector is far from being piecewise linear. All the experiments in this paper used the
settings: m = [log2(N) + 1], and ¢ = 0.06.



as we investigate a number of similarity metrics, exploring the characteristics which lead
to superior performance.

Meila and Shi [17] connect spectral clustering to Markov random walks and provide a
characterization of the cases in which the normalized cut method will be exact. We outline
the relevant portions of their work in propositions 1-3 below (see [17] for proofs). Next,
we examine the asymptotic correctness of the algorithm, analyzing the similarity metric as
a random variable, and show that the eigenvectors will become piecewise linear as cluster
size grows. Analysis of higher-level partitioning is complicated by the recursive nature of
the algorithm so we restrict our consideration to the (simpler) case of a single bipartitioning
of the graph.

Proposition 1: If \, x are solutions of (D — W)x = A\Dx, and P = D'W, then (1)),
X are solutions of Px = \x.

Here P is the normalization of the weight matrix to a stochastic matrix. This shows
the equivalence of the spectral problem formulated for normalized cut and the eigenvec-
tors/values of the stochastic matrix P. We will analyze the correctness of the spectral
algorithm using P.

Proposition 2: P has an eigenvector that is piecewise constant w.r.t. a partition A =
(A1, Az) of V, with a non-zero eigenvalue, if and only if the sums Pis = 3,4 Pij
are constant for all i € Ay and all A;, Ay € A, and the matrix R = [Pgy]s g=12 is
non-singular, where P o = ZjeAS/ P;;,forany i € A,.

This shows that a stochastic matrix has piecewise constant eigenvectors if the underlying
Markov random walk can be viewed as a Markov chain with state space A = (A4;, As) and
transition probability matrix R. We refer to this property as block-stochastic. This shows
how spectral clustering groups nodes based on the similarity of their transition probabilities
to subsets of the graph.

Proposition 3: If P is block-stochastic, and the eigenvalues of R are larger than the
spurious eigenvalues of P, then the bipartition of V' is exact.

This shows that the spectral algorithm requires more that just piecewise constant eigenvec-
tors to produce an exact bipartition. The largest eigenvalue of R is equivalent to the largest
eigenvalue of P—the associated eigenvector corresponds to an (uninteresting) partitioning
which groups the entire graph in a single component. It is easy to see in this case that the
transition probabilities are constant (at 1.0) across all the nodes in the cluster. The 2"¢
largest eigenvalue of R identifies the eigenvector that is used in the spectral algorithm. If
this eigenvalue is larger than the other n — 2 eigenvalues of P, then by the algorithm will
recover the partition A exactly.

3.3 Asymptotic Analysis

Propositions 1 — 3 show a set of conditions under which the spectral algorithm will return
an exact partitioning. This analysis does not show, however, algorithm behavior when the
cluster transition probabilities are no longer constant. Empirical evidence indicates that
the algorithm will find good partitions even when the transition probabilities are far from
constant. Ideally, we would like to characterize the conditions necessary for optimal per-
formance and bound algorithm performance otherwise. As a first step, we investigate the
effect of intra- and inter-cluster transition probabilities on algorithm performance, analyz-
ing the asymptotic performance as the distributions converge to constants. Section 4 reports
empirical experiments that explore finite sample behavior.

In particular, we consider the impact of the similarity metric on piecewise linearity of the
eigenvectors. Using the law of large numbers, we show that in the limit, as |A4], |As| —



00, a similarity metric with distinguishable intra- and inter-cluster means, will produce a
nearly piecewise linear eigenvector. If the associated eigenvalue is larger than the spurious
eigenvalues of P, the algorithm will identify the exact partition.

Proposition 4: Let A = (Ay, As) be a partition of V. Let the function S(i, j) define the
similarity measure between v;,v; € V. If, ¥i, j, k, S(i,j) is conditionally independent of
S(i, k) given node i, and E[R11]E[Rags] # E[Ri2|E[Ra1] then, P has an eigenvector
that will converge to piecewise constant w.r.t. A as |A1|,|As| — oc.

Proof. In order to simplify the calculations below, we assume that the two clusters share
the same distribution of intra- and inter- cluster similarity values. Let p;, be the mean
intra-cluster similarity for nodes i,j € Aj ori,j € As. Similarly, let 4, be the mean
inter-cluster similarity for nodes i € A; and j € As,.

We can represent each entry in W as a random variable. Consider the entries of row .
The entries W;;, W, are not independent because the similarity values are both based on
node i. However, conditioned on the state of ¢ (e.g. attribute values of %), the entries can
be viewed as independent random variables if the state of j is independent of the state of
k. This assumption corresponds to a generative model in which the objects and links in the
graph are conditionally independent given the object cluster memberships.

We will calculate the expected intra- and inter-cluster transition probabilities in P as a ratio
of sums of random variables. Let T}, be the total intra-cluster transition probability for
node ¢, where ¢ € Ay, c1,2, and let |A| = ny. Similarly, let 77, be the total inter-cluster

transition probability, and 77, be the total transition probability. Then P’ _ is the ratio of
T}, and T7,, and P, is the ratio of T}, ; and 17,,.

Analytical derivations of the mean and variance of P? and P! , are included in the ap-
pendix, we report only the relevant details here. When S, j) is conditionally independent
of S(i, k) given the state of node i, the cluster transition probabilities are simply sums of
independent random variables:

E[T}] = nk - fout 3)
E[Téll] = (nk ) :U’ZTL) + (nk’ . ,uout)
The normalized transition probabilities in P then correspond to the ratio of two random
variables (e.g., T}, /T%;,), which can be approximated using a truncated Taylor series ex-

pansion. The expectation and variance for intra- and inter-cluster normalized transition
probabilities are as follows:

% _ % 7 ~ HPTipn T, 2 OTy,T,

B[P, =E[T},/Ty] = . 1+ [P‘sz] HT;",L;I:”] @
] — i i ~ PTout ITan1 12 _ TToutTy

EPou] = Bllou/Ton] = G - [+ [ — oot

where o xy is the covariance of X, Y.

As ny,ny — oo, it follows directly from the Law of Large Numbers [3] that the value

of Tfn / Tijn — 1fori,j € Ag, since Ty, is a sum of independent random variables with

finite mean and variance. A similar argument holds for T,,; and T,;;. Now consider the

normalized transition probabilities for P. If, in the limit, the sums T3, (and T},,, 7%,

converge to the same value for all i € Ay, then the normalized sums P! will converge to

the same value P, for all i € Ag. A similar argument holds for P? ,.



As ny,ne — 00, we can decompose the matrix P into P = P’ + ¢E, where P’ is a matrix
with constant transition probabilities P;,, and P,,;, and E is a perturbation matrix with
||E||2 = 1. Then by standard matrix perturbation theory [12]:

(P 4 eE)x;(e) = Xi(€)x;(€)

n T X
where x;(€) =X; +€> 5, i {%} +O0(€?) , 3)
and  N(e) =\ = Tl

Here x;, y;, and );, are the right and left eigenvectors, and the eigenvalues of P’. As
ni,ne — o0, ¢ — 0 and the eigenvectors of P will converge to the eigenvectors of P’.
Therefore the graph will converge to a Markov chain with state space A = (Aj, As), and

constant transition probabilities R11 = Ros = E[P! ], and Ri2 = Roy = E[P? ). If
Ri11 # Ris, then R will be non-singular, and by proposition 2, P will have a piecewise
linear eigenvector w.r.t A, O

This analysis shows that any similarity metric will produce piecewise linear eigenvectors in
the limit, provided the intra- and inter-cluster means not equal, and S(%, j) is conditionally
independent of S(i, k) given i, for all ¢, j, k. Furthermore, if the eigenvalue of interest is
greater than the spurious eigenvalues, then the algorithm will find the exact partition of V/,
in the limit. This analysis indicates that all metrics will perform equally as sample sample
goes to infinity. We expect however, that finite sample performance will vary based on the
characteristics of the metrics. In particular, we expect that performance will be influenced
by the mean and variance of the intra- and inter cluster transition probabilities. We present
a number of metrics below and investigate their finite sample performance in section 4 to
identify the situation in which a metric can be expected to perform well.

3.4 Similarity Metrics

In order to adapt conventional spectral partitioning algorithms to relational data, we need
to define a similarity metric that incorporates both link structure and attribute information.
The previous section shows that all similarity metrics will perform equivalently in the limit,
but this does not guarantee comparable finite sample performance. We define five similarity
functions below and evaluate their performance on a variety of synthetic and real datasets
in the following sections.

3.4.1 Attribute Information Only

We refer to this metric as AttrOnly. It calculates the similarity between objects ¢ and j
by examining each of k attributes on the two objects and counting the number of attribute
values they have in common.

L. 1 ifk, =k; ©
where sy (7,7) :{ 0 otherwisé

This metric is generally known as the matching coefficient. We scale the value by the total
number of attributes so the maximum similarity between two objects is 1. The similarity
measure is used to weight all pairs of nodes in V. This metric ignores the link information
in the graph. It considers the objects as if they formed a complete graph and consequently,
efficient eigensolver techniques are not applicable. This metric is included as a baseline



conventional clustering technique. We expect this approach to work well when the attribute
values are highly correlated with the cluster membership.

3.4.2 Link Information Only

We refer to this metric LinkOnly. It calculates the similarity between objects ¢ and j by
examining the edges of GG. Objects that are directly related by an edge in the graph have a
similarity of 1 and objects that are not directly related have a similarity of 0.

(7

S( ) 1 ifeijEEoreijEE
vLJ)= .

’ 0 otherwise

This metric uses the link structure alone, attribute values are not considered. This metric is
included as a second baseline, this time for a conventional graph partitioning technique that
considers an unweighted graph in isolation. We expect this approach to work well when
the graph edges are highly correlated with cluster membership. Since relational data graph
are sparse in general, efficient eigensolver techniques can be used with this metric.

3.4.3 Link Information Included as Additional Attribute

This is the first hybrid metric that incorporates both attribute and link information. We refer
to this metric as LinkAsAttr. It calculates the similarity between objects ¢ and j in the same
manner as AttrOnly—by examining each of k attributes on the two objects and counting
the number of attribute values they have in common. The difference is that the links of the
graph are incorporated into the metric as the (k + 1) attribute.

b)) = 1 o .
E+1 Zk sk(i,7) otherwise ®
o)1 ifk =k
where sy,(1, 7) = { 0 otherwise

This approach is perhaps the most obvious way to include link information in a metric
that matches attribute values in some manner. With no prior knowledge of the domain, we
have no reason to expect that the link structure contains more information than the attribute
value. However, the link structure is often central in relational domains—for example, in
a graph of hyperlinked web documents, we expect a link to confer more information about
topic clustering than a match on a single word for two pages. The next metric is designed
to capture this intuition.

3.4.4 Weighted Combination of Link and Attribute Information

We refer to the second hybrid metric as WtLinkAttr. Tt calculates the similarity between
objects ¢ and j by a weighted combination of the LinkOnly metric and the AztrOnly metric.

stk@’]) +C) ifeijEEoreijeE
>k sk(i,7) +0) otherwise

1 ifk;=k;
0 otherwise

s<m>:{ 2k
2 (%

where s (i,7) = {

©))

This metric considers the link structure and attributes as equal sources of information. A
measure close to one indicates that the nodes share an edge, or have a number of attributes



in common. This metric should capture more of the information in a sparse relational
graph—two nodes in the same cluster should have similar attribute values, but they may
not have a direct edge between them (even though they should be indirectly linked through
common neighbors).

When ¢ = 1, we refer to this metric as WtLinkAttrl. This metric combines the link and
attribute information uniformly. The sparsity of relational graphs, however, will cause the
expected intra-cluster link similarity to be less than one, even if the links are perfectly
correlated with cluster membership. In this case, if the link and attribute information are
combined uniformly, the attribute noise may drown out a strong link signal. An approach
that gives the link information proportionally more weight (e.g., ¢ > 1) may achieve better
performance.

In practice we will not know how to scale the link information to contribute an amount
equal to the attribute information, but for the synthetic experiments discussed in the next
section we know the maximum edge probability is 0.2, so we can scale the link weights
by setting ¢ = 5, which makes the maximum expected value 1. We refer to this metric
as WrLinkAttr2. Although we will not know the scaling factor in practice, we include
this metric to help illuminate the differences between WtLinkAttrl and the metric below.
Specifically, we include this metric to test the conjecture that the poor performance of
WtLinkAttr2 is due to the relatively weak link signal being combined uniformly with the
attribute signal.

3.4.5 Filter Attribute Information Through Links

We refer to the last hybrid metric as LinkAsFilter. It calculates the similarity between
objects 7 and j by looking at the edges of GG, then by examining each of £ attributes on the
two objects, and counting the number of attribute values they have in common. Objects
that are not directly related by an edge in the graph have a similarity of 0 regardless of their
attribute values.

S ) +> . sk(i,j) ife;; € Eore € E
,J)= .

0 otherwise (10)

o1 ifky =k

where (i, j) = { 0 otherwise
This metric uses the A#trOnly similarity measure to weight the existing edges of graph
G. This approach maintains the sparsity of the relational data graph so the algorithm can
use efficient eigensolver techniques. (The previous hybrid techniques do not have this
property.) At the same time, it incorporates both sources of information into the metric. A
measure close to one indicates that the nodes share an edge as well as a number of attributes
in common.

4 Synthetic Data Experiments

In order to identify the situations where we can expect each of the similarity metrics to per-
form well, we evaluate algorithm performance on synthetic data sets for which the correct
clustering is known. This facilitates analysis over a wide range of conditions.

The goal of this work is to use attribute and link information to improve clustering results.
The implicit assumption is that an approach using both sources of information will do bet-
ter than an approach using either source in isolation. To evaluate this claim, we record
performance of the AttrOnly metric (equation 6), which uses attribute information in iso-



lation, and the LinkOnly metric (equation 7), which uses link information in isolation. We
compare these results to four hybrid metrics that combine link and attribute information:
LinkAsFilter (equation 10), LinkAsAttr (equation 8), WtLinkAttrl and WtLinkAttr2 (equa-
tion 9).

From this study we show that the LinkAsFilter and WtLinkAttr2 metrics achieve high accu-
racy for a broad spectrum of datasets with varying link and attribute characteristics. Fur-
thermore, we show the mechanism by which these metrics combine the link and attribute
information to achieve superior performance.

4.1 Synthetic Data

Our synthetic data sets are comprised of undirected, unipartite, connected graphs (G =
(V, E)) where nodes corresponds to objects and edges correspond to relations among the
objects. Each graph contains 200 nodes unless otherwise indicated. A binary attribute,
C = {+, —} is used to represent cluster membership. Cluster labels are assigned randomly
to each object with P(+) = 0.5. Each object has five binary attributes, where the attribute
values are assigned randomly given the objects cluster label (e.g., P(4s = 1|C = 4) =
0.9). Cluster labels determine which edges (links) are added to the graph as well. Each
pair of objects in V' are considered independently and an edge is added randomly given the
cluster labels of the two objects (e.g., P(e;; € E|C; = C) = 0.18).

The experiments record algorithm performance while varying both attribute and link as-
sociation. To measure the effect of attribute information on performance, the experiments
varied the strength of the relationship between the attribute values and the cluster label.
Within each level of correlation, all five attributes were generated with the same probabil-
ity:
P(A=1|C =+4)={0.50,0.55,...,0.95,1.0} an
PA=11C=-)=10-P(A=1|C =+)
The symmetry in cluster attribute parameters simplifies the analytical analysis but it is not
necessary for algorithm correctness. To measure the effect of link information on per-
formance, the experiments also varied the strength of the relationship between the link
structure and the cluster label. Intra-cluster and inter-cluster links were generated with the
following range of probabilities:

P(es;|C; = C;) = {0.10,0.12, . ..,0.18,0.20}

(12)
P(61J|CZ 7é CJ) = 02 — P(61J|CZ = CJ)

Here the symmetry, and range of probabilities, was chosen to produce a graph with approx-
imately 10% of the n(n — 1)/2 possible edges. This level of linkage is comparable to the
levels of sparsity we have observed in real-world relational data sets.

4.2 Metric Performance

The first experiment measures the accuracy of the six metrics across the range of attribute
and link probabilities described above. We report the accuracy of the clusterings returned
by each similarity metric, averaged over 100 trials at the same setting. Note that the bottom,
foremost corner represents completely random link and attribute information so no metric
should do better than 0.5 at that point.

Figure 1 shows the results of this experiment where attribute and link correlations are var-
ied simultaneously. These graphs show expected results for the LinkOnly and AttrOnly
metrics. When the attribute signal is moderate to high the A#trOnly metric performs well,
but poorly otherwise, and the LinkOnly metric performs similarly with respect to the link



signal. The LinkAsAttr and WtLinkAttr]l metrics achieve performance comparable to the
AttrOnly metric. This is due to the method of incorporating link and attribute informa-
tion into the metric. Because the link signal is relatively weak (P(e;;|C; = C;) < 0.2),
random attribute information drowns out the link information if the two sources of infor-
mation are combined uniformly (e.g., WtLinkAttrI) or if the attribute information is given

proportionally more weight (e.g., LinkAsAttr).
(c)
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Figure 1: Cluster accuracy on synthetic data: (a) AttrOnly metric, (b) LinkOnly metric, (c)

W
LinkAsAttr, (d) WtLinkAttrl, and (e) WtLinkAttr2, and (f) LinkAsFilter.
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The results show that the LinkAsFilter and WtLinkAttr2 metrics achieve near-perfect accu-
racy over the widest range of conditions, with LinkAsFilter covering more of the space than
WtLinkAttr2. These two metrics are able to combine the link and attribute information suc-
cessfully and should yield good results in datasets where either the link or the attributes are
moderately correlated with the clusters (as well as cases where both are correlated). This
indicates that the link signal needs to be weighted appropriately and incorporated in equal
parts to the attribute signal, in order to improve the performance of the algorithm with the
WtLinkAttr] metric.

The LinkAsFilter and WtLinkAttr2 metrics do not always perform as well as the
LinkOnly and AttrOnly metrics. This illustrates the tradeoff for utilizing both sources of
information—the additional information increases variance and will result in decreased
performance for some situations, in exchange for better coverage of the space of possible
dataset characteristics. In particular, consider the LinkOnly results where the association
with the cluster is moderate. When the link correlation is moderate and the attribute cor-
relation is low, both hybrid metrics achieve significantly lower accuracy than would be
achieved considering only links in isolation. Similar behavior is apparent for the AttrOnly
metric, when the attribute correlation is moderate and the link correlation is low. How-
ever, notice that the effect is more pronounced in this situation. This indicates that the two
metrics rely more heavily on link information than attribute information.

4.3 Algorithm Analysis

It is clear that the LinkAsFilter and WtLinkAttr2 metrics achieve superior performance
over a wider range of data characteristics, but we would like to understand the mechanism
through which the metrics affect algorithm performance. For example, why does LinkAs-
Filter differ from WtLinkAttr2? Will LinkAsFilter always be preferable to WtLinkAttr2?
How can we extend this work to combine a third source of information (e.g., temporal
extent)?

Following our analysis in section 3.2, we hypothesize that the metrics affect algorithm per-
formance through their distributions of intra- and inter- cluster similarity transition proba-
bilities (e.g., equations 5). As the total intra- and inter- cluster transition probabilities con-
verge to constants in the limit, we know that the existence of a piecewise linear eigenvector
is guaranteed and all metrics should perform equivalently regardless of the data charac-
teristics. However, we observe a wide range of performance at relatively small samples,
both across data characteristics and across metrics. This indicates that the performance



difference may be due to a difference in the statistical power of the various metrics. In par-
ticular, asymptotic analysis shows that the algorithm can distinguish among clusters with
arbitrarily small differences in mean transition probability as long as variance goes to zero
(in the limit). In finite samples, the clusters will be distinguishable if the distributions of
their intra-/inter-cluster transition probabilities are separable—where separation depends
on the mean and standard deviation of the intra-/inter-cluster similarity measures.

Given our data generation parameters, we can calculate intra- and inter-cluster mean
similarity scores analytically. As an example, we include the mean derivations for the
LinkAsAttr metric. Let py, = P(A = 1|C = C;), p-a, = P(A = 0|C = ),
pi,; = Plei;|Ci = Cj), and p—y,; = P(ei;|C; # Cj). Then the expected similarity
value for LinkAsAttr is as follows:

.o k 1 k — 1-b b
E[S(Zaj)] = Za:O Zb:O (a) p%%j plimo;'j p?ijpﬁlij ) Ziil
where Dimi; = (DA, PA, + D-a,D-4,) (13)
p“’l’nij = (pAip“Aj +p“A1pAJ)

Means for the other similarity metrics, and variances, are calculated in the same manner.
With these parameters, we can compute means and variances for cluster transition proba-
bilities (e.g., equations 5). Recall that our data generation process produces the same distri-
bution for each cluster—each cluster has the same intra- and inter-cluster similarities—so
we can examine a single set of distributions, up,, = E[P;,] and up,,, = E[Pgy:). Fur-
thermore, we know that the transition probabilities in P are normalized to sum to one. This
means we can simply examine pp,,, instead of examining the separation between pip,,
and pp A value of pp,, = 1.0 corresponds to maximum separation between the two

out *

clusters, and a value of up,, = 0.5 corresponds to no separation.

Intra cluster mean

Figure 2: Intra-cluster means on synthetic data: (a) AttrOnly metric, (b) LinkOnly metric,
(c) LinkAsAttr, (d) WtLinkAttrl, (e) WtLinkAttr2, and (f) LinkAsFilter.

Figure 2 graphs the results of the first experiment again, but this time plots pp,,, vs. attribute
and link correlations. There are a number of important observations to draw from these
results. First, the shapes of the graphs are very similar to the accuracy graphs in figure 1.
This indicates that there is a strong relationship between mean separation and algorithm
performance. Second, the areas where we observe perfect performance (e.g., accuracy
= 1.0) do not necessarily correspond to maximum mean separation (e.g., up,, < 1.0).
This illustrates the difference between the LinkAsFilter and WtLinkAttr2 metrics. We will
discuss this in more detail below. Figure 3d graphs a box plot of up,, for each metric
individually—the edges of the boxes represent the 25" and 75" percentiles, the middle
line of the box corresponds to the median, and the extreme points correspond to minimum
and maximum values. This is a one-dimensional summary of the data in figure 2, which
again illustrates that the ptp,  is significantly higher for the LinkAsFilter metric on average.

To examine the effect of pp,, on algorithm performance, we analyze the data from all
metrics concurrently. Figure 3a graphs pp,, vs. accuracy for the experiments reported



above, including all the metrics in the same graph®. There is a clear relationship between
1p,, and algorithm performance, with a correlation of 0.849 (p < 2e — 16)—accuracy is
consistenly high for pp, > 0.7 and consistently low for up,, < 0.6. Figure 3b graphs
1p;, vs. accuracy as well, but for these experiments we increased the number of objects
in the graph to 500. This illustrates the effect of decreasing variance—in this case the
threshold of pp,, = 0.65 (the vertical line in the figure) is a good predictor of algorithm
performance. Figure 3c graphs pp,, vs. accuracy as well, but for these experiments we
decreased the number of objects in the graph to 50. This illustrates the effect of increasing
variance—although the correlation is still high (0.797), it reduces the clear behavior we see
in the the previous two figures. These plots show that algorithm performance is affected by
both the mean and variance of the transition probabilities.

Accuracy
05 06 07 08 09 1.0
Evector ordering
Accuracy
05 06 07 08 09 1.0
Precision
05 06 07 08 09 1.0

05 06 07 08 09 10

-
*
05 06 07 08 09 1.0 05 06 07 08 09 1.0 05 06 07 08 09 1.0 05 06 07 08 09 1.0
Intra cluster mean Intra cluster mean Evector ordering Evector ordering

Figure 3: Analysis of intra-cluster mean on algorithm performance: (a) 200 objects, (b)
500 objects, (c) 50 objects, and (d) distribution of mean per metric for 3a.

To understand the mechanism by which pp,, affects algorithm performance, we looked at
the relationship between pp,, and the eigenvector values in x; using three different mea-
sures. The first measure is the stability metric described in section 3.1, which measures the
piecewise linearity of the eigenvector values. This is graphed in figure 4a—the stability
values exhibit increased variance as mean separation decreases, but there is no clear differ-
ence between pp,,, < 0.7 and pp,,, > 0.7. The second measure records the maximum gap
between any two consecutive eigenvector values (in the sorted eigenvector). This is another
measure of the piecewise linearity of the eigenvector—if the objects are ordered correctly,
the gap should correspond to the separation of the two clusters in the eigenvector. This
measure is graphed in figure 4b—there appears to be a non-linear relationship between the
gap value and pp,,, but it clearly distinguishes only very high values of pp, . The last
measure is intended to measure the quality of the ordering in the (sorted) eigenvector. The
linear search for an optimal partition should not be adversely affected by degradation of
piecewise linearity unless the degradation also affects the ordering of objects’ eigenvector
values. To measure this, we looked at the sorted eigenvector and the set of m possible par-
tition values considered by the algorithm. We recorded the maximum accuracy achieved
by any of those partitions. If the maximum accuracy is low, this indicates disorder in the
eigenvector. This measure is graphed in figure 4c—it shows that decreasing jp,,, results
in a disordering of the eigenvector values. The few outliers at p,, = 1.0 correspond to a
small number of LinkAsFilter trials, where the metric disconnects the graph. This will be
discussed more below.

The relationship between f1p,, and eigenvector ordering exhibits the same behavior as the
relationship between pp,, and accuracy. For pp,, > 0.7, there is little disorder in the
eigenvector values. Figure 5a shows the relationship between eigenvector ordering and
algorithm performance. There are two effects in this graph—there is a clear relationship
between eigenvector ordering and accuracy, however, there are a significant number of tri-

’For graphing purposes, we include only a random sample of 5 observations for each metric, at
each level of attribute and link correlation.
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Figure 4: Analysis of intra-cluster mean on eigenvector values: (a) piecewise linearity of
the values, (b) maximum gap between consecutive values, and (c) proportion of objects
correctly ordered in the eigenvector.

als with very little disorder but still low accuracy. This effect is explained by figures 5b-c,
where we graph the precision of the smallest cluster chosen by the algorithm. This shows
that when the algorithm achieves low accuracy, it is often because a small, but pure, cluster
is broken off from the rest of the graph. The density plot shows that the algorithm generally
finds a small cluster of high precision, regardless of metric or data condition. Furthermore,
the precision doesn’t degrade until there is a high level of disorder in the eigenvector?. It is
unclear why the algorithm breaks off small, high-precision clusters even when the eigenvec-
tor ordering is correct. This is not a spurious effect due to the algorithm only considering
a small number of thresholds (e.g., m evenly-spaced points). It remains consistent even
when we set m = N. However, it only appears in three of the hybrid metrics: LinkAsAttr,
WtLinkAttrl, and WtLinkAttr2. Further investigation is needed to determine the interaction
between the three metrics and the normalized cut objective function in these cases.
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Figure 5: Analysis of eigenvector ordering on algorithm performance: (a) accuracy overall,
(b) precision of smallest cluster, and (c) distribution of precision for all trials.

This analysis shows that mean separation affects algorithm performance through the order-
ing of the objects’ eigenvector values, but how does variance interact with mean separation
to degrade performance? Figure 6 graphs the performance of the six metrics for samples of
size 50. Compare this to figure 1 to see that performance degradation is not uniform across
metrics. The LinkOnly and LinkAsFilter metrics are adversly affected over a wider range
of data conditions. For example, notice that WtLinkAttr2 is now superior, or at least com-
parable, to LinkAsFilter. This illustrates the primary distinction between LinkAsFilter and
WtLinkAttr2. The LinkAsFilter metric reduces the amount of information it uses in order to
increase the mean separation between the clusters. Because it is filtering the attribute infor-
mation through the existing edges of the graph, it throws away both useful and noisy data
and increases the variance of the transition probabilities. If the sample size is large enough
to withstand this increase in variance, then the metric will produce superior clusterings.

3Recall that these graphs include trials where the link and attribute structure are both uncorrelated
with cluster membership, so there are a number of points where we can’t expect the algorithm to
perform better than random.



However, when the sample size is low the filter can do more harm than good. For example,
filtering through the existing edges may disconnect a previously connected cluster. In these
situations, it may be best to use the WtLinkAttr2 metric, which suffers less from increased
variance, but performs well over a small range of data characteristics. This indicates that
expected sample size may influence our choice of metric. However, since we do not know
how to set ¢ WtLinkArtr2 in practice, and because it produces a sparse similarity matrix,
we focus on the LinkAsFilter metric in our empirical data experiments, reported in the next
section.

S

R

Figure 6: Accuracy on smaller datasets (size 50): (a) AztrOnly metric, (b) LinkOnly metric,
(¢) LinkAsFilter, (d) LinkAsAttr, () WtLinkAttrl, and (f) WtLinkAttr2.

S Empirical Experiments

The experiments reported below are intended to evaluate two assertions. The first claim is
that the LinkAsFilter clustering approach can be used to find groups of items with similar
attribute values and high inter-connectedness. We evaluate this claim by comparing the
clusters produced by the LinkAsFilter metric to randomly generated clusters of the same
size, evaluating intra-cluster attribute similarity and intra-cluster linkage.

The second claim is that the LinkAsFilter clustering approach finds meaningful clusters. It
is a difficult task to evaluate clusterings of datasets for which there is no right answer [2].
One approach is to present the resulting clusters for user examination. For this type of sub-
jective evaluation, we include example cluster members from two real-world datasets. An-
other, more objective, approach is to examine cluster utility by evaluating the cluster labels
ability to improve a related classification task. We evaluate three approaches (LinkOnly,
AttrOnly, and LinkAsFilter) on a third real-world dataset in this manner, and show the
LinkAsFilter clusters achieve a significant improvement in classification accuracy.



5.1 Datasets

We applied our clustering techniques to three real-world datasets where attributes exhibit
correlation among linked objects, and the link structure exhibits clustering. These are the
characteristics we expect to find in datasets that contain communities, and it is in these
situations that we expect our clustering algorithms will perform well.

The first data set is drawn from Cora, a database of computer science research papers ex-
tracted automatically from the web using machine learning techniques [16]. We selected
the largest connected component from the set of machine-learning papers published after
1993. The resulting graph contains 1,042 papers and 2546 citation links. The similar-
ity metric considered two topic attributes at different levels of granularity (e.g. Machine
Learning/Planning/etc., and Neural Networks/Rule Learning/etc.).

The second data set consists of a set of web pages from four computer science depart-
ments, collected by the WebKB Project [6]. The web pages have been manually classified
into the categories: course, faculty, staff, student, research project, or other. The category
“other” denotes a page that is not a home page (e.g. a curriculum vitae linked from a fac-
ulty page or homework description linked from a course page). The collection contains
approximately 4,000 web pages and 8,000 hyperlinks among those pages. We clustered the
largest connected component in these data—a graph of 1236 pages and 3673 hyperlinks.
The similarity metric considered two attributes: page category and department.

The third data set is a relational data set containing information about the yeast genome
at the gene and the protein level*. The data set contains information about 1,243 genes
and 1,734 interactions among their associated proteins. We clustered the largest connected
component, which consisted of 814 genes and 1475 interactions. The similarity metric
considered 13 boolean function attributes (each gene may have multiple functions). We
evaluated the resulting cluster labels ability to predict gene localization. We applied a rela-
tional Bayesian classifier [19] to the entire dataset, using the cluster labels as an additional
attribute, and measured change in accuracy.

5.2 Results

For the WebKB, Cora, and Gene datasets we report results using the LinkAsFilter similarity
metric, described in equation 10, in the recursive clustering algorithm described in section
3.1. All empirical experiments evaluated [m = logN + 1] possible partitions, and used a
stopping (stability) threshold of 0.06 empirically determined by Shi and Malik [21].

Clustering the sample of Cora papers produced 71 clusters varying in size from 1-202
papers. We report statistics for the 28 clusters with more than six papers. The number of
papers in each cluster is shown in figure 7(c). Table 1 includes randomly selected titles from
four clusters for subjective evaluation. Although we did not use title words in the similarity
metrics, the clusters show a surprising uniformity among the titles. This indicates that
research papers can be clustered into meaningful groups using the citation structure and
topic attributes alone.

Figure 7(a) shows the actual and expected proportion of intra-cluster citations. The ex-
pected proportions were calculated as the average proportions over ten random clusterings.
For all but the largest cluster, the proportion of intra-cluster citations is significantly higher
than the expected values. This indicates that the clustering technique is finding groups of
highly inter-connected research papers.

To evaluate intra-attribute similarity we averaged the attribute similarity across all pairs of
pages within each cluster. Again as a baseline measure we calculated the average attribute

*www.cs.wisc.edu/ dpage/kddcup2001/



Table 1: Cora cluster examples

Cluster 9: Belief revision: A critique; Plausibility measures and default reasoning; Modeling belief
in dynamic systems. Part I: foundations; Knowledge-Based Framework for Belief Change, Part II:
Revision and Update; Iterated revision and minimal revision of conditional beliefs; An event-based
abductive model of update; On the logic of iterated belief revision; A unified model of qualitative
belief change: A dynamical systems perspective; Generalized update: Belief change in dynamic
settings

Cluster 14: In defense of C4.5: Notes on learning one-level decision trees; Exploring the decision
forest: An empirical investigation of Occams razor in decision tree induction; Algorithmic stability
and sanity-check bounds for leave-one-out cross-validation; Bias and the quantification of stability;
Characterizing the generalization performance of model selection strategies; A new metric-based
approach to model selection; Preventing overfitting of Cross-Validation data; Further experimental
evidence against the utility of occams razor

Cluster 19: An empirical evaluation of bagging and boosting; On-line portfolio selection using mul-
tiplicative updates; Heterogeneous uncertainty sampling for supervised learning; Improved boosting
algorithms using confidence-rated predictions; On-line algorithms in machine learning; Training al-
gorithms for hidden Markov models using entropy based distance functions; A system for multiclass
multi-label text categorization; Coevolutionary Search Among Adversaries

Cluster 24: Refinement of Bayesian networks by combining connectionist and symbolic techniques;
DistAl: An inter-pattern distance-based constructive learning algorithm; An Anytime Approach to
Connectionist Theory Refinement: Refining the Topologies of Knowledge-Based Neural Networks;
Creating advice-taking reinforcement learners; Learning controllers for industrial robots; Generating
accurate and diverse members of a neural-network ensemble; A Neural Architecture for a High-Speed
Database Query System; Comparing methods for refining certainty-factor rule-bases;

similarity between pages in ten random clusterings. Figure 7(b) plots the intra-cluster at-
tribute similarity compared to the expected averages given random clusterings. Most clus-
ters show a higher than expected attribute similarity. The largest cluster, however, does
not exhibit significantly high linkage or attribute similarity—this set of papers may contain
the set of papers that could not be partitioned into smaller clusters (i.e., the papers with no
coherent community structure).

Clustering the sample of WebKB pages produced 55 clusters varying in size from 1-649
pages. We report statistics for the 15 clusters with more than six pages. The number of
pages in each cluster is shown in figure 8(c). Table 2 includes randomly selected URLs
from four clusters for subjective evaluation. The selected clusters are primarily populated
by pages from the University of Wisconsin. Furthermore the clusters appear to group by
function—for example, tech reports, course pages, or research group pages.

We analyzed the link structure and attribute similarity of each cluster to evaluate the results.
Figure 8(a) shows the actual and expected proportion of intra-cluster hyperlinks. For all
clusters, the proportion of intra-cluster citations is significantly higher than the expected
values. The exception is the largest cluster, which only has slightly higher than expected
linkage. Again, this may indicate that the largest cluster contains the set of pages that do not
contain coherent communities. Figure 8(b) plots the intra-cluster averages compared to the
expected averages given random clusterings. This dataset does exhibit significantly higher
than expected attribute similarity. However, the algorithm is still able to cluster pages into
groups that are highly inter-connected. This indicates that the LinkAsFilter metric may be
robust to irrelevant attribute values.

Clustering the sample of genes produced 88 clusters varying in size from 1-140 genes.
We report statistics for the 14 clusters with more than six genes. The number of genes in
each cluster is shown in figure 9(c). Figure 9(a) shows the actual and expected propor-
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Figure 7: Evaluation of hybrid clusters for Cora dataset.
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Figure 8: Evaluation of hybrid clusters for WebKB dataset.

tion of intra-cluster citations. For all clusters, the proportion of intra-cluster citations is
significantly higher than the expected values. Figure 9(b) plots the intra-cluster attribute
similarity compared to the expected averages given random clusterings. These results show
a moderate amount of attribute similarity within clusters. Again, the largest cluster appears
to contain the set of genes that could not be grouped into smaller clusters effectively.

Genes do not have interpretable identifiers, such as URLs or titles, to present for subjec-
tive evaluation. However, the structure of genomic data offers an opportunity for a more
objective evaluation of the clustering results. Clusters of inter-connected genes with sim-
ilar associated functions, may indicate a group of genes that are interacting to perform a
particular function in the cell. If this is the case, the cluster labels should be helpful to
predict gene localization in the cell. To test this hypothesis, we used the cluster labels in
a relational classification task. The learning task was to predict a genes localization in the
cell. There are 15 values for localization, including nucleus and cell wall.

The first set of experiments, reported in figure 10, compare the performance of the
LinkOnly, AttrOnly, LinkAsFilter metrics. We report average 10-fold cross-validation accu-
racies for RBC models learned using the cluster labels from each each metric. This shows
that the cluster labels alone are not very good predictors of gene localization, although
AttrOnly and LinkAsFilter perform slightly better than LinkOnly.

The second set of experiments compare the three metrics when the other attributes in the
data are incorporated into the models. The baseline RBC model used twelve attributes for
prediction, including gene phenotype, motif, and interaction type, and achieved an average



Table 2: WebKB cluster examples

Cluster 5: http://www.cs.wisc.edu/Dienst/U1/2.0/Describe/ncstrl.uwmadison/CS-
TR-89-890; http://www.cs.wisc.edu/Dienst/U1/2.0/Describe/ncstrl.uwmadison/CS-TR-
90-947; http://www.cs.wisc.edu/Dienst/U1/2.0/Describe/ncstrl.uwmadison/CS-TR-95-
1283; http://www.cs.wisc.edu/Dienst/U1/2.0/Describe/ncstrl.uwmadison/CS-TR-91-
1037; http://www.cs.wisc.edu/Dienst/U1/2.0/Describe/ncstrl.uwmadison/CS-TR-90-
962; http://www.cs.wisc.edu/Dienst/UI/2.0/Describe/ncstrl.uwmadison/CS-TR-89-900;
http://www.cs.wisc.edu/~reps/reps.html; http://www.cs.wisc.edu/Dienst/UL/2.0/Describe/-

ncstrl.uwmadison/CS-TR-91-1038

Cluster 9: http://www.cs.wisc.edu/~bart/537/quizzes/quiz6.html; http://www.cs.wisc.edu/~bart/-
¢s537.html; http://www.cs.wisc.edu/~bart/537/quizzes/quiz3.html; http://www.cs.wisc.edu/-
~bart/537/quizzes/quiz10.html; http://www.cs.wisc.edu/~bart/537/quizzes/quiz2.html;
http://www.cs.wisc.edu/~bart/537/programs/program2.html; http://www.cs.wisc.edu/~bart/-
537/lecturenotes/titlepage.html; http://www.cs.wisc.edu/~bart/537/quizzes/quiz9.html;

Cluster 11: http://www.cs.wisc.edu/~cs354-2/cs354/lec.notes/numbers.html;
http://www.cs.wisc.edu/~cs354-2/cs354/lec.notes/data.structures.html; http://www.cs.wisc.edu/-
~cs354-2/cs354/solutions/Q2.j.html; http://www.cs.wisc.edu/~cs354-2/cs354/lec.notes/-
arch.features.html; http://www.cs.wisc.edu/~cs354-2/cs354/lec.notes/interrupts.html;
http://www.cs.wisc.edu/~cs354-2/cs354/lec.notes/case.studies.html; http://www.cs.wisc.edu/-
~cs354-2/cs354/lec.notes/arith.int.html; http://www.cs.wisc.edu/~cs354-2/cs354/lec.notes/-
MAL.html;

Cluster 14 http://www.cs.wisc.edu/ condor/ research.html;
http://www.cs.wisc.edu/ ~bart/ cs638.html; http://www.cs.wisc.edu/ coral/ coral.people.html;
http://www.cs.wisc.edu/ ~brad/ brad.html; http://www.cs.wisc.edu/ ~sastry/ spring96.html;
http://www.cs.wisc.edu/ ~ashraf/ ashraf.html; http://maf.wisc.edu/ distributed/ condor/ index.html;
http://www.cs.wisc.edu/ ~ssl/ resume.html;

accuracy of 66.3%. The RBC model that included cluster labels from the A##rOnly tech-
nique did not significantly’ improve accuracy. However, the model that included cluster
labels from the LinkOnly technique achieved an average accuracy of 68.4%, a significant
improvement. This indicates that gene interactions alone are helpful for predicting location.
The model that included cluster labels from the LinkAsFilter technique achieved an average
accuracy of 70.2%. This is a significant improvement over both the LinkOnly model and
the baseline RBC model without cluster labels. This shows that gene communities, identi-
fied by the LinkAsFilter technique, can improve classification models of gene localization,
over and above clustering based on attributes or links in isolation.

6 Related Work

There has been relatively little work investigating clustering techniques for relational do-
mains. The work in this area has focused on either complex generative models with latent
variables (e.g. PRMs), or augmented clustering techniques that use ad-hoc similarity met-
rics to incorporate both link and attribute information.

Probabilistic models have been developed to model cluster membership using both attribute
information and link structure. Cohn and Hoffman [5] outline a generative model where
a documents topic determines both its content and its citations. The model without link
structure (content only) is known as probabilistic latent semantic indexing (pLSI). To our

SWe assessed the significance of results using two-tailed, paired t-tests over the ten-fold cross-
validation trials, with &« = 0.05. The null hypothesis is that there is no difference in the accuracy
between two approaches; the alternative is that there is a significant difference in performance.
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Figure 9: Evaluation of hybrid clusters for Gene dataset.
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Figure 10: Accuracy predicting gene location with cluster labels.

knowledge, the Cohn and Hoffman model has not been evaluated in a clustering context.
Kubica, Moore, Schneider, and Yang [15] propose a probabilistic model of link structure
based on cluster membership. The model considers both attribute information and link
structure but combines them in an alternative manner. In the generative model, attributes
determine group membership and group membership determines the link structure. Taskar,
Segal and Koller [23] use probabilistic relational models (PRMs) to cluster relational data
with attribute and links. PRMs are directed graphical models, which can be used to cluster
for hidden group variables. However, the models acyclicity constraint makes it difficult to
apply to network data with complex dependencies.

HyPursuit [24] was the first information retrieval system to cluster documents using se-
mantic information in both document contents and hyperlink structure. The system defined
a complex similarity metric to capture both content and link structure correspondence be-
tween pages. The hybrid similarity metric can be used with any conventional clustering
algorithm because it is defined over all pairs of pages. It is difficult to assess the utility
of the metric however, because evaluation consists of a subjective assessment on a single
clustering task.

Modha and Spangler [18] also propose an algorithm for clustering hypertext documents
using document contents and hyperlink structure. The authors capture three features of



documents in their new similarity measure: (1) word similarity, (2) out-link similarity, and
(3) in-link similarity. A geometric hypertext-clustering algorithm is used, which extends
the classical Euclidean k-means algorithm [10]. Modha and Spangler include parameters to
control the influence of the three features. They include a search for the optimal parameter
setting in their algorithm but do not evaluate the impact of different settings. They do
note that several settings were chosen across clustering experiments. This indicates that
different web graphs may contain varying levels of textual and link information.

He, Ding, Zha, and Simon [13] use a spectral graph-partitioning algorithm to automati-
cally identify topics in sets of retrieved web pages. This approach is quite similar to our
spectral approach, however He et al. use a different similarity measure designed for high-
dimensional text domains. In addition, they augment the hyperlink graph with weighted
co-citation links. The algorithm automatically clusters query result sets for topics and
presents the user with the most authoritative pages from each topic.

7 Discussion and Conclusions

This paper presents a spectral clustering algorithm that exploits both attribute information
and link structure to improve clustering of relational data. It is intuitively plausible that
link structure can be combined with attribute information to effectively group relational
data. However, there has been relatively little work investigating clustering techniques for
relational domains. Due to the efficiency of probabilistic relational models with latent vari-
ables, we chose to explore extensions to recent spectral clustering techniques for relational
data.

To encourage a deeper understanding of the design of similarity metrics, which incorpo-
rate multiple sources of information, we explore the characteristics that underlie successful
similarity metrics. This is where we differ from previous work in hybrid clustering algo-
rithms. We have set up a framework to evaluate different similarity metrics quantitatively
over a wide range of relational data sets, and in the context of a spectral clustering algo-
rithm. Our experiments show that increasing the separation between total intra-cluster and
inter-cluster transition probabilities results in superior performance over a wide range of
data characteristics. Metrics that drop potentially noisy information from consideration
(e.g. LinkAsFilter) increase this separation, but there must be enough data to withstand
the associated increase in variance. An additional advantage of metrics that dismiss noisy
information is algorithm efficiency—there are O(E) approximate eigensolver algorithms
and O(n'**) exact eigensolver algorithms for sparse matrices.

We have analyzed the spectral decomposition algorithm from a statistical perspective and
show that the successful hybrid metrics use the link and attribute information to increase
the separation between noisy clusters. We have shown an empirical connection between the
distribution of transition probabilities and algorithm performance, connecting both mean
and variance to cluster accuracy. Future work will attempt to derive theoretical bounds on
finite-sample performance, and explore the interaction between the normalized cut metric
and accuracy at low mean separations.
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Appendix

The expectation for T}, , is calculated using conditional expectation® on the state of i, which
we refer to as ¢g:

E[T]] = E[}¥;ca, S0, J)]
=25 Plis) - B[} c 4, Slis, j)]
=2 . plis) -ny - E[S(is, j)|i € Akl
=g 2o, lis) - 325, p(s) - Slis, js) (14)
=N D0 256 Plis) p(is) - Slis, js)
= ny - F[Sin]
=Nk -+ Hin
Total inter-cluster and overall means are calculated in a similar fashion:
E[Tgut] = Nk’ - Hout

, (15)
E[Téll] = (nk . ,U/in) + (nk’ . /J/out)

The variance of the total intra-cluster similarity is calculated as follows’:
Var[T},] =Var[3>;c4, S(,5)]

= Ei {Var[}_;ca, Slis, )]}
=25 plis) - Var[}o e, S(is, j)] (16)
=2 ;. plis) -ng-Var[S(is, j)|j € Ax]
=k D 2js Plis) - p(is) - {S(is, js) — Eig[S(is, js)]}?

Total inter-cluster and overall variance are calculated in a similar fashion:

Var[Th,,] = nw -3, plis) - Var[S(is, j)|j € Aw]

Var[Tiyl =Y, plis) {npVar[S(is, j)|j € Ap] + niVar[S(is, j)|j € Akl}
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From these we can calculate the expected transition probabilities of P using the ratio of two
random variables (e.g., T;,,/ T.11)8. The expectation and variance for intra- and inter-cluster
normalized transition probabilities are as follows:

®The derivation of the mean uses the theorem: E[h(X,Y)] = Ex{E[h(X,Y)|X]} [3]
"The derivation of the variance uses the following equivalence:

Var(h(X,Y)) = E[h(X,Y)?] = E[h(X,Y)]’
= Ex{E[MX,Y)*|X]} - Ex{E[h(X,Y)|X]*}
= Ex{Var(h(X,Y)|X)}
8These calculations use an approximation of the ratio of two random variables, based on a trun-
cated Taylor series expansion (cite?):

E[X/Y] zﬂ.[1+[%}2_ o XY

ry rX Y

Var(X/Y) = [£x)2. [[%]2+ [%]2 _geXY

Ky 240



EPL] = E[T /Tl & e 14 [F]? — ot

HTqy HTqy HTin KTqy
Var[Pj,] = Var[T},/Ty) =~ [ ([Te]? + [Fen)? — 27 e il
B[Py, = E[T5,/Tyl  ~ e (L[] - Frewtan
Var[Pl,,] = Var[L},,/Ty] ~ [Fet]? - [[Flet]? 4 [Fal]? — o Heu ol

(18)

where oxy is the covariance of X,Y. For the equations above, the covariance of T},
and T, reduces to the variance of Tj,, using conditional expectation to eliminate the
covariance. A similar derivation applies to the covariance of Ty, and Tyy;.

0TnTan = ElTinTau] — ETin] - E[Tau]
= E[Tin(Tin + Tout)] - E[Tm} ) E[(Tm + Tout)]
= B[T}, + Tin - Tout] = E[Tin)* — E[Tin] - E[Toui]
= E[Tfn] + E[Tip - Tour] — E[T; ]2 — E[Tin] - E[Tout]
= E[T})] = E[Tin]* + E[Tin - Tout] = E[Tin] - E[Tout]
=Var(Tin) — 325, Plis {E[Tin - Tow|i] — E[Tin|i] - E[Tout|i]}
=Var(Tin) — >, plis) - 0
=Var(Ty,)



