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Abstract. There has been a considerable amount of recent research on
load balancing for distributed hash tables (DHTs), a fundamental tool in
Peer-to-Peer networks. Previous work in this area makes the assumption
of homogeneous processors, where each processor has the same power.
Here, we study load balancing strategies for a class of DHTs, called hy-
percubic DHTs, with heterogenous processors. We assume that each pro-
cessor has a size, representing its resource capabilities, and our objective
is to balance the load density (load divided by size) over the processors
in the system. Our main focus is the offline version of this load balancing
problem, where all of the processor sizes are known in advance. This re-
duces to a natural question concerning the construction of binary trees.
Our main result is an efficient algorithm for this problem. The algorithm
is simple to describe, but proving that it does in fact solve our binary
tree construction problem is not so simple. We also give upper and lower
bounds on the competitive ratio of the online version of the problem.

1 Introduction

Structured Peer-to-Peer(P2P) systems have been increasingly recognized as the
next generation application mode of the Internet. Most of the constructions of
current structured P2P systems, such as CAN [17], Chord [19], Pastry [18] and
TAPESTRY [21] etc. are distributed hash tables(DHTSs), which determine where
to store a data item by first hashing its name to a prespecified address space, and
then partitioning this address space across the processors of the P2P system in
a manner that allows a specific hash address to be found relatively easily. There
has been a considerable amount of research on various aspects of these DHT
systems. The aspect of DHT systems that motivates our work is load balancing.
This is crucial to a DHT: a major design goal of P2P systems is to provide a
scalable distributed system with high availability and small response time.

In this paper, we consider load balancing in a DHT consisting of heteroge-
neous processors. While most previous work has analyzed DHTs under the as-
sumption that all processors are identical, real DHTs consist of processors with
significantly different characteristics in terms of computational power, band-
width availability, memory, etc. One way to extend results for the homogeneous
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case to heterogeneous systems is to use virtual processors: powerful processors
pretend to be multiple less powerful processors. This approach has the drawback
that a processor must maintain pointers to other processors for each virtual node
it represents, and most of these pointers will be distinct. Since each pointer is
a connection that must be kept alive in the presence of processor arrivals and
departures, this can be quite expensive. Other existing techniques for dealing
with heterogeneous processors include data migration. Data migration can be a
good approach when data is highly dynamic, but is usually unfavorable when
processors are highly dynamic. In fact, when processors arrive and leave fre-
quently, the migration process may have a cascading effect of migration [3] that
further deteriorates bandwidth usage and data consistency. Data migration can
also introduce an overhead cost for locating the data.

This paper tries to balance the load without using virtual servers or migration
methods. We study one variant of the DHT, the hypercubic hash table(HHT),
a variant of CAN [17] described in [2]. The HHT partitions the address space
using a full binary tree. The leaves of the tree correspond to the processors of
the DHT. We assign a 0 to every left branch in the tree, and a 1 to every right
branch. Each processor stores all hash addresses whose prefix matches the string
obtained by following the path from the root to the leaf for that processor, and
thus the fraction of the address space stored at a processor i is 1/2%, where [; is
the distance in the tree from 7 to the root.

In the hypercubic hash table, the arrival of a new processor i is handled by
splitting an existing leaf node j. To do so, the leaf node for j is replaced by an
internal node with two children 7 and j. The address space is then reallocated
as appropriate for this change. Deletions are handled in an analogous manner.
[2] analyzed distributed techniques for choosing which node of the tree to split
in order to keep the resulting tree as balanced as possible. In particular, the
objective was to minimize the ratio between the maximum fraction of the address
space stored at any processor, and the minimum fraction of the address space
stored at any processor.1

For heterogeneous processors, we want to store larger fractions of the address
space on some of the processors, and thus we no longer want as balanced a tree
as possible. We assume that every processor i has a single measure of its power,
which we call its size, and denote by 2% (it will be more convenient for us to use
the logarithm of the sizes). Instead of balancing the load across the processors,
we now wish to construct a tree that balances the load density, where the load
density on processor i is defined to be ld; = L5 = 5%, L is the total
load and [; is the height (distance from the root) of node 4 in the tree. Our

goal is to minimize the quantity % This criteria is a natural extension

! Note that an equal partition of the address space does not necessarily imply an
equal amount of data at each processor. However, when the number of data items is
large compared to the number of processors, and the data items have approximately
the same size, then this will be a good estimate of the load balance. The case of
heterogeneous processors where the number of data items is close to the number of
processors has been studied in [5].



of the load balancing criteria of [2], and characterizes the application’s major
requirements. An alternative criteria would be to minimize the maximum load
density. A drawback to considering the maximum load density without regard
to the minimum load density is that it can result in processors with a large size
not having a large fraction of the address space: i.e., powerful processors may be
underutilized. In fact, our main result actually demonstrates that it is possible
to minimize both criteria simultaneously: we describe an algorithm that finds
the tree with the minimum load density ratio, but this tree also minimizes the
maximum load density.

While the eventual goal of a load balancing technique would be to develop
a distributed and online algorithm, it turns out that minimizing the load den-
sity ratio with heterogeneous processors is challenging even in a centralized and
offline setting. Thus, in this paper we focus on that setting; developing dis-
tributed algorithms that utilize the techniques we introduce for the centralized
setting is an interesting and important open problem. The centralized problem
reduces to the following simple to state algorithmic problem: given a set of nodes
S ={p1,p2,-..,pn} with weights s1, ..., s,, construct a full binary tree with leaf
set S. Let the density of node i in this tree be s;+1;. The binary tree should mini-
mize the difference between the maximum density of any node and the minimum
density of any node. This is a quite natural question concerning the construction
of binary trees, and thus we expect that algorithms for this problem will have
other applications. We also point out that the requirement that the tree be full
(i.e., that every non-leaf node have degree exactly 2) is necessary for our appli-
cation: if any node has degree 1, there will be a portion of the address space not
stored at any processor.

This algorithmic problem is reminiscent of building optimal source codes;
for that problem Huffman’s algorithm (see [6] for example) provides an optimal
solution. In fact, if we use the simpler optimization criteria of minimizing the
maximum density, then Golumbic’s minimax tree algorithm [11], a variant of
Huffman’s algorithm, provides the optimal solution. In this variant, when two
nodes are merged into a single node, the new node has a size equal to the
maximum of the two merged nodes plus one (instead of the sum of the two nodes
as in Huffman’s algorithm). Similarly, if we must maximize the minimum density,
then using the minimum of the two merged nodes plus one gives the optimal
solution. What makes our problem more difficult is that we must simultaneously
take both the maximum density and the minimum density into account. We point
out that there are simple example inputs for which it is not possible to construct
a tree that simultaneously minimizes the maximum density and maximizes the
minimum density.

Our main result is the introduction and analysis of a polynomial time algo-
rithm, called the marked-union algorithm, that, given a set of nodes with integer
weights, finds a tree that minimizes the difference between the maximum den-
sity and the minimum density. This algorithm is in fact based on the maximin
version of Golumbic’s algorithm, and as a result also maximizes the minimum
density (which corresponds to minimizing the maximum load density on any pro-



cessor). The difference between our algorithm and Golumbic’s is that ours relies
on an additional tie breaking rule that determines which nodes to merge. This
tie breaking rule is crucial: Golumbic’s algorithm without the tie breaking rule
can result in a density difference that is considerably worse than the optimal.?

The fact that the marked-union algorithm does in fact minimize the density
difference is not obvious, and in fact the proof of this is somewhat involved. As
further evidence that minimizing the density difference is not as easy to deal
with as the minimax and the maximin optimization criteria, we point out that
Golumbic’s algorithms for those problems also work for the case of non-integer
3;8. On the other hand, the marked-union algorithm does not always return
the optimal solution for non-integer inputs, and in fact the complexity of that
case is an open problem. Nevertheless, the marked-union algorithm does provide
a 2-approximation (which is a 4-approximation to the original load balancing
problem, before we moved to using the logarithm of the sizes and the load.)

We also provide lower and upper bounds on the competitive ratio of the
online version of this problem. In this scenario, the algorithm has access to
the entire current tree, and, on an arrival, must decide which node to split to
achieve as good load balancing as possible. We assume that both the adversary
and the algorithm have access to a list of possible sizes before the sequence
arrives, and that the cost of an input sequence is the final load imbalance. This
model captures the system’s long term stable status load balancing needs. We
demonstrate that in this scenario, the trivial algorithm of keeping the tree as
balanced as possible, without regard to the sizes, is essentially the best that one
can do for the worst case performance of this online scenario.

This paper is organized as follows: In Section 2, we define the problem more
formally and present the marked-union algorithm. In Section 3, we prove the
optimality of the marked-union algorithm. In Section 4 we describe our results
for the competitive analysis of the online algorithm. Finally, in Section 5 we
discuss future work. Due to space limits, most of our proofs are in the Appendix.

1.1 Related work

There has been a number designs on how to build a scalable structured P2P
system, including CAN [17], HHT [2], Chord [19], Viceroy [13], Pastry [18],
Tapestry [21], Distance Halving DHT [14], and Koorde [12]. Most of these DHT's
achieve a logn ratio of load balancing with high probability, although many also
consider schemes for improving this to O(1), sometimes at the cost of other
performance measures. CAN [17] allows a measure of choice to make the load
more balanced. This technique is analyzed in [2] for the closely related HHT;
that paper demonstrates that it achieves a constant load balance ratio with high

2 For example, on an input of 2" —1 nodes of the same size, if ties are broken arbitrarily,
then the density difference can be as bad as n—1, whereas the optimal for this input
is 1. We also point out that while this tie breaking rule does not reduce the maximum
load density in the system, it can significant reduce the number of processors that
must deal with this maximum load density.



probability. All of the work mentioned above considers only the homogenous
scenarios.

Work on heterogenous load balancing has just begun. [16] and [1] provide
heuristics for dealing with heterogenous nodes. In [16], migration and deletion
of virtual servers is used in a system based on Chord. This system is studied
using simulations. [1] uses the P-Grid Structure. There, each node is assumed to
know its own best load and the system reacts accordingly to balance the load.
This provides further motivation for our offline algorithm: it demonstrates that
determining the optimal allocation for the processors currently in the system is
a useful tool for load balancing of heterogenous P2P systems.

Perhaps the closest work to ours is [7], which introduces a protocol and proves
that it balances the heterogenous nodes’ load with high probability for a variant
of the Chord DHT, assuming that a certain update frequency is guaranteed.
As they also point out, this system relies on moving data items to arbitrarily
destinations, which can lead to difficulties with data location.

To the best of our knowledge, there has been no competitive analysis of load
balancing problems for structured P2P systems.

There has been a considerable amount of work on Huffman codes and its vari-
ants, which is related to our problem of constructing binary trees. [20] showed
that if the input is pre-sorted, the running time of Huffman’s algorithm can be
reduced to be O(n). [15] found a structure(lattice) on all the binary Huffman
codes for a finite alphabet and showed that the tree’s imbalance can be a par-
tial index for the lattice. Their result showed Huffman coding can be viewed
as optimizations over a lattice. [11] introduced the minimax tree algorithm al-
ready mentioned. [10] generalizes the Huffman code to a non-uniform encoding
alphabet with the same goal of minimizing the expected codeword length. They
gave a dynamic programming algorithm that finds the optimal solution for some
cases, as well as a polynomial time approximation scheme for others.

There is recently some work studying constrained version of optimization
problems arising in binary tree construction. [8] studied the problem of restruc-
turing a given binary tree to reduce its height to a given value h, while at the
same time preserving the order of the nodes in the tree and minimizing the dis-
placement of the nodes. Their result provides an explicit tradeoff between the
worst-case displacement and the height restriction. [9] considers the problem of
constructing a nearly optimal binary search trees with a height constraint. In-
terestingly, they do not take the probabilities of the nodes as input but instead
use a given binary search tree and the rank of the nodes’ probabilities.

2 Problem statement and algorithm

We next provide a more formal description of the problem. Suppose we have m
different possible processor sizes, S;, > S;m-1 > ...5; > ... > S; > 0. Each
size is an integer, and there are n; > 0 processors for size S;. Define a solution
tree to be a full binary tree plus a bijection between its leaf nodes and the input
processors. Let T' be any solution tree. Denote the depth of a processor R in a



tree T' as g, the size of it as sg (the root node has a depth of zero). The density
of processor R is dr,r = sg + [gr. 3 The density difference of T is the maximum
density minus the minimum density. Our goal is to find the optimal solution
tree T* that achieves the minimum density difference Minimumy(maxg dr.gp —
minR dT,R)‘

For this problem we design the marked-union algorithm. In order to describe
it, we start with some notation. This algorithm will repeatedly merge nodes. To
start with, the set of input processors form the set of nodes. We refer to these
initial nodes as real nodes. Each node maintains a minimum density attribute
dpmin = . We sometime refer to a node as (z). The real node for a processor has
the processor’s size as its dpin.

The algorithm proceeds via a series of unions: an operation that consumes
two nodes, and produces a virtual node. The nodes it consumes can be real or
virtual. When a union operation consumes nodes (dimin) and (demin) the new
node it generates will be (min(dimin, d2min) + 1)-

The aspect of our algorithm that makes it unique as a variant of Huffman’s
algorithm is the concept of a marked node. A virtual node is labeled as marked
when it is formed if either of two conditions hold: (1) the two input nodes that
create that node have different values of d,;,, or (2) either of the two input
nodes was already marked. The marked-union algorithm will use this marking
to break ties; this will lead us to the optimal solution.

We are now ready to describe the algorithm as below:

The Marked-Union Algorithm:
(1) Initialization:
Sort the input nodes in decreasing order of size. Construct the working
queue using the nodes in this order (from left to right).
(2) Processing the nodes
(3) While (more than one node remains in the working queue) {
(4) Union the rightmost two nodes, resulting in a new node V (d);
(5) Insert V(d) into the working queue in the following order:
From left to right, nodes decrease according to dmin; for nodes
with the same dy.in, marked nodes appear to the left of un-
marked nodes, otherwise, ties are broken arbitrarily.
(6) } end while loop

Fig. 1. Marked-Union algorithm.

Note that all the input nodes start as unmarked real nodes and we will prove
in Lemma 1 later that there will never be more than one marked node. The
algorithm’s running time is just O(Nlog N), where N = > | n;. Also, we can

% We will use the density for the offline analysis, but use the load density for the cost
function of online competitive analysis. Note their relationship is dr,r = log L —
lOg ldT7R



use it to return a solution tree: treat each real node as a leaf node, and on any
union operation, the resulting virtual node is an internal node of the tree with
pointers to the two nodes it consumed. Our main result will be to show that this
tree is an optimal solution tree, which we call the best tree.

We also point out that we can also get the maximum density difference of the
resulting tree at the same time. To do so, we modify the algorithm by adding a
new attribute to any marked node which stores the maximum density of any node
in its subtree. If we represent a marked node as V (dyin, dmas ), modify the union
operation as: (dimin) U (damin) = (Min(dimin, d2min) + 1, max(dimin, d2min) + 1)
when dimin # domin; and (d)U (dmin, dmaez) = (min(d, i) + 1, max(d, dpaz) +
1) when dimin = damin = d. As was already mentioned, we do not need to
define a union operation for the case where two marked nodes are consumed. By
defining union this way, it is easy to see that d,,;, will always be the minimum
density in the subtree rooted at that node, and d,,,, will always be the maximum
density. Thus, the density difference of the final marked node d,,q; — dimin will
be the maximum density difference of the tree. If the final node is unmarked, all
nodes have the same density.

2.1 Marked-union with the splitting restriction

Before we prove the optimality of the tree resulting from this algorithm, we show
that this tree can be constructed under the restriction that it is built up using a
sequence of splitting operations. In other words, we assume that the nodes must
be inserted into the tree one at a time, and each such insertion must be handled
by splitting a node of the tree. In order to do so, we first sort the processor by
size. We assume that the input processor sequence is p,,, pm—1, ..., P2,p1 with
sizes satisfying s, > $;,—1 > ... > S2 > s1 . We next run the marked-union
algorithm and record the resulting depth [} for each processor p;.

We then process the whole input sequence from left to right. For the first
node, we use it as the root node of the solution tree. For each subsequent node
pj, choose the leftmost node p; of the already processed input sequence that has
a current depth /; < [¥ in the solution tree thus far. As we demonstrate in the
Appendix in the proof of Theorem 1, such a node must exist. Split the node p;
and add p; as its new sibling. When all processors have been processed, return
the final tree. Let T be this tree.

Theorem 1. In the tree T*, each processor p; will have [; =I7.

3 The optimality of the marked-union algorithm

Theorem 2. The marked-union algorithm returns an optimal solution tree w.r.t.
the minimum density difference.

This section is devoted to proving Theorem 2. We start with a high level
overview of this proof. The first step (Section 3.1) is to define the concept of
rounds. Very roughly, there is one round for each different size processor that



appears in the input, and this round consists of the steps of the algorithm be-
tween when we first process nodes of that size and when we first process nodes
of the next larger size from the original input. Once we have defined rounds, we
prove a number of properties concerning how the virtual nodes in the system
evolve from one round to the next.

The second step of the proof (Section 3.2) defines regular trees, a class of
solution trees that satisfy a natural monotonicity property. There always exists
some optimal solution that is a regular tree, and thus we prove a number of
properties about the structure of these trees. In particular, we examine sets of
subtrees of a regular tree. There is one set of subtrees for each processor size, and
these subtrees are formed by examining the lowest depth where that processor
size appears in the tree. The third step (Section 3.3) uses the results developed in
the first two steps to show that the tree produced by the marked-union algorithm
has a density difference that is no larger than any regular tree. We do so via an
induction on the rounds of the algorithm, where the virtual nodes present after
each round are shown to be at least as good as a corresponding set of subtrees
of any regular tree.

3.1 Analysis of marked-union algorithm

Now let us do the first step of the proof for Theorem 2. We first introduce
the definition of Rounds for the purpose of analyzing the algorithm. Note that
rounds is not a concept used in the algorithm itself.

Let us divide the algorithm into m rounds, each round contains some consec-
utive union operations: Round;’s start point is the start point of the algorithm,
before any union operation is performed. Round;’s start point is the end point of
Round;_1; its end point is right before the first union operation that will either
consume a real node of size S;;; or will generate a virtual node with a size bigger
than S;y;. All unions between these two points belongs to Round; . Round,, ’s
end point is when we have a single node left as the algorithm halts.

Lemma 1. There can be at most one marked node throughout one run of the
algorithm, and the marked node will always be a node with the smallest dy,;n in
the working queue.

Let A; be dimaz — dmin of the marked node before Round;;; after Round;
and A; = 0 if there is no marked node at that time. We will prove in Lemma 2
that after each Round all virtual nodes will have the same d,,;,, Let d; be the
dpmin of the virtual nodes after Round;.

Lemma 2. Before Round;;1, after Round;, we have two possible cases:

a) Single node (d;,d; + 4;) , with d; < S;y1,4; > 0;

b) A set of virtual nodes with the same dyn, which are k(k > 0) un-
marked virtual nodes V (d;) and another marked or unmarked node V(d;, d;+4;),
d; = Sit1,4; > 0.



Lemma 3. There are two possible cases for A;:
case a): A; = max(S; —d;—1,4,-1)
case b): A, =1, A;_1 =0, and di—1 = S;

If after Round;, case b) happens, then we call Round; a b-round, if not, then
Round; is a normal round. Note the first marked node appears at case b) and
this case can only happen once: there could be at most one b-round throughout
one run of the algorithm.

Corollary 1. A;i=0=2> A1 =4, 2=...= 4, = 0, dj_l = Sj V] <1.

Theorem 3 (Gol76). The marked-union algorithm mazimizes the final dp -

3.2 Definitions and Conclusions about Regular Trees

Now let us do the second step of the proof of Theorem 2. We first introduce
the concept of a special class of solution trees then prove some properties of it.
A regular tree is a Solution Tree which satisfy that for any two processors, if
s; > s then [; < ;.

Observation 1 There exists an optimal solution tree that is a reqular tree.

For any regular tree, let [; max be the maximum depth of the leaf nodes with
Size S;. By the definition of regular tree, it is easy to see Iy maz < lmn—1,maz <
s S l2,maz S ll,maz‘

Then if we look through across the regular tree at depth /; max, the nodes we
get are some internal nodes or leaf nodes. For each of the internal nodes Iy, all its
descendants and Iy, form a subtree with I, as the root; for each leaf node with a
processor size of s < S;, it can also be viewed as a subtree of one node, and thus
we have a set of subtrees. Define k;_;(k;—; > 1)as the number of these subtrees.
Define the set of these subtrees as Vi1 = {vi—1,1,Vi—1,2y -y Vic1 gy -+ oy Vie1 ks _q }-
Furthermore, we define k,, = 1: V,,, has only one subtree, the regular tree itself.

From its definition, all subtrees of V; have the same depth in the regular
tree:l;+1,max(the depth of a subtree means its root’s depth). From the defini-
tion of Regular Tree and [; max, we know all the leaf nodes with size S; lie
in a depth inclusively between [;11 max and l;max in the regular tree, thus
VilyVi2y-++5Vi -+, Vik,; can be viewed as being constructed from v;_1 1,v;_1 2,
s Vic1,jy- -y Vie1,k;_, Plus the n; leaf nodes of size S;. Notice that in Vi, we
don’t have subtrees of V) below, they will only be formed by leaf nodes of size S;.
Also the roots of v;_11,V—1,2...Vi—1,j,...Vi—1,k;_, all have the same relative
depth of I; max — li+1,max in its residing subtree in V;. This depth is also the max
relative depth in V; for real nodes with size S; , and there is at least one leaf
node with size S; that lies at such a relative depth in one of the subtrees of V;.

Let relative density be a node’s density with respect to some subtree of the
regular tree, i.e., if a node of size S; has a depth of [; in a regular tree, and the
node is also in some subtree with [,. as its root’s depth in the regular tree, then
the node’s relative density with respect to the subtree is (I; — ) +.5;. From above



we know the set of subtrees in V; all have the same root depth at the regular
tree, so we can talk about relative density with respect to a set of subtrees. Let
dpmin,; be the minimum relative density w.r.t. V; of all the leaf nodes that lie
in any of the subtrees of V;. Let dj;,qz,; be the maximum relative density. Let
Adi = dmaz,i - dmzn,z

Claim 1 For any regular tree, Ag; 2 Ad; s (1)
Adi Z |Sz - dmin,i—1| (2)

Corollary 2. If after Round; , we have a single virtual node in our algorithm,
then compared with the V; of any regular tree on the same input,

di > dmin,i (3)
3.3 Comparing marked-union’s output to regular trees

Now we have prepared enough for the proof of Theorem 2. By Observation 1,
there exist at least one regular tree that is optimal. If we can prove no regular
trees on the same input can beat our algorithm, then we prove marked-union
algorithm is optimal. So the Lemma below is what we need to prove.

Lemma 4. For any given input, let min(Ay,) be the minimum Ay, of all regular
trees for the same input. For any Round;, if it is the last round or it is not the
b-round, then min(Ag4,) > A;.

Lemma 4(proof in Section B of Appendix) is the core part of the whole
optimality proof, combined with Observation 1, it shows that the marked-union
algorithm’s output will be no worse than any regular tree in terms of density
difference, since there exist at least one optimal solution tree which is also a
regular tree. We have proved that the marked-union algorithm returns an optimal
tree, or it is an optimal algorithm that minimize the solution tree’s density
difference.

4 Competitive Analysis

The marked-union algorithm is designed for the offline case, where we know
the entire set of available processors before any decisions need to be made. We
here consider the online case, where the algorithm maintains a current tree, and
processors arrive sequentially. After each such arrival, the algorithm must make
a decision on how to deal with this arrival without any knowledge of future
arrivals. We further assume that the algorithm is restricted to only performing
split operations: only one other processor currently in the system can be effected
on an arrival. This would allow the DHT to efficiently rebalance any data cur-
rently in the system. We study the worst case degradation of performance due
to incomplete information of the coming input, using competitive analysis [4].
We provide a model for competitive analysis in our scenario. We also demon-
strate that it is not possible for a deterministic algorithm to do much better
than simply keeping the tree as balanced as possible. This suggests the need for
randomization as is used in most existing load balancing schemes for DHTs.



4.1 The Model

We describe our model in terms of three parties: the adversary (which chooses
the input), the online player (the algorithm), and the third party. At the start of
the online problem, the third party specifies some common knowledge, known as
problem parameters, to both the online player and the adversary. In our model,
the common knowledge is a set of possible processor sizes. The adversary then
serves the online player with a sequence of processor sizes. The only information
the online player has prior to an arrival is that the size of that arrival must be
in the set of possible sizes given by the third party. The adversary also deter-
mines when the input sequence halts; the online player only sees this when it
actually happens. Without a restriction on possible sizes (as is imposed by the
third party), the adversary can make the performance of any online algorithm
arbitrarily bad, and thus this aspect of the model gives us a way to compare the
performance of online algorithms. Furthermore, it is reasonable to assume that
real DHTs have some knowledge of the arriving processor’s sizes, e.g. the range
of the sizes.

Since the load density (as opposed to density) represents our real performance
metric for DHT's, we use load density in this section. In particular, we use the load
density ratio 2¢mez~4min of the final solution tree when the adversary decides
it is time to halt. We point out that instead of the cost of the final solution
tree, other choices to consider would be a sum of costs or the maximum cost [4].
However, for our case, when the tree is growing, it is not in a stable situation yet.
This transition period should be negligible because it is not a typical working
state for the system; we are really concerned with the long term effects, for which
our model is more appropriate.

4.2 Bounds for competitive ratios

For minimization optimization problems, the competitive ratio [4] for an online
algorithm is defined as the worst case ratio, over all allowed input sequences,
between the cost incurred by an online algorithm and the cost by an optimal
offline algorithm. As was already mentioned, we use the original load density
ratio as the cost function. Since the node density we used earlier is the log
of a node’s load density, the log value of competitive ratio is then the differ-
ence of density differences between the online algorithm and the optimal offline
algorithm. We sometimes use the log value of the real competitive ratio for con-
venience. Define the set of input processor sizes which the third party specifies as
R ={S;]1 <i<m}, with Sp, > Sp1 > ... > Sz > S1. Define AS = 5, — 5y,
i.e., the largest size difference for the processors specified by the third party.
Since the case where the third party only specifies a single sized processor is
very easy to analyze, we only consider the heterogeneous case where m > 1.
Define Sy, = S as the largest processor’s size, Sy, = S1 as the smallest
processor’s size. We first provide the lower bound for the competitive ratio.

Theorem 4. For any deterministic online algorithm for this load balancing
problem, the competitive ratio is at least 245.



We point out that the proof in Appendix for this is made more complicated
by the fact that it is described for an adversary that has a further restriction. In
particular, if we further limit the adversary that it must introduce at least one
processor of each size given by the third party, then the bound still holds. This
demonstrates that the lower bound really is a function of the difference between
the largest processor and the smallest processor. Of course, any lower bound for
this restricted scenario still holds for the unrestricted scenario.

We next point out that a very simple algorithm can almost match this lower
bound. In particular, the lower and upper bounds are within a factor of 2.

Theorem 5. There is an online algorithm with a competitive ratio of 22511 for
this load balancing problem.

From this we also know an upper bound for the best competitive ratio any online
algorithm could have.

5 Future work

Since our marked-union algorithm efficiently solves the centralized offline opti-
mization problem, the most important open problem is to design a distributed
online algorithm. It is possible that algorithms based on ideas from the marked-
union algorithm may provide some direction. Although the online lower bound
is somewhat discouraging, it is possible that one can do better using randomiza-
tion. Also, it seems likely that stochastic models of input sequences are easier
to deal with. Finally, looking at the case of multiple, independent measures of a
processor’s power looks like an interesting but challenging question to pursue.
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A Marked-Union with splitting restriction

Proof of Theorem 1:

At any time-step, let p = {i|p; has already been processed by the algorithm}. We
first prove that throughout the course of the algorithm, Vi € p, [; < [*. We prove
this by induction on the number of nodes that have been processed. The base
case is when only one node has been processed, and follows easily from the fact
that there is only a single node in the tree. Next, assume the inductive hypothesis



and that there is still at least one node to process. Note that at this step, there
must be some node for which /; < [7. Otherwise, by the inductive hypothesis,
it must be the case that Vi € p, [; = [7. Furthermore, since T* is a full binary
tree, it must be the case that Ziep 2% = 1. However, since the marked-union
algorithm also produces a tree, it must be the case that ), 2% = 1. Since there
is some i & g, this is a contradiction.

Let ¢ be such that I; < [}. After node p; is split, [; has increased by 1, and
thus it is still the case that [; < [5. Furthermore, let p; is the node that is
inserted at this step. In the marked-union algorithm, the fact that p; is to the
left of p; in the initial working queue implies that 7 <7, s0 l; =1; <1 <I}.
This completes the inductive step. Thus, in the final tree T, Vi, [; < [}. This,
combined with the fact that Y, 5= = 3, 2% = 1 implies that {; = [. This last
step can be proved by contradiction: if there exists a node with I; < [}, then

Zzz%>222+:1

B Optimality of Marked-Union algorithm

Proof of Lemma 1:

We prove this by induction on the number of union operations. Before the first
union operation, there is clearly at most one marked node, which will be a node
with the smallest d,,;,. Assume that after the kth union, this is still true. For
the (k + 1)st union, if it does not generate a marked node then neither of the
two input nodes of this union is marked, thus the assumption will still be true
after the (k + 1)st union. If the (k + 1)st union generates a marked node, since
a union operation always consumes the two smallest d,,;, nodes, if there is no
previous marked node, the two nodes consumed by the (k + 1)st union must
have different densities, diin1 > dimine. The resulting marked node must have
a dyin = dmin2 + 1 < dimin1, less than or equal to the larger input node’s min
density, so it has to be the minimum d,,;, after the removal of the two input
nodes. If there is already one marked node, then from the assumption it has a
smallest d,,;, = ds, since the algorithm always inserts the marked node into a
position which is leftmost within all nodes with the same d,,;,, we know the
(k + 1)st union will consume all nodes with a min density of ds, or after this
union, there will be no node with d,,,;, = ds left in the queue. Also the resulting
new marked node has d,,;, = ds + 1, and so must be the smallest d,,;, of the
resulting working queue. Thus for all possibilities, the assumption is still true
after the (k + 1)st union.

Proof of Lemma 2:

According to the definition of "Rounds”, Round; can not have virtual nodes
with dyin > Si+1. Also Round; will not end if it has more than one node with
Amin < Si+1, and with at least one of them has d,;;, < S;t+1, so it either ends
with only one virtual node with dy;;, < Sit1, or one or more virtual nodes with



the same d5, = Si+1. From Lemma 1, there is at most one marked node, which
is the only node that can have d,,q0 — dmin > 0. Thus we complete the proof.

Let N,; be the number of real nodes with size S; , N,; = n;. Let N,; be the
number of virtual nodes after Round;_1, before Round;. Let N; = N,; + Ny;.

Claim 2 ifA; 1=0,d;,_ 1 =85;, N; = k2(5i+1_Si), for some k > 0 then A; =0
and N/U(iJrl) =k.

This is easy to see. Since all nodes are paired up, our algorithm ensures we get
zero density difference and N,(;41) = k after Round,.

Proof of Lemma 3:

After Round; 1, before Round;, by Lemma 2, there are two possibilities as below:
The first case is when d;—1 < S; , according to Lemma 2, there is a single
node (d;_1,d;—1 + A;_1) then the first union in Round; is between this node
and R(S;), generates a marked node: V(d;—; + 1,max(d;—; + A4;-1,S5;) + 1),
it has |dmin — dmae| = max(S; — di—1, A;—1). Also according to Lemma 1, the
number of marked node can at most be one, we monitor this node within Round;
after the first union of this round, denote the marked node as V(d,d + A)(A =
max(Si - difl, Aifl)).
When d; ;1 < d < S;, the marked node could only involve in a union with
R(S;) =R(d+7r),0<r <S8, —di_1 —1< A, get the union result as V(d +
1,d+ 1+ A); when d > S;, by Lemma 1 and because d,,;;, can only increase by
one after each union, the marked node can only involve in a union with V(d)
when we have even number of the smallest nodes or V(d+1) when we have odd
number of the smallest nodes, this also will not increase the density difference.
So we proved density difference of the marked node will not increase after the
first union during Round; , thus A; = A = max(S; — d;—1, A;_1). this belongs
to case a).

The second case is when d;—; = S;. Now including the first union in Round;,
all unions with the marked node during Round; is the second case of union
described above, so if A;_; > 1, A; = A;_1 > S; —d;_1 = 0, it is also case
a); if A;_; = 0, there is no marked nodes, we may get one node marked during
Round; when we do not have even number of nodes with the smallest d,,;, ,
this is a result of a union like (d + 1) U (d) = (d + 1,d + 2). If we have N; =
kQE, k>0,E=S5,11—S;0or N; = 2E, 0 < E < S;y1—5;, this type of union will
never happen, we get A; = 0, this is also case a); otherwise, if we do not have
such a N;, there will be exactly one such union operation, raise the A from zero
to 1 and get one node marked, after it during Round;, by Lemma 1 and same
argument we did above in the first part, this marked node V(d,d + 1) could
only involve in unions with a node like V(d) or V(d + 1), the density difference
A =1 will not increase anymore during Round;, so in this case we get A; =1,
this is case b).



Proof of Claim 1:

Because V; can be viewed as being formed with all subtrees in V;_; and all
leaf nodes of size S;, all subtrees of V;_; lie at the same relative depth in their
corresponding subtrees in V;. So for the leaf nodes in V;_; subtrees, their relative
densities’ range w.r.t. V;_; will not change from their relative densities’ range
w.r.t. V;. This is because their relative densities will increase by the same amount:
(I, max — li+1,max)- Since leaf nodes in V;_; is also a subset of the leaf nodes in
Viys0 Ag, > Ag,_;.

Also there is at least one leaf node with size of S; lies in some v;; with
a relative depth of (I; max — li+1,max) and if we look at the leaf node in V;_;
that has the minimum relative density of dy,n,i—1, its relative density in V; will
increase by (Iimax — lit+1,max), thus we know Ag, > |S; — dmin,i—1]-

Claim 3 If A,_1 =0, and d;_1 = S;, and if in some regular tree, A4, = 0, then
Ny; = k;_1, and from this we get N; = n; + k;_1.

Proof. First we know Ag, =0=> Aq, , =... = A4, =0 (by (1)). 4,1 =0=>
Aip=...=A; =0and dj_; =5; for Vj < i— 1(by Corollary 1). Then with
the help of Claim 2 we can prove it by induction on rounds.

For the base case in our regular tree, there are no V; subtrees, so kg = 0,
thus Ny1 = 0 = ko, so the base case stands. Assume N, ;) = k;_; for Vj <t <.
Since Vj < i, Ay, = 0, then all leaf nodes with size S; lie at the same depth
in the regular tree, all leaf nodes with size S;y; also lie at the same depth, and
their depths difference has to be S;11 — S¢, so k205415 — n, + k4. Then
Ny=ns;+ Ny =ns + ki1 = th(st"'l_St), together with A1 =0,di1 = Sy,
by Claim 2, we have N, (;y1) = k¢ this is the induction round. Thus we proved
N; = n; + k;_1 inductively.

Proof of Corollary 2:

We prove this by contradiction. Assume after Round;, d; < dyin,i, then arbi-
trarily union the subtrees in V; into one new tree, this tree is formed with all the
nodes of size § < §;, call the leaf nodes in this new tree’s minimum density as
dmin, then dpin > dmin,i > di, which means for all the nodes with .S < S; our
algorithm failed to maximize the minimum density, contradicted with Theorem
3(that our algo. Maximize Min density). So the assumption is wrong, we always
have dl Z dmin,i‘

Proof of Lemma 4:

We prove it by induction on the number of rounds. Assume that min(Ag4,_,) >
A;_4 is correct for Round;_1, we go through all the possible cases below to show
either the next round or the round after next will also satisfy it, min(Ag4,) > A;
or min(Ag,,,) > Ai;1(if the next round is a b-round and is not the last round).

If the next round Round; is not a b—Round, then according to Lemma 3, only
Case a) is possible after Round;, so we have A; = max(S; —d;—1, A;—1). In case



of A; = A;_, we know from (1) for any regular tree, Ay, > Ag,_,, also from the
assumption min(Ag,_,) > A;_1, s0 Ay, > Ag,_, > Ai—1 = A;. This holds for
any regular tree, so we have min(Ay,) > A;. In case of A; = 8; —dj—1 > A1,
this means we have d;_; < S;, by Lemma 2 we have a single node after Round;_;
before Round; . From (3), for any regular tree, d;_1 > dyin,i—1 , also from (2)
Ag; > |Si — dmin,i-1], 50 Ag; > |S; — dmin,i—1| > Si — di—1 = A;, this holds for
any regular tree, so min(4gy,) > A;.

If the next round is a b—Round, then we know A; = 1 while 4; ; = 0, the
induction assumption will not be helpful here. There are two sub possibilities:

First, When i < m, we prove min(Ag,,,) > A;;1, or the round after i—
Round;;; satisfies the induction condition. Since after Round; we met case b),
A; = 1 while A;_; = 0, so for Round;1; it can only be case a). If A;1; =
Si+1 — d;, then with the same argument as we did earlier we can prove here
min(Ag,,,) > A1 If Ajyy = A; = 1, we can prove the induction step by
contradiction. Assume min(Ag,,,) > A;;; is not true, then there exist a regular
tree, with Ay, ., = 0. Thus all leaf nodes of size S;; have to be in the same
level, they all lie at the same depth as all V;’s subtrees’ roots have in V;y1’s
subtrees. Also all leaf nodes with size S; have to lie at a depth of S;1; — S; in
Vi’s subtrees. Similarly all V;_;’s subtrees’ roots lie in the same depth in V;’s
subtrees, which is also S;y1 — S;, son; + ki1 = k;2(Si+1=5) At the same time,
since Round; is case b), so d;—; = S;, A4;_1 = 0, by Claim 3 in Appendix,
Ny = ki1, s0 N; = k; 20541759 since A;_; = 0, by Claim 2 in Appendix , we
get A; = 0,contradicted with A; = 1! so, min(Ag,,) > A;;1 is true here.

Second, when i = m ,round; is a b—Round while it is the last round. We can
still prove by contradiction. Assume min(Ay,) > A; is not true, then there exist
a regular tree, with Ay, = 0, since ¢ = m, V), has just one tree, the regular tree
itself, so because A4, = 0, we know all leaf nodes of size S, and the roots of the
subtrees V;,,_ lie at the same depth of the regular tree, and no leaf nodes above,
SO Ny + k1 = 2N, N is a positive integer, also by Claim 3 in Appendix, we
have Ny = km—1, Ny = 2V, then by Claim 2 in Appendix we know A,, = 0,
there is no way A,, = 1(¢ = m), contradiction!

For the base round, we can think there is a Ay = 0, then either the first
round is case a) condition of Lemma 3, or it is a b—Round, but no matter under
which condition, all the argument above still holds. So we have the base case
also stands, thus the proof is completed.

C Competitive Analysis

Proof of Theorem 4:

We build the adversary as: For the given set R, the adversary will serve in a
S1,S8m,Sm—1,9m_2, ...,52,51 pattern.

The adversary will first serve a big wave of S,,;, processors in a number of
2" +1,h > AS. At this point, the online algorithm will construct a solution tree
with these 2" + 1 processors. Let the depth of shallowest leaf node in this tree



be Amin and the depth of the deepest node be h,q;. Thus the depths of all the
leaf nodes satisfy thinglghmm % - 1.

If Ah = hpaz — hmin > 3AS, the adversary will serve one processor of size
SmsSm—1y8m_2,...,S> each, followed by S; in a number of n; = (245+! —
Yo, 29751 — 1) then stop the input. For the online algorithm, there is at least
one processor of the smallest size S; that has a depth of at most hA,q. — (AS+1)
in the final solution tree. The reason is that after serving one processor of size
Sy Sm—1,Sm—2,---,92 each, the shallowest processor of S; could has a depth
of at most hpin + (AS — 1). Then since 0 < n; < 245, with the last wave of
S input, the shallowest S; size processor’s depth can at most be A, + (AS —
1) + AS. While the deepest S; size processor is still at a depth of A,q.. Since
himaz — [Pmin + (AS — 1) + AS] > AS + 1, the final solution tree has a density
difference of at least AS + 1, the load density ratio is at least 2245+1, For the
offline algorithm, let hy = |logs(2" /2451 +1)], let hy = hy + AS + 1. After the
first wave of 2" + 1 size S; input, the offline algorithm we choose will keep one
S:1 at a depth of hi, and the rest 2" processors at a depth of either hs or e + 1.
Since 37", 2% 51 4y +1 = 245 = 25m =Sl o S L 4 L = 1L
This means the single S; size processor left behind can be split to a depth of
hs, so do the last wave of the n; S; size processors. And for any of the single
processor S;, 2 < ¢ < m, it will be split to a depth of hy — (S; — S1). Thus the
final solution tree can have a load density ratio of at most 2. So in this case the
ratio between the online and offline cost is 245+t + 2 = 245,

Otherwise if Ak < 3AS , the adversary will serve 2"=45 — 1 8, size pro-
cessors, followed by one processor for each size of S,,_1,Sm—2,-..,53,52. Then
finally the adversary serves n, = 245 — 1 — Z;i;l 2551 G| size processors,
then stop. The optimal offline algorithm for this input will construct a tree with
one S; at depth 1 and the rest with a depth of A for the first wave of S; input.
Then use the second S,,, wave to split the shallow S; processor and the joining
Sm processors to a depth of h— AS. Finally with the third wave of one processor
each for S, _1,Sm_2,...,53,52 and ny S; processors continue to split the single
S left behind and the last wave of S; processors to the depth of h. And each of
the S; (2 <1 < m — 1) size processor will be split to a depth of h — (S; — S1)
thus the final density difference for the optimal offline algorithm for this input
is zero, the load density ratio is 1. We show the online algorithm’s cost has to
be 245 below.

Given that the online algorithm’s solution tree for the first wave of input
satisfies Ah < 3AS, it is easy to see that from the second wave, the best the
online algorithm could do is to use each arriving S,, processors to split a current
shallowest node, for nodes of the same depths, select a .S; size instead of a S, size
to split unless there is no S; size processors for the shallowest depth. Then at the
end of the S,,, input, denote the deepest S, processor’s depth as h,,, there will be
at least (2/=45 — 1)/2hm—hmin > gh=AS—1 94k > 9h—4AS—1 G size processors
with a depth less than or equal to h,,. Since h > AS, we have 27 ~445-1 5 245,
Since the total number of the rest input is only m — 1 + ny < 245, we know in
the final solution tree not all the S; processors that are not deeper than h,, can



be split to a depth bigger than h,,. So the resulting solution tree will have the
smallest density as at most S1 + h,,,, and the largest density as at least Sy, + hp,,
or a load density ratio of at least 2551 = 245, The ratio between the online
and offline cost then is 245 + 1 = 245,

Since for any online algorithm, it will be either of the above two cases, we
have proved that the ratio between any online algorithm’s load density ratio cost
and optimal offline algorithm’s load density ratio in the worst case will be at
least 245, In other words, 245 is a lower bound for the competitive ratio of any
online algorithm.

Proof of Theorem 5:

We describe an algorithm with a cost of at most 245+ for all possible inputs.

Conservative Algorithm(ConA): The first processor will be placed at the
root of the tree. After this, for any arriving processor the algorithm will select
a shallowest node to split, and within the shallowest nodes, select the smallest
density (or smallest size) processor to split.

It is easy to see that this algorithm will give a solution tree with a depth
difference of at most 1, thus the density difference is at most AS + 1 and the
load density ratio is at most 245+,

Since the density difference for any algorithm is nonnegative, including the
optimal offline algorithm, the load density ratio is then at least 1 for any algo-
rithm. Thus we know the competitive ratio for ConA is at most 2451,



