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Abstract

Multi-agent planning in stochastic environments can be framed formally as a decentralized
Markov decision problem. Finding the optimal joint solution in the general case is hard, lim-
iting the applicability of recently developed algorithms. This paper provides a more practical
approach for situations in which communication among the decision makers is possible. We
specifically focus on goal-oriented decentralized MDPs, where the agents have the ability to
communicate with each other. These problems are particularly difficult to solve because global
goal-oriented behavior does not necessarily induce local goal-oriented behavior when commu-
nication is allowed. No efficient algorithms are known to date that solve optimally this class
of problems, which are common in manufacturing, multi-robot coordination, and information
gathering scenarios.

We develop the notion of mechanism design for communication that allows us to decompose
a decentralized MDP into multiple single-agent problems. In this framework, referred to as
Dec-SMDP-Com, agents operate separately between communications. We show that finding an
optimal mechanism is equivalent to solving optimally a Dec-SMDP-Com. We also provide a
heuristic search algorithm that converges on the optimal solution. Restricting mechanisms to
specific types of local behaviors reduces significantly the complexity leading to a polynomial al-
gorithm. The paper concludes with two additional polynomial algorithms: the first computes a
myopic-greedy policy of communication and the second one, based on backward induction, com-
putes the optimal policy of communication for monotonic decentralized MDPs when the policies
of action are given. Empirical results show that these approaches provide good approximate
answers.

1 Introduction

Decentralized Markov decision processes are becoming a popular formal tool to study multi-
agent planning and control problems [3, 14, 15, 22, 26]. Reinforcement learning and heuristic
approaches were also pursued to study the problem of coordinating distributed decision makers
(e.g., [38, 31, 39]). In [13], we briefly described the connections between these works and our
approach. It is already known [4, 28] that solving optimally a general decentralized control prob-
lem is very hard. This difficulty is due to two main reasons: 1) none of the decision-makers has
full-observability of the global system and 2) the global performance of the system depends on a
global reward, which is affected by the agents’ behaviors. Solving a decentralized Markov decision
problem (Dec-MDP) optimally,1 without restricting the problem to any specific class requires a

1Dec-POMDP problems refer to decentralized partially observable Markov decision processes.
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double-exponential algorithm in the worst case. In our previous work [13], we have studied the
complexity of solving optimally certain classes of Dec-MDPs and Dec-POMDPs. We showed that
decentralized problems with independent transitions and observations are considerably easier to
solve, i.e., they are NP-complete. Moreover, we show that adding goal-oriented behavior can even
reduce the complexity to polynomial when information sharing is not possible. However, no efficient
algorithm is known that finds the optimal decentralized solution to a goal-oriented Dec-MDP-Com
with direct communication and many global goal states (we showed that in the worst case this algo-
rithm time is NP). This problem is complex because global goal-directed behavior does not induce
local goal-directed behavior. Information that can be acquired by the agents during execution may
affect the choice of the most beneficial global goal state.

The contribution of this paper is a tractable approximation method, based on mechanisms for
communication. This approach provides a practical way to solve these goal-oriented decentralized
problems when exchange of messages is allowed (GO-Dec-MDP-Com). Our approach is to allow
the agents to exchange information from time to time attaining knowledge of their current global
state. Between communications agents will act independently of each other, and therefore may not
follow the optimal policy of action. This paper presents the first algorithms that solve this type of
problems, including one that computes the optimal mechanism: the algorithms presented compute
the mappings from global states to individual behaviors and policies of communication with the
highest values. The algorithms presented differ in the space of behaviors they search: our solutions
range from the most general search space available to more restricted set of behaviors. We also
discuss how to extend this approach to other hard decentralized control problems.

The problem of decentralized control with direct communication was also studied by Ghavamzadeh
and Mahadevan [10] and Nair et al. [21]. The first authors assumed an action dependency graph
similar to the one used by Guestrin et al. [14] and added a cost to each information exchange. They
suggested an approximate algorithm that is based on an on-line learning procedure assuming that
the centralized solution is known ahead of time. The policy of communication is determined by the
given hierarchy of tasks. That is, an agent will communicate if it is beneficial to incur the commu-
nication cost at a known time. Therefore, communication can not prevent an agent from doing a
certain task if it has already started to perform it. We take an off-line approach to compute the
optimal policy of communication considering that information exchanges incur some cost and that
the temporal abstracted actions can be interrupted at any time. The second group of researchers
compute a local optimal joint policy that includes both domain and communication actions. It is
not clear how close this approximation is to the optimal joint solution. We know [13] that solving
a decentralized MDP with direct communication and independent transitions and observations is
NP-complete. We show first an algorithm that computes the optimal mechanism, and later a poly-
nomial algorithm, which finds the optimal local goal-oriented behaviors. In addition, we present
two polynomial algorithms that compute the policy of communication for a given set of temporal
abstracted actions. We characterize the class of problems for which this policy of communication
is optimal. The last two algorithms take advantage of possible existing human knowledge that
could be combined into the decentralized model to solve decentralized Markov decision problems
optimally. The closer the human-designed local plans are to local optimal behaviors, the closer our
mechanism approach solution will be to the optimal joint solution. Balch and Arkin’s [2] approach
to communication between robots is inspired by biological models and refers to specific tasks such as
foraging, consumption and grazing. Their empirical study was performed in the context of reactive
systems and communication was free. Our general aim is to find optimal policies of communication
and action off-line taking into account information that agents can acquire on-line. Game theory
researchers [19, 1, 37, 5] have also looked at communication although the approaches and questions
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are somewhat different from ours. We study sequential decision making problems where all the
agents can send various types of messages, which incur some cost.

Section 3 introduces the notion of mechanism for communication as a method to decompose
decentralized problems into temporary single-agent problems, which are assigned based on infor-
mation exchanged from time to time (also determined by the mechanism). We formally frame this
approach as a decentralized semi-Markov decision process with direct communication (Dec-SMDP-
Com) in Section 4. We are interested in the mechanism approach as a way to solve decentralized
processes where direct communication is allowed to overcome the lack of global information. Single-
agent semi-Markov decision processes with concurrent actions were studied when a set of temporal
abstracted actions were given as part of the model [29]. Communication was not relevant in that
model since there was only one agent controlling a single process. We are also interested in com-
puting the temporal abstractions out from the primitive domain actions and communication acts.
Section 5 presents an algorithm that computes the optimal mechanism. The decentralized multi-
step backup policy-iteration algorithm solves for the optimal communication actions and domain
actions altogether. Unfortunately, searching all possible trees of primitive actions is hard. Section 6
presents the first practical solution, assuming that each agent can be assigned local goal states as
local planning problems. For each global state, the algorithm finds the optimal pair of local goals
and the period of time given to the agents to work on these goals. Agents communicate at the end
of the period of time allowed for acting even though they may not have reached their local goals.
Assuming local goal-oriented behavior reduces the complexity of the problem to polynomial in the
number of states. In the first two solutions presented in the paper, the policy of communication
is found together with the policy of action. Empirical results are shown for a manufacturing line
process in Section 6.2.

Another way to approach the decentralized control problem with a mechanism approximation is
to assume that the decomposition of a global problem into single agent problems is given. However,
the policy of communication needs to be computed. We have implemented a myopic-greedy solution
(Section 7) and a backward-induction solution (Section 8) to compute the greedy and the optimal
policies of communication, respectively. We prove that the backward-induction algorithm finds
indeed the optimal solution for monotonic Dec-MDPs with a given mechanism. Both methods run
in polynomial time. These approximations require that each agent’s local policy be composed of
two separate policies, one for communication and one for action. Empirical results are shown for
the Meeting under Uncertainty scenario presented in Appendix B. We view the mechanism for
communication as a general approach to approximate the optimal joint solution of a decentralized
control problem. Section 9 discusses a similar mapping from global states to individual behaviors
that could be computed in processes which are not necessarily goal oriented. Section 10 concludes
this research.

2 The Dec-MDP model

In this paper, we concentrate on goal-oriented decentralized Markov processes.2 The general un-
derlying process, which allows the agents to exchange messages directly with each other is a decen-
tralized POMDP with direct communication:

2All the definitions are taken from Goldman and Zilberstein [13]. The definitions relevant to this paper are
brought here to make the paper self-explanatory. For simplicity of exposition, we present our definitions for a system
composed of two agents.
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Definition 1 (Dec-POMDP-Com) A decentralized partially-observable Markov decision process
with direct communication, Dec-POMDP-Com is given by the following tuple:
M =< S,A1, A2,Σ, CΣ, P,R,Ω1,Ω2, O, T >, where

• S is a finite set of world states with a distinguished initial state s0.

• A1 and A2 are finite sets of control actions. ai denotes the action performed by agent i.

• Σ denotes the alphabet of messages and σi ∈ Σ represents an atomic message sent by agent i
(i.e., σi is a letter in the language).

• CΣ is the cost of transmitting an atomic message: CΣ : Σ → #. The cost of transmitting a
null message is zero.

• P is the transition probability function. P (s′|s, a1, a2) is the probability of moving from state
s ∈ S to state s′ ∈ S when agents 1 and 2 perform actions a1 and a2 respectively. We note
that the transition model is stationary, i.e., it is independent of time.

• R is the global reward function. R(s, a1, a2, s′) represents the reward obtained by the system
as a whole, when agent 1 executes action a1 and agent 2 executes action a2 in state s resulting
in a transition to state s′.

• Ω1 and Ω2 are finite sets of observations.

• O is the observation function. O(o1, o2|s, a1, a2, s′) is the probability of observing o1 and o2

(respectively by the two agents) when in state s agent 1 takes action a1 and agent 2 takes
action a2, resulting is state s′.

• If the Dec-POMDP has a finite horizon, it is represented by a positive integer T .

We assume that the system has independent observations and transitions. Assuming that
s = (s1, s2) ∈ S are the factored states of the system, ai the domain actions and oi the agents’
observations, the formal definitions for decentralized processes with independent transitions, and
observations follow.

Definition 2 (A Dec-POMDP with Independent Transitions) A Dec-POMDP has indepen-
dent transitions if the set S of states can be factored into two components S1 and S2 such that:

∀s1, s
′
1∈S1,∀s2, s

′
2∈S2,∀a1∈A1,∀a2∈A2,

P r(s′1|(s1, s2), a1, a2, s
′
2) = Pr(s′1|s1, a1) ∧

Pr(s′2|(s1, s2), a1, a2, s
′
1) = Pr(s′2|s2, a2).

In other words, the transition probability P of the Dec-POMDP can be represented as
P = P1 × P2, where P1 = Pr(s′1|s1, a1) and P2 = Pr(s′2|s2, a2).

Definition 3 (A Dec-POMDP with Independent Observations) A Dec-POMDP has inde-
pendent observations if the set S of states can be factored into two components S1 and S2 such that:

∀o1∈Ω1,∀o2∈Ω2,∀s=(s1, s2), s′=(s′1, s
′
2) ∈ S,∀a1∈A1,∀a2∈A2,

P r(o1|(s1, s2), a1, a2, (s′1, s
′
2), o2) = Pr(o1|s1, a1, s

′
1)∧
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Pr(o2|(s1, s2), a1, a2, (s′1, s
′
2), o1) = Pr(o2|s2, a2, s

′
2)

O(o1, o2|(s1, s2), a1, a2, (s′1, s
′
2)) = Pr(o1|(s1, s2), a1, a2, (s′1, s

′
2), o2)×Pr(o2|(s1, s2), a1, a2, (s′1, s

′
2), o1).

In other words, the observation probability O of the Dec-POMDP can be decomposed into two
observation probabilities O1 and O2, such that O1 = Pr(o1|(s1, s2), a1, a2, (s′1, s′2), o2) and O2 =
Pr(o2|(s1, s2), a1, a2, (s′1, s′2), o1).

Definition 4 (Dec-MDP) A decentralized Markov decision process (Dec-MDP) is a Dec-POMDP,
which is jointly fully observable, i.e., the combination of both agents’ observations determine the
global state of the system (note that none of the agents can see the global state).

We have proved that Dec-MDPs with independent transitions and observations are locally fully-
observable. In particular, exchanging the last observation is sufficient to obtain complete informa-
tion about the current global state and guarantees optimality of the solution [13].

In this paper, we concentrate on a particular hard class of Dec-MDP problems comprised of goal-
oriented decentralized problems with independent transitions and observations. A goal-oriented
Dec-MDP GM has the following characteristics:

Definition 5 (Finite-horizon Goal-oriented Dec-MDPs (GO-Dec-MDP)) A finite-horizon
Dec-MDP is goal-oriented if the following conditions hold:

1. There exists a special subset G of S of global goal states. At least, one of the global goal states
g ∈ G is reachable by some joint policy.

2. The process ends at time T (the finite horizon of the problem).

3. All actions in A incur a cost, C(ai) < 0. For simplicity, we assume in this paper that the cost
of an action depends only on the action. In general, this cost may also depend on the state.

4. The global reward is R(s, a1, a2, s′)=C(a1)+C(a2).

5. If at time T , the system is in a state s ∈ G there is an additional reward JR(s) ∈ # that is
awarded to the system for reaching a global goal state.

We present the mechanism for communication approach for goal-oriented Dec-MDPs with direct
communication and independent transitions and observations. Section 9 extends this approach to
more general Dec-MDP problems.

3 Mechanism Design for Communication

We introduce the notion of mechanisms for communication as a practical approach for approxi-
mating the optimal joint policy of a decentralized control problem.We borrow from game theory
and economics the notion of mechanism design [20].3 In order to reduce the complexity of solving
optimally the general control problem, we propose to design mechanisms for decentralizing the
control, allowing the agents to synchronize their partial views from time to time through com-
munication. That is, a mechanism reduces the decentralized optimization problem to a series of
temporary and individual behaviors. Suggesting a mechanism comprises also a policy of communi-
cation that instructs the agents when to obtain global information. The mechanism is applied on

3Our approach is different from other studies done on algorithmic mechanism design (See related work in Ap-
pendix A).
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each global state revealed, each time the agents communicate. Between communications, agents
follow individual behaviors assigned by the mechanism.

A decentralizing control mechanism DCM is a function from any global state of the decen-
tralized problem to two single agent behaviors or policies:4 DCM : S → {opt1, opt2}. In order to
study mechanisms for communication, we draw an analogy between temporary and local policies of
actions of each agent and options. Options were defined by Sutton et al. [34] as temporal abstracted
actions, formalized as triplets including a stochastic single-agent policy, a termination condition,
and a set of states in which they can be initiated: Opt =<π : S×A → [0, 1],β : S+ → [0, 1], I ⊆ S >.
An option is available in a state s if s ∈ I.

In our approach, we consider options with terminal actions (instead of terminal states). Termi-
nal actions were also considered by Hansen and Zhou in the framework of indefinite POMDPs [17].
We denote the domain actions of agent i as Ai. The set of terminal actions includes only the
messages that could be exchanged, i.e., Σ. For one agent, an option is given by the following
tuple: Opti =< π : Si × T → Ai

⋃
Σ, I ⊆ Si >, i.e., an option is a non-stochastic policy from the

agent’s partial view (local states) and time to the set of its primitive domain actions and terminal
actions. The local states Si are given by the factored representation of the Dec-MDP with indepen-
dent transitions and observations. Similarly, the transitions between local states are known since
P (s′|s, a1, a2) = P1(s′1|s1, a1)P2(s′2|s2, a2).

In this paper, we concentrate on terminal actions that are necessarily communication actions.
We assume that all options are terminated whenever at least one of the agents initiates commu-
nication (i.e., the option of the message sender terminates when it communicates and the hearer’s
option terminates due to this external event). We also assume that there is joint exchange of mes-
sages, i.e., whenever one agent initiates communication, the global state of the system is revealed
to all the agents: when agent 1 sends its observation o1, it will also receive agent 2’s observation
o2. This exchange of messages will cost the system only once. Here, we focus on finite-horizon
processes, so the options may also be artificially terminated if the time limit of the problem is over.
The cost of communication CΣ may include, in addition to the actual transmission cost, the cost
resulting from the complexity of computing the agents’ local policies.

Decentralizing control mechanisms enable the agents to operate separately for certain periods
of time. The question, then, is how to design mechanisms that will approximate best the optimal
joint policy of the decentralized problem. The best approximation is obtained when we compute the
optimal mechanism among all possible mechanisms (i.e., we need to search over all possible pairs
of local single-agent policies and communication policies). Mechanisms with lower complexity can
be computed by restricting the characteristics of the options allowed. We can talk, then, about the
optimal mechanism for a certain set of options (e.g., goal-oriented options). Sections 4-6 study this
approach. Sometimes, a restricted set of options may be available to the designer of a mechanism.
For example, knowledge about individual procedures may already exist. The mechanism approach
allows us to combine such human-designed knowledge into the solution of the decentralized problem.
Assuming that a mapping is given for every global state to single-agent behaviors, the computation
of a mechanism will involve computing the policy of communication that will synchronize the
agents’ partial information. In such case, the local policy of communication is computed at the
meta-level of control. In Sections 7 and 8, we study a greedy approach and an optimal algorithm
for computing a policy of communication when knowledge about local behaviors is given.

Practical concerns lead us to the study of mechanisms for communication. In order to design
applicable mechanisms, three desirable properties need to be considered:

4In general, a mechanism can be applied to systems with n agents, in which case the decomposition of the
decentralized process will be into n individual behaviors.
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• Computational complexity — The whole motivation behind the mechanism approach is
based on the idea that the mechanism itself has low computational complexity. Therefore,
the computation of the DCM mapping should be practical in the sense that the two single-
agent individual behaviors will have complexity that is lower than the complexity of the
decentralized problem with communication at free cost. There is a trade-off between the
complexity of computing a mechanism and the global reward of the system. There may
not be a simple way to split the decentralized process into two separate local behaviors. The
complexity characteristic should be taken into account when designing a mechanism; different
mechanisms can be computed at different levels of difficulty.

• Complete — A mechanism is complete if there exists a communication policy that guarantees
that the agents reach one of the global goals whenever it is possible.

• Efficient — A mechanism DCM1 is more efficient than another mechanism DCM2 if the
global reward attained by DCM1 with some policy of communication is larger than the global
reward attained by DCM2 with any communication policy. A mechanism is optimal for a
certain problem if there is no mechanism that is more efficient.

4 Decentralized Semi-Markov Decision Problems

The problem of solving a GO-Dec-MDP-Com with a mechanism can be stated as a decentralized
semi-Markov problem with direct communication over temporal abstracted actions. Formally, a
GO-Dec-SMDP-Com is given as follows:

Definition 6 (GO-Dec-SMDP-Com) A factored, finite-horizon goal-oriented Dec-SMDP-Com
over an underlying goal-oriented Dec-MDP-Com GM is a tuple
< GM,Opt1, Opt2, PN , RN > where:

• S, Σ, CΣ, Ω1, Ω2, O and T are components of the underlying process GM defined in defini-
tions 5, 4 and 1.

• Opti is the set of actions of agent i. It comprises the possible options that an agent can choose
to perform, which terminate necessarily with a communication act:
Opti =< π : Si × T → Ai

⋃
Σ, I ⊆ Si >.

• PN (s′, t+N |s, t, opt1, opt2) is the probability of the system reaching state s′ after exactly N
time units (t+N < T ), when at least one option terminates (necessarily with a communication
act). We are assuming that after N time steps at least one agent initiates communication
(for the first time since time t) and this interrupts the option of the hearer agent. Then,
both agents get full observability of the synchronized state. Assuming that the decentralized
process has independent transitions and observations, PN is the probability that either agent
has communicated or both of them have. The probability that agent i terminated its option
exactly at time t + N , PN

i , is given as follows:

PN
i (s′i, t+N |si, t, opti) =






1 if (πopti(si, t) ∈ Σ) ∧ (N =1) ∧ (s′i =si))
0 if (πopti(si, t) ∈ Σ) ∧ (N =1) ∧ (s′i (=si))
0 if (πopti(si, t) ∈ A) ∧ (N =1))
0 if (πopti(si, t) ∈ Σ) ∧ (N >1))

if (πopti(si, t) ∈ A) ∧ (N >1))
ΣqiPr(qi|si,πopti(si, t))PN

i (s′i, t+N |qi, t+1, opti)
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The single-agent probability is one when the policy of the option instructs the agent to com-
municate (i.e., πopti(si, t) ∈ Σ) and the local process remains in the same local state. Finally,
we obtain that:

PN (s′, t+N |s, t, opt1, opt2) = PN
1 (s′1, t+N |s1, t, opt1)(1 − PN

2 (s′2, t+N |s2, t, opt2))+

PN
2 (s′2, t+N |s2, t, opt2)(1 − PN

1 (s′1, t+N |s1, t, opt1))+

PN
1 (s′1, t+N |s1, t, opt1)PN

2 (s′2, t+N |s2, t, opt2)] =

PN
1 (s′1, t+N |s1, t, opt1))+PN

2 (s′2, t+N |s2, t, opt2)−PN
1 (s′1, t+N |s1, t, opt1))PN

2 (s′2, t+N |s2, t, opt2)

• RN (s, t, opt1, opt2, s′, t+N) is the expected reward obtained by the system N time steps after
the agents started options opt1 and opt2 respectively in state s at time t, when at least one of
them has terminated its option with a communication act (resulting in the termination of the
other agent’s option).

RN (s, t, opt1, opt2, s
′, t+N) =

{
JR(s′) if s′ ∈ G and t+N = T
2Cost(a)(t+N) + CΣ if t+N < T

The dynamics of a semi-Markov decentralized process are as follows: Each agent performs its
option starting in some global state s that is fully-observed. Each agent’s option is a mapping
from local states to actions, so agent i starts the option in state si at time t until it terminates in
some state s′i, k time steps later. There are two cases when this option may terminate earlier than
t+k: 1) either t+k>T , where T is the finite horizon; then, even though the action chosen by the
option at time T −1 was not terminal the process will end. 2)Or the other agent communicates
before t+k terminating the hearer’s option. Whenever the options are terminated, the agents get
full observability of their global state. If they reach state s′ at time t+k<T , then the joint policy
chooses a possible different pair of options at state s′ at time t+k and the process continues.

Since we assume that communication leads to joint exchange of messages, all the agents observe
the global state of the system once information is exchanged. This exchange occurs at every global
state and therefore all the states are fully-observable(as opposed to jointly fully-observable states as
in the classical Dec-MDP-Com). In general, this may not always be the case. For example, we may
have different models of communication, where partial information may be transferred, or where
the flow of information is unidirectional (i.e., only the receiver of the message knows information
about the sender, but the sender does not get any information from the receiver).

The local policy for an agent i in the GO-Dec-SMDP-Com is a mapping from the global states
to its options (as opposed to 1) a mapping from sequences of observations as in the general Dec-
POMDP case, and 2) a mapping from a local state as in the Dec-MDPs with independent transitions
and observations, which are locally fully observable).

µi : S × T → Opti

A joint policy is a tuple of local policies, one for each agent, i.e., a joint policy instructs each
agent to choose an option in each global state. In other words, solving for an optimal mechanism
is equivalent to solving optimally a decentralized semi-Markov decision problems with temporal
abstracted actions.

Lemma 1 A GO-Dec-SMDP-Com is equivalent to a multi-agent MDP.

8



Proof. Multiagent MDPs (MMDPs [6]) are tuples of the form < α, {Ai}i∈α, S, Pr,R >. α is a
finite collection of n agents. In particular, these are the agents that are controlling the decentralized
process in our scenario. {Ai}i∈α represents the joint action space. This corresponds to the options
chosen in each global state in our case (e.g., if n = 2 then Ai = {Opt1, Opt2}). S is a finite set
of system states. In the GO-Dec-SMDP-Com case, the set S is the set of global states, where
the agents attained this global information as a result of communication. Pr is the transition
probability from states and actions to next states. In the GO-Dec-SMDP-Com, this corresponds to
the probability function PN . Finally, R is the reward function that assigns a real number to states.
The GO-Dec-SMDP-Com model includes the function RN that assigns these values to transitions
between states (in the case of global goal-oriented behavior, the system only incurs some negative
cost while acting and yields some joint reward JR at time T if the system is at a global goal state
then). !

Solving a decentralized semi-Markov process with communication is P-complete because of
Lemma 1 and the complexity result known for deciding single agent MDPs [25]. However, the
input to this problem not only includes the states but also a double exponential number of domain
actions for each agent. The naive solution to the GO-Dec-SMDP-Com problem is to search the
space of all possible pairs of options, and find the pair that maximizes the value of each global state.
The multi-step policy-iteration algorithm, presented in Section 5, implements a heuristic version
of this search that converges to the optimal mechanism. Since the resulting search space becomes
intractable for even very simple and small problems, we constrain the mechanisms in Sections 6-8
so that they necessarily assign local goals to each one of the agents, allowing them to communicate
before having reached their local goals. Section 6 presents the algorithm that computes the optimal
mechanism assuming that the agents can be assigned local goal-oriented behaviors. Another way
to simplify this solution is to restrict ourselves to a certain set of options that does not include
all the possible actions. The solution to the decentralized semi-Markov problem when the options
are restricted can be found in a manner similar to the one shown for the single agent semi-Markov
process when the options were restricted (see [34] or equivalently see semi-Markov models [27]).
Following Sutton et al., a corresponding optimal policy µ∗

O, given a set of restricted options O
is any policy that achieves V ∗

O, i.e., for which V µ∗
O = V ∗

O(si) in all states si ∈ Si. V ∗
O(si) is the

maximum value that can be obtained over all possible options in the restricted set.

5 Multi-step Backup Policy-Iteration for GO-Dec-MDP-Com

Solving a Dec-SMDP problem optimally means computing the optimal pair of options for each fully-
observable global state. These options instruct the agents how to act independently of each other
and terminate with exchange of information. In order to find these options for each global state,
we apply an adapted version of the multi-step backup policy-iteration algorithm with heuristic
search [16]. We prove that this algorithm converges to the optimal policy of the decentralized case
with temporal abstracted actions.

We extend the model of the single-agent POMDP with costs [16] to our GO-Dec-SMDP-Com
model. From the global perspective, each agent that follows its own option without knowing the
global state of the system, is following an open-loop. However, locally, each agent is following an
option, which does depend on the agent’s local observations. We first define a multi-step backup
for options, when s and s′ are global states of the decentralized problem: V (s, t, T ) =

maxopt1,opt2∈OPTb{Σ
min{b,T−t}
k=1 Σs′P

N (s′, t+k|s, t, opt1, opt2)[RN (s, t, opt1, opt2, s
′, t+k)+V (s′, t+k, T )]}

OPTb is the set of options of length at most b. This length is defined as follows:
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Definition 7 (The length of an Option) The length of an option is k if the option can perform
at most k domain actions in one execution.

Similarly to Hansen’s work, b is a bound on the length of the options (k ≤ b). We analyze
here the finite horizon GO-Dec-SMDP-Com case, therefore b ≤ T . PN (s′, t+k|s, t, opt1, opt2) and
RN (s, t, opt1, opt2, s′, t+k) are taken from the GO-Dec-SMDP-Com model (Definition 6).

We apply the multi-step backup policy-iteration algorithm (see Figure 2) using Hansen’s pruning
rule [16] that was adapted to work on pairs of policies instead of single linear sequences of actions.
The resulting optimal multi-step backup policy is equivalent to the optimal policy of the MMDP
(Lemma 1), i.e., it is equivalent to the optimal decentralized policy of a Dec-MDP-Com with
temporal abstracted actions. In order to explain the pruning rule for the decentralized case with
temporal abstracted actions, we define what policy-trees structures are.

Definition 8 (Policy-tree) A policy-tree is a tree structure, composed of local state nodes and
corresponding action nodes at each level. Communication actions can only be assigned to leaves of
the tree. The edges connecting an action a (taken at the parent state si) with a resulting state s′i
have the transition probability P (s′i|si, a) assigned to them.

Figure 1 shows a possible policy-tree. An option is represented by a policy-tree with all its
leaves assigned communication actions. We denote a policy-tree srootα, by the state assigned to

s1

a1

s1 s2 s3

s4s1

a2 a3

!3!2a1

Figure 1: A Policy Tree of Size k = 3.

its root (e.g., sroot), and an assignment of domain actions and local states to the rest of the nodes
(e.g., α). The size of a policy-tree is defined as follows:

Definition 9 (Size of a Policy-tree) The size of a policy-tree is k if the longest branch of the
tree, starting from its root is composed of k−1 edges.5 A policy-tree of size one includes the root
state and the action taken at that state.

π(αk) is the policy induced by the assignment α with at most k actions in its implementation.
The expected cost g of a policy-tree srootαk is the expected cost that will be incurred by an agent

5We count the edges between actions and resulting states.
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when it implements the policy π(αk). We denote the set of nodes in a tree that do not correspond
to leaves as NL and the set of states assigned to them SNL. We use the notation α \ n to refer to
the α assignment excluding node n. The expected cost of a tree, g(srootαk), is given as follows:

g(srootαk) =
{

Cost(aroot) if k = 1
Cost(aroot) + Σs′i∈SNL

[Pr(s′i|sroot, aroot)g(s′i(α \ root)k−1)] if 1 ≤ k ≤ T

Since the decentralized process has factored states, we can write a global state s as a pair
(s1, s2). Assuming that each agent can act independently of each other for some period of time k,
we can refer to the information global state of the system after k time steps as s1αks2βk, where
s1αk and s2βk correspond to each agent’s policy tree of size k.6

The heuristic function that will be used in the search for the optimal decentralized joint policy
of the GO-Dec-SMDP-Com follows the traditional notation, i.e., f(s) = g(s) + h(s). In our case,
these functions will be defined over pairs of policy-trees, i.e., f(sαkβk) = G(sαkβk) + H(sαkβk).
The f value denotes the backed-up value for implementing policies π(αk) and π(βk), respectively
by the two agents, starting in state s at time t. The expected value of a state s at time t when the
horizon is T is given by the multi-step backup for state s as follows:

V (s, t, T ) = max|α|,|β|≤ b{f(sαβ)}.

(The policy-trees corresponding to the assignments α and β are of size at most b ≤ T ).
We define the expected cost of implementing a pair of policy-trees, G, as the sum of the expected

costs of each one separately. If the leaves had communication actions, the cost of communication
is taken into account in the g functions. If the leaves do not have communication actions assigned
to them, similarly to Hansen, we assume for the computation of the f function that the agents can
sense and we do not consider the cost then.

G(s1αks2βk) = g(s1αk) + g(s2βk).

An option is a policy-tree with communication actions assigned to all its leaves. We denote
that option by opt1(αk) (or opt2(βk)). The message associated with a leaf corresponds to the local
state that is assigned to that leaf by α (or β). We define the expected value of perfect information
of the information state sαβ after k time steps:

H(sαkβk) = Σs′P
N (s′, t+k|s, t, opt1(αk), opt2(βk))V (s′, t+k, T )

If s′ is a goal state and t+k equals T then the term V (s′, t+k, T ) should be replaced with
JR(s′) that is a special joint reward that the system receives when a global goal is reached at time
T . A penalty is awarded if at time T no global goal state is reached. Since we assume that the
transitions and observations are independent,

H(sαkβk) = H(s1αks2βk) = Σ(s′1,s′2)
[(PN

1 (s′1, t+k|s1, t, opt1(αk)) + PN
2 (s′2, t+k|s2, t, opt2(βk))

−PN
1 (s′1, t+k|s1, t, opt1(αk))PN

2 (s′2, t+k|s2, t, opt2(βk)))V ((s′1, s
′
2), t + k, T )].

The multi-step backup policy-iteration algorithm adapted from Hansen to the decentralized
control case appears in Figure 2. Intuitively, the heuristic search over all possible options unfolds
as follows: Each node in the search space is composed of two policy-trees, each representing a

6We assume that at least one agent communicates at time t+k. This will necessarily interrupt the other agent’s
option at the same time t+k. Therefore, it is sufficient to look at pairs of trees of the same size k.
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local policy for one agent. The search advances through nodes whose f value (considering both
trees) is greater than the value of the global root state (composed of the roots of both policy-trees).
All nodes whose f value does not follow this inequality are actually pruned and are not used for
updating the joint policy. The policy is updated when a node, composed of two options is found
for which f > V . All the leaves in these options (at all possible depths) include communication
acts. The updated policy δ′ maps the global state s to these two options. When all the leaves
in one policy-tree at current depth i have communication actions assigned, the algorithm assigns
communication acts to all the leaves in the other policy-tree at this same depth. This change
in the policies is correct since we assumed joint exchange of information (i.e., all the actions are
interrupted when at least one agent communicates). We notice, though, that there may be leaves
in these policy-trees at depths lower than i that may still have domain actions assigned. Therefore,
these policy-trees cannot be considered options yet and they remain in the stack. Any leaves that
remain assigned to domain actions will be expanded by the algorithm. This expansion requires the
addition of all the possible next states, that are reachable by performing the domain-actions in the
leaves, and the addition of a possible action for each such state. If all the leaves at depth i of one
policy-tree are already assigned communication acts, then the algorithm expands only the leaves
with domain actions at lower levels in both policy-trees. No leaf will be expanded beyond level i
because at the corresponding time one agent is going to initiate communication and this option is
going to be interrupted anyways.

Hansen [16] proved that multi-step backup policy-iteration with heuristic pruning converges to
the optimal policy in the single-agent case with linear sequences of actions and infinite horizon. In
the next section, we show the convergence of the MSBPI algorithm presented in Figure 2 to the
optimal decentralized solution of the GO-Dec-SMDP-Com when agents follow temporal abstracted
actions and the horizon is finite.

5.1 Optimal Decentralized Solution with Multi-step Backups

In this section, we prove that the MSBPI algorithm presented in Figure 2 converges to the optimal
decentralized control joint policy with temporal abstracted actions and direct communication. We
first show that the policy improvement step in the algorithm based on heuristic multi-step backups
improves the value of the current policy if it is sub-optimal. Finally, the policy iteration algorithm
iterates over improving policies and it is known to converge.

Theorem 1 When the current joint policy is not optimal, the policy improvement step in the
multi-step backup policy-iteration algorithm always finds an improved joint policy.

Proof. We adapt Hansen’s proof to our decentralized control problem, when policies are repre-
sented by policy-trees. Algorithm MSBPI in Figure 2 updates the current policy when the new
policy assigns a pair of options that yield a greater value for a certain global state. We show
by induction on the size of the options, that at least for one state, a new option is found in the
improvement step (step 3.b.ii).

If the value of any state can be improved by two policy-trees of size one, then an improved
joint policy is found because all the policy-trees of size one are evaluated. We initialized δ with
such policy-trees. We assume that an improved joint policy can be found with policy-trees of
size at most k. We show that an improved joint policy is found with policy-trees of size k. Lets
assume that αk is a policy tree of size k, such that f(sαkβ) > V (s) with communication actions
assigned to its leaves. We notice that if this is the case then the policy followed by agent 2 will
be interrupted at time k at the latest. One possibility is that sαkβ is evaluated by the algorithm.
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1. Initialization: Start with an initial joint policy δ that assigns a pair of options to each global state s.
2. Policy Evaluation: ∀s ∈ S, V δ(s, t, T ) =
ΣT−t

k=1Σs′PN (s′, t+k|s, t,πopt1(s1, t),πopt2(s2, t))[RN (s, t,πopt1(s1, t),πopt2(s2, t), s′, t+k) + V δ(s′, t+k, T )]
3. Policy Improvement: For each state s = (s1, s2) ∈ S :

a. Set-up:
Create a search node for each possible pair of policy-trees with length 1 (s1α1, s2β1).
Compute f(sα1β1) = G(sα1β1) + H(sα1β1).
Push the search node onto a stack.

b. While the search stack is not empty, do:
i. Get the next pair of policy-trees:
Pop a search node off the stack and let it be (s1αi, s2βi)
(the policy-trees of length i starting in state s = (s1, s2))
Let f(sαiβi) be its estimated value.
ii. Possibly update policy:

if (f(sαiβi)=G(sαiβi) + H(sαiβi)) > V (s, t, T ), then
if all leaves at depth i in either αi or βi have a communication action assigned, then

Assign a communication action to all the leaves in the other policy-tree at depth i
if all leaves in depths ≤ i in both αi and βi have a communication action assigned, then

Denote these new two options opti1 and opti2.
Let δ′(s) = (opti1, opti2) and V (s, t, T ) = f(sαiβi).

iii. Possibly expand node:
If (f(sαiβi)=G(sαiβi) + H(sαiβi)) > V (s, t, T ), then

if ((some of the leaves in either αi or βi have domain actions assigned) and
((i+2) ≤ T )) then

/*At t+1 the new action is taken and there is a transition to another state at t+2*/
Create the successor node of the two policy-trees of length i,
by adding all possible transition states and actions to each leaf of each tree
that does not have a communication action assigned to it.
Calculate the f value for the new node (i.e., either f(sαi+1βi+1) if both policy
trees were expanded, and recalculate f(sαiβi) if one of them has communication
actions in all the leaves at depth i)
Push the node onto the stack.

/*All nodes with f < V are pruned and are not pushed to the stack.*/
4. Convergence test:

if δ = δ′ then
return δ′

else set δ = δ′, GOTO 2.

Figure 2: Multi-step Backup Policy-iteration Using Depth-first Branch and Bound Search (MSBPI).
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Then, an improved joint policy is indeed found. If this pair of policy-trees was not evaluated by
the algorithm, it means that α was pruned earlier. We assume that this happened at level i. This
means that f(sαiβ) < V (s). We assumed that f(sαkβ) > V (s) so we obtain that:

f(sαkβ) > f(sαiβ).

If we expand the f values in this inequality, we obtain the following:

g(sαi)+g(sβ)+Σs′P
N (s′, t+i|s, opt1(αi), opt2(β))[g(s′α(i, k))+g(s′β)+Σs′′P

N (s′′, t+i+k−i)V (s′′)] >

g(sαi) + g(sβ) + Σs′P
N (s′, t+i|s, opt1(αk), opt2(β))V (s′, t+i)

α(i, k) is the subtree starting at level i and ending at level k starting from s’.
After simplification we obtain:

Σs′P
N (s′, t+i|s, opt1(αi), opt2(β))[g(s′α(i, k)) + g(s′β) + Σs′′P

N (s′′, t+i+k−i)V (s′′)] >

Σs′P
N (s′, t+i|s, opt1(αk), opt2(β))V (s′, t+i)

That is, there exists some state s′ for which f(s′α(i, k)β) > V (s′). Since the policy-tree α(i, k)
has size less than k, by the induction assumption we obtain that there exists some state s′ for which
the multi-step backed-up value is increased. Therefore, the policy found in step 3.b.ii is indeed an
improved policy. !

Lemma 2 The complexity of computing the optimal mechanism by the MSBPI algorithm is
O(((|A1| + |Σ|)(|A2| + |Σ|))|S|T−1).

Proof. Each agent can perform any of the primitive domain actions in Ai and can communicate
any possible message in Σ. There can be at most |S|T−1 leaves in a policy tree with horizon T and |S|
possible resulting states from each transition. Therefore, each time the MSBPI algorithm expands a
policy tree (step 3.b.iii in Figure 2), the number of resulting trees is ((|A1|+ |Σ|)(|A2|+ |Σ|))|S|T−1 .
In the worst case, this is the number of trees that the algorithm will develop in one iteration.
Therefore, the size of the search space is a function of this number times the number of iterations
until convergence. !

As we proved in [13], solving optimally a GO-Dec-MDP-Com is NP in the worst case assuming
a naive search algorithm. As we show here, solving for the optimal mechanism is harder although
the solution may not be the optimal joint solution of the decentralized process. This is due to
the main difference between these two problems. In the GO-Dec-MDP-Com, we know that due to
the independent transitions and observations a local state is a sufficient statistic for the history of
observations. However, in order to compute an optimal mechanism we need to search in the space
of options, that is, no single local state is a sufficient statistic. The search space is larger since each
possible option that needs to be considered can be arbitrarily large (with each branch length being
bound by T ). In the Meeting under Uncertainty example (presented in Appendix B) there are six
primitive actions (four move actions, one stay action and a communication action) and 100 states
(when 0 ≤ x, y < 10). We need to expand all the possible combinations of pairs of policy-trees
leading to a possible addition of 36100T−1 nodes to the search space at each iteration. Restricting
the mechanism to a certain set of possible options, for example goal-oriented options leads to a
significant reduction in the complexity of the algorithm as it is shown in the next sections.
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6 GO-Dec-SMDP-Com With Local Goal-oriented Behavior

The previous section provided an algorithm that computes the optimal mechanism, searching over
all possible combinations of domain and communication actions for each agent. Since this approach
is very complex and time consuming, we take the approximation one step further: we look for the
optimal mechanism that assigns goal-oriented options to each global state.

Definition 10 (Goal-oriented Options) Let πopti(si, t) be the policy of an option opti. Let k be
some time limit. If there exists an optimal policy δ : Si → Ai that minimizes the cost to some goal
state component gi then opti is goal-oriented if for every state si and t ≤ k, πopti(si, t) = δ(si) and
πopti(si, k+1) ∈ Σ. We assume that the agents have the capability of executing a NOP action when
they are in some goal state component gi, which incurs zero cost and has no transition effect, i.e.,
δ(gi) = NOP.

We study locally goal-oriented mechanisms, which map each global state to a pair of goal-
oriented options. When the mechanism is applied, each agent follows its policy to the corresponding
local goal for k time steps. At time k + 1, the agents exchange information and stop acting (even
though they may not have reached their local goal). The agents, then, become synchronized and
they are assigned possibly different local goals and a working period k′.

It is important to notice that we are assuming that a set of local goal states is provided. This
set must include the components of the global goal states in G. However, this set may include
additional local states from S which may be considered temporary and local goals states. We
denote this larger set of local goals Ĝi

The mechanism approach assumes that agents can operate independent of each other for some
period of time. However, if the decentralized process has some kind of dependency in its observations
or transitions, this assumption will be violated, i.e., the plans to reach the local goals can interfere
with each other (the local goals may not be compatible). We define ∆−independent decentralized
processes to refer to nearly-independent processes whose dependency can be quantified by the cost
of their marginal interactions.

Definition 11 (∆−independent Process) Let CostAi(s → ĝk|ĝj) be the expected cost incurred by
agent i when following its optimal local policy to reach local goal state ĝk from state s, while the other
agent is following its optimal policy to reach ĝj . A decentralized control process is ∆−independent
if ∆ = max{∆1,∆2}, where ∆1 and ∆2 are defined as follows: ∀ĝ1, ĝ′1 ∈ Ĝ1 ∈ S1, ĝ2, ĝ′2 ∈ Ĝ2 ∈ S2

and s ∈ S:

∆1 = maxs{maxĝ1{maxĝ2,ĝ′2
{CostA1(s

0 → ĝ1|ĝ′2) − CostA1(s
0 → ĝ1|ĝ2)}}}

∆2 = maxs{maxĝ2{maxĝ1,ĝ′1
{CostA2(s

0 → ĝ2|ĝ′1) − CostA2(s
0 → ĝ2|ĝ1)}}}

That is, ∆ is the maximal difference in cost that an agent may incur when trying to reach one
local goal state that interferes with any other possible local goal being reached by the other agent.

When the Dec-MDP has independent transitions and observations the value of ∆ is zero. Oth-
erwise, the ∆ value denotes the amount of interference that might occur between the agents’ locally
goal-oriented behaviors. The algorithm proposed in this section computes the mechanism for each
global state as a mapping from states to pairs of local goal states ignoring the potential interference.
Therefore, the difference between the actual cost that will be incurred by the options found by the
algorithm and the optimal options can be at most ∆. Since the mechanism is applied for each
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global state for T time steps and this loss in cost can occur in the worst case for both agents, the
algorithm presented here is 2T∆−optimal in the general case.

We provide the details of the algorithm assuming that the control process is goal-oriented, S is
factored and Ĝi ⊆ Si is the set of local goals that can be assigned to agent i. The algorithm that
solves the decentralized control problem with communication finds the optimal mapping between
global states to local goals and periods of time. We denote this algorithm LGO-MSBPI. We start
with an arbitrary joint policy that assigns one pair of local goal states and a number k to each
global state. The current joint policy is evaluated and set as the current best known mechanism.
Given a joint policy δ : S × T → Ĝ1 × Ĝ2 × T , the value of a state s at a time t, when T is the
finite horizon is given in Equation 1: (this value is only computed for states in which t+k ≤ T ).

V δ(s, t, T ) =






JR(s) if t=T and s ∈ G ⊆ S
Penalty if t=T and s /∈ G ⊆ S
0 if t<T and s ∈ Ĝ

if t < T and s /∈ Ĝ
Σs′PN

g (s′, t+kδ|s, t,πĝ1δ
(s1),πĝ2δ

(s2))[2kδCost(a) + CΣ + V δ(s′, t+kδ , T )]

(1)

To make the notation simpler, we use kδ and ĝiδ to denote the time period k and local goals ĝi

assigned by the policy δ to the relevant state s and current time t. The local policy πĝiδ
denotes the

optimal policy followed by agent i aimed at reaching local goal state ĝi assigned by policy δ to state s
and time t. When the time is over and the local goals assigned by the mechanism are not consistent
with the global goals of the system, a constant penalty is awarded. JR(s) ∈ # denotes an arbitrary
joint reward that the system may obtain if the agents reach certain global states s ∈ G ⊆ S at time
T and zero when s is not such a special state and t < T . There is a one-to-one mapping between
goals and goal-oriented options. That is, the policy πgiδ

can be found by each agent independently
by solving optimally each agent’s local process MDPi = (Si, Pi, Ri, Ĝi, T ): The set of global states
S is factored and the process has independent transitions, so each agent has its own set of local
states and Pi is the primitive transition probability assumed known when we described the options
framework. Ri is the cost incurred by an agent when it performs a primitive action a and zero if
the agent reaches a goal state in Ĝi. T is the finite horizon of the global problem.

PN
g (with the goal g subscript) is different from the probability function PN that appears in the

former section. PN
g is the probability of reaching a global state s′ after k time steps, while trying

to reach ĝ1 and ĝ2 respectively following the corresponding optimal local policies.

PN
g (s′, t+kδ |s, t+i,πĝ1δ

(s1),πĝ2δ
(s2)) =






1 if i=k and s=s′

0 if i=k and s (= s′

Σs∗Pr(s∗|s,πĝ1δ
(s1),πĝ2δ

(s2))
PN

g (s′, t+kδ|s∗, t+i+1,πĝ1δ
(s∗1),πĝ2δ

(s∗2)) if i < k

Each iteration of the LGO-MSBPI algorithm in Figure 3 tries to improve the value of each state
by testing all the possible pairs of local goal states with increasing number of time steps allowed
until communication. The value of f is computed for each mapping from states to assignments of
local goals and periods of time. The f function for a given global state, current time, pair of local
goals and a given period of time k expresses the cost incurred by the agents after having acted for k
time steps and having communicated at time k + 1, and the expected value of the reachable states
after k time steps (these states are those reached by the agents while following their corresponding
optimal local policies towards ĝ1 and ĝ2 respectively). Formally:

16



1. Initialization: Start with an initial joint policy δ that assigns local goals
ĝi ∈ Ĝi and time periods k ∈ N
∀s ∈ S, t : δ(s, t) = (ĝ1, ĝ2, k)

2. Policy Evaluation: ∀s ∈ S, Compute V δ(s, t, T ) based on Equation 1.
3. Policy Improvement:

a. k = 1
b. While (k < T ) do

i. ∀s, t, ĝ1, ĝ2: Compute f(s, t, ĝ1, ĝ2, k) based on Equations 2,3 and 4.
ii. Possible update policy

if f(s, t, ĝ1, ĝ2, k) > V δ(s, t, T ) then
δ(s, t) ← (ĝ1, ĝ2, k) /∗ Communicate at k + 1 ∗/
V δ(s, t, T ) ← f(s, t, ĝ1, ĝ2, k)

iii. Test joint policies for next extended period of time
k ← k + 1

4. Convergence test:
if δ did not change in Step 3 then

return δ
else GOTO 2.

Figure 3: Multi-step Backup Policy-iteration With Local Goal-oriented Behavior (LGO-MSBPI).

f(s, t, ĝ1, ĝ2, k) = G(s, t, ĝ1, ĝ2, k) + H(s, t, ĝ1, ĝ2, k)(2)
G(s, t, ĝ1, ĝ2, k) = 2kCost(a) + CΣ(3)

H(s, t, ĝ1, ĝ2, k) =






JR(s) if t=T and s ∈ G
Penalty if t=T and s /∈ G
0 if t<T and s ∈ Ĝ
Σs′PN

g (s′, t + k|s, t,πĝ1(s1),πĝ2(s2))V δ(s′, t + k, T ) otherwise

(4)

We notice that the goals referred to in the computation of f are the goals being evaluated by
the algorithm. The policy is evaluated (step 2) with the goals assigned by the current best policy
(ĝi and k are ĝiδ and kδ).

The LGO-MSBPI algorithm evaluates the f value of all the states, times and possible local
goals for a certain time period k, and iterates on this computation while increasing the value of k.
The current joint policy is updated when the f value for some state s, time t, local goals ĝ1 and ĝ2

and period k is greater than the value V δ(s, t) computed for the current best known assignment of
local goals and period of time.

6.1 Convergence of the Algorithm and Its Complexity

Lemma 3 The algorithm LGO-MSBPI in Figure 3 converges to the optimal solution.

Proof. The set of global states S and the set of local goal states Ĝi ⊆ S are finite. The horizon T
is also finite. Therefore, step 3 in the algorithm will terminate. Like the classical policy-iteration,
this algorithm also will converge after a finite numbers of calls to step 3 where the policy can only
improve its value from iteration to another. !
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Lemma 4 The complexity of computing the optimal mechanism based on local goal behavior by the
algorithm LGO-MSBPI is polynomial.

Proof. Step 2 of the LGO-MSBPI algorithm can be computed with dynamic programming which
is polynomial (we compute the value of a state in a backwards manner from a finite horizon T ).
The complexity of improving a policy in Step 3 is polynomial in the time, number of states and
number of goal states, i.e., O(T 2|S||Ĝ|). In the worst case, every component of a global state can
be a local goal state. However, in other cases, |Ĝi| can be much smaller than |Si| when Ĝi is a
strict subset of Si, decreasing even more the complexity of the algorithm. !

6.2 Experiments - Goal-oriented Options

We exemplify the mechanism approach in a production control scenario. We assume that there are
two machines, which can control the production of boxes and cereals: machine M1 can produce two
types of boxes denoted as BA and BB, and machine M2 can produce two types of cereals, CA and
CB. The boxes differ in their presentation to advertise the different cereals included, i.e., either of
type A or type B. The process is stochastic in the sense that the machines are not perfect: with
probability PM1 , machine one succeeds in producing the intended box (either A or B) and with
probability 1−PM1 , the machine does not produce any box in that particular time unit. Similarly,
we assume PM2 expresses the probability of machine two producing the amount of cereals of type A
or B that is required to sell in one box. We study a process with a finite-horizon T , where the joint
reward (JR) attained by the system at T is equal to min{BA,CA}+ min{BB,CB} (BA,BB,CA
and CB stand for the amount of boxes and cereals required for one box).

An option opti in this scenario is described by a pair of numbers (XA,XB), i.e., machine i is
instructed to produce XA items (either boxes or cereals) of type A, followed by XB items of type
B, followed by XA items of type A and so forth until either the time limit is over or anyone of
the machines decides to communicate. Once the machines exchange information, the global state
is revealed, i.e., the current number of boxes and cereals produced so far is known. Given a set of
goal-oriented options (i.e., each option instructs a machine to produce a certain number of items
as a local goal), we found the optimal joint policy of action and communication that solves this
problem. The cost of an action was set to −1 to express a time unit that elapsed. We compare the
locally goal oriented multi-step backup policy iteration algorithm (LGO-MSBPI) with two other
approaches: the Ideal case when exchanging information is free and the machines can adapt their
production at every step, and the Full observation case, when the machines incur a cost when they
exchange information and they do it at every step. Tables 1, 2, and 3 present the average utility
obtained by the production system when the cost of communication was set to −0.1, −1 and −10
respectively and the joint utility was averaged over 1000 experiments. The initial state was (0,0,0,8),
there were no boxes produced and only 8 items of cereals of type B. The finite horizon T was set
to 10 and there were seven possible options given by the ratios (0,1),(1,4),(2,3),(1,1),(3,2),(4,1) and
(1,0).7

Following the mechanism computed by the LGO-MSBPI algorithm, the average number of
products produced, averaged over 1000 runs is summarized in Tables 4, 5 and 6. Although
the machines incur a higher cost when the mechanism is applied compared to the ideal case (due
to the cost of communication), the number of final products ready to sell were almost the same
amount. That is, it will take some more time in order to produce the right amount of products

7The machines do not need to communicate if they start from (0,0,0,0). The options chosen then are (0,1) and
k = T .
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Average Utility
PM1 , PM2 Ideal CΣ = 0 Full Observation LGO-MSBPI
0.2, 0.2 -17.012 -18.017 -17.7949
0.2, 0.8 -16.999 -17.94 -18.0026
0.8, 0.8 -11.003 -12.01 -12.446

Table 1: CΣ = −0.10,Ra = −1.0.

Average Utility
PM1 , PM2 Ideal CΣ = 0 Full Observation LGO-MSBPI
0.2, 0.2 -17.012 -26.99 -19.584
0.2, 0.8 -16.999 -26.985 -25.294
0.8, 0.8 -11.003 -20.995 -17.908

Table 2: CΣ = −1.0,Ra = −1.0.

when the policies implemented are those computed by the locally goal oriented multi-step backup
policy iteration algorithm. The cost of communication in this scenario can capture the cost of
changing the setting of one machine from one production program to another. Therefore, our
result is significant when this cost of communication is very high compared to the time that the
whole process takes.

7 A Myopic-greedy Approach to Direct Communication

In some cases, it is reasonable to assume that the mapping from any global state to a pair of
single-agent behaviors is known and fixed, ahead of time. For example, in settings where each
agent is designed ahead of the coordination time (e.g., agents in a manufacturing line represent
machines, which may be built ahead of time to implement certain procedures). In this section, we
present a polynomial-time algorithm based on the mechanism approach that computes the policy of
communication for a given goal-oriented Dec-MDP with independent transitions and observations
and given local goal-oriented behaviors. We first present a myopic-greedy approximation, i.e., each
time an agent makes a decision, it chooses the action with maximal expected accumulated reward
assuming that agents are only able to communicate once along the whole process. Each time the
agents exchange information, the mechanism is applied inducing two individual behaviors. In this
section, we assume that these are the optimal local policies to reach some local goal. In the former
section, the LGO-MSBPI algorithm computed what these local goals should be. In this section,
we assume a set of restricted options is given, i.e., these local goals are known and fixed ahead of
time for each global state. We denote the given optimal policies of action (with no communication
actions) by δA∗

1 and δA∗
2 respectively. The complexity of computing these policies of action is

polynomial (dynamic programming).
The expected global reward of the system, given that the agents do not communicate at all

and each follows its corresponding optimal policy δA∗
i is given by the value of the initial state

s0: Θδ
nc(s0, δA∗

1 , δA∗
2 ). This value can be computed by summing over all possible next states and

computing the probability of each agent reaching it, the reward obtained then and the recursive
value computed for the next states.

Θδ
nc(s

0, δA∗
1 , δA∗

2 ) = Σ(s′1,s′2)
P1(s′1|s0

1, δ
A∗
1 (s0

1))P2(s′2|s0
2, δ

A∗
2 (s0

2))(R(s′|s0, δA∗
1 (s0

1), δ
A∗
2 (s0

2))+Θδ
nc(s

′, δA∗
1 , δA∗

2 ))
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Average Utility
PM1 , PM2 Ideal CΣ = 0 Full Observation LGO-MSBPI
0.2, 0.2 -17.012 -117 -17.262
0.2, 0.8 -16.999 -117.028 -87.27
0.8, 0.8 -11.003 -110.961 -81.798

Table 3: CΣ = −10.0,Ra = −1.0.

# Products
PM1 , PM2 Ideal CΣ = 0 Full Observation LGO-MSBPI
0.2, 0.2 2.988 2.983 2.771
0.2, 0.8 3.001 3.06 2.784
0.8, 0.8 8.997 8.99 8.097

Table 4: CΣ = −0.10,Ra = −1.0.

At each state, each agent decides whether to communicate its partial view or not based on
whether the expected cost from following the policies of action, and having communicated is larger
or smaller than the expected cost from following these policies of action and not having communi-
cated. We denote the expected cost of the system computed by agent i, when the last synchronized
state is s0, and when the agents communicate once at state s and continue without any communi-
cation, Θc(s0, si, δA∗

1 , δA∗
2 ):

Θc(s0, s1, δ
A∗
1 , δA∗

2 ) = Σs2P2(s2|s0
2, δ

A∗
2 )(R((s1, s2)|s0, δA∗

1 (s0
1), δ

A∗
2 (s0

2))+Θδ
nc((s1, s2), δA∗

1 , δA∗
2 )+CΣ∗Flag)

Flag is zero if the agents reached the global goal state before they reached state s. We denote by
t(s) the time stamp in state s. P (s|, s0, δA∗

1 , δA∗
2 ) is the probability of reaching state s from state

s0, following the given policies of action.

P (s′|s, δA∗
1 , δA∗

2 ) =






1 if s = s′

P (s′|s, δA∗
1 (s1), δA∗

2 (s2)) if t(s′) = t(s) + 1
0 if t(s′) < t(s) + 1
Σs′′P (s′|s′′

, δA∗
1 , δA∗

2 )P (s′′ |s, δA∗
1 , δA∗

2 ) else

Similarly, P1 (P2) can be defined for the probability of reaching s′1 (s′2), given agent 1 (2)’s current
partial view s1 (s2) and its policy of action δA∗

1 (δA∗
2 ).

The accumulated reward attained while the agents move from state s0 to state s is given as
follows:

R(s0, δA∗
1 , δA∗

2 , s) =






R(s0, δA∗
1 (s1), δA∗

2 (s2), s) if t(s) = t(s0) + 1
Σs′′P (s′′ |δA∗

1 , δA∗
2 , s0)P (s|δA∗

1 , δA∗
2 , s

′′)
(R(s0, δA∗

1 , δA∗
2 , s

′′) + R(s′′
, δA∗

1 (s′′
1), δA∗

2 (s′′
2), s)) if t(s) > t(s0) + 1

Lemma 5 Deciding a Dec-MDP-Com with the myopic-greedy approach to direct communication is
in the P class.

Proof. Each agent executes its known δA∗
i when the mechanism is applied. When the provided

input included only the mapping from states to local goal states, then, finding the optimal single-
agent policy that reaches that goal state can be done in polynomial time. The complexity of finding
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# Products
PM1 , PM2 Ideal CΣ = 0 Full Observation LGO-MSBPI
0.2, 0.2 2.988 3.01 2.726
0.2, 0.8 3.001 3.015 2.678
0.8, 0.8 8.997 9.005 8.103

Table 5: CΣ = −1.0,Ra = −1.0.

# Products
PM1 , PM2 Ideal CΣ = 0 Full Observation LGO-MSBPI
0.2, 0.2 2.988 3 2.738
0.2, 0.8 3.001 2.972 2.64
0.8, 0.8 8.997 9.039 8.132

Table 6: CΣ = −10.0,Ra = −1.0.

the communication policy is the same as dynamic programming (based on the formulas above),
therefore computing the policy of communication is also in P. There are |S| states for which Θδ

nc

and Θc need to be computed, and each one of these formulas can be solved in time polynomial in
|S|. !

Lemma 6 Θδ
nc(s0, δA∗

1 , δA∗
2 ) ≤ Θc(s0, si, δA∗

1 , δA∗
2 )

Proof. Θδ
nc is the expected joint cost incurred by the joint policy assuming that the agents set a

certain global goal state they are planning to reach at time 0, and they do not communicate until
they achieve this goal. If the world were deterministic then the value of a joint policy computed by
Θδ

nc will be equal to the value of a joint policy computed by Θc. In our case, there exists uncertainty
in the outcome of the actions, i.e., the transition probability of the Dec-MDP can be larger than
zero. Myopic-greedy agents may synchronize their information from time to time. Thus, they
may change the global goal state based on the information exchanged. When the agents do not
communicate they do not have the chance to correct their policy with respect to another global goal
state that may incur a lower cost based on their current local states (had them both known this
information). Therefore, the value of a joint policy computed with the myopic-greedy approach is
at least as large as the value of the joint policy computed without any communication. !

7.1 Experiments - Myopic-greedy Approach

We present empirical results obtained when the myopic-greedy approach was implemented for the
Meeting under Uncertainty example (explained in Appendix B).8 We showed [13] that exchanging
the last observation guarantees optimality in a Dec-MDP-Com process with constant message cost.
In the example we tested, the messages exchanged correspond to the agents’ own observations, i.e.,
their location coordinates. In all the experiments run, we assumed that P1 = P2 and we refer to
these uncertainties as Pu. The mechanism that is applied whenever the agents communicate at
time t results in each agent adopting a local goal state, that is set at the location in the middle of
the Manhattan path connecting the agents (the Manhattan distance between the agents is revealed
at time t). We compare the joint utility attained by the system in the following four different
scenarios:

8Some of the empirical results obtained in this section appeared in [12].
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1. No-Communication — The meeting point is fixed at time t0 and remains fixed along the sim-
ulation. It is located in the middle of the Manhattan path that connects between the agents,
known at time t0. Each agent follows its optimal policy of action without communication to
this location.

2. Ideal — Assuming that CΣ is zero, and that the agents communicate at every time step, this
is the highest global utility that both agents can attain. Notice, though, that this is not the
optimal solution we are looking for, because we do assume that communication is not free.
Nevertheless, the difference in the utility obtained in these first two cases shed light on the
trade-off that can be achieved by implementing non-free communication policies.

3. Communicate SubGoals — A heuristic solution to the problem, which assumes that the
agents have a notion of sub-goals. They notify each other when these sub-goals are achieved,
eventually leading the agents to meet.

4. Myopic-greedy Approach — Agents act myopically optimizing the choice of when to send
a message, assuming no additional communication is possible. For each possible distance
between the agents, a policy of communication is computed such that it stipulates when
it is the best time to send that message. By iterating on this policy agents are able to
communicate more than once and thus approximate the optimal solution to the decentralized
control problem with direct communication. The agents continue moving until they meet.

The solution to the No-Communication case can be solved analytically for the Meeting under
Uncertainty example, by computing the expected cost Θnc(d1, d2) incurred by two agents located at
distances d1 and d2 respectively from the goal state at time t0 (the complete mathematical solution
appears in Appendix B).

In the Ideal case, a set of 1000 experiments was run in which the cost of communication was
assumed to be zero. Agents communicate their locations at every time instance, and update the
location of the meeting place accordingly. Agents move optimally to the last synchronized meeting
location.

For the third case tested (Communicate SubGoals) a sub-goal was defined by the cells of the
grid with distance equal to p ∗ d/2 from the fixed current meeting point. p is a parameter of the
problem that determines the radius of the circle that will be considered a sub-goal. Each time
an agent reaches a cell inside the area defined as a sub-goal, it initiates exchange of information
(therefore, p induces the communication strategy). d expresses the Manhattan distance between
the two agents, this value is accurate only when the agents synchronize their knowledge. That
is, at time t0 the agents determine the first sub-goal as the area bounded by a radius of p ∗ d0/2
and, which center is located at d0/2 from each one of the agents. Each time t that the agents
synchronize their information through communication, a new sub-goal is determined at p ∗ dt/2.
Figure 4 shows how new sub-goals are set when the agents transmit their actual location once they
reached a sub-goal area. The meeting point is dynamically set at the center of the sub-goal area.

Experiments were run for the Communicate SubGoals case for different uncertainty values,
values of the parameter p and costs of communication (for each case, 1000 experiments were run
and averaged). These results show that agents can obtain higher utility by adjusting the meeting
point dynamically rather than having set one fixed meeting point. Agents can synchronize their
knowledge and thus they can set a new meeting location instead of acting as two independent MDPs
that do not communicate and move towards a fixed meeting point (see Figure 5). Nevertheless, for
certain values of p, the joint utility of the agents is actually smaller than the joint utility achieved
in the No-Communication case (2 MDPs in the figure). This points out the need to empirically
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A1

A2

A1

A2

Time t A new subgoal is set after agent 2 arrived
at the subgoal set at time t.

Figure 4: Goal Decomposition Into Sub-goal Areas.

tune up the parameters needed in the implemented heuristic, as opposed to a formal approach to
approximating the solution to the problem as is shown in the Myopic-greedy case.
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Figure 5: The Average Joint Utility Obtained When Sub-goals Are Communicated.

In the Myopic-greedy case, we design the agents to optimize the time when they should send
a message, assuming that they can communicate only once. At the off-line planning stage, the
agents compute their expected joint cost to meet for any possible state of the system (s0) and
time t (included in the local state si), Θc(s0, si, δA∗

1 , δA∗
2 ). The global states revealed through

communication correspond to the possible distances between the agents. Each time the agents get
synchronized, the mechanism is applied assigning local goals and instructing the agents to follow
the optimal local policies to achieve them. In the Meeting under Uncertainty scenario we study,
Θc is the expected joint cost incurred by taking control actions during t time steps, communicating
then at time t + 1 if the agents have not met so far, and continuing with the optimal policy of
control actions without communicating towards the goal state (the meeting location agreed upon
at t + 1) at an expected cost of Θnc(d1, d2) as computed for the No-Communication case. When
the agents meet before the t time steps have elapsed, they only incur a cost for the time they act
before they met.
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At each time t, each one of the agents knows a meeting location, that is the goal location
computed from the last exchange of information. Consequently, each agent moves optimally towards
this goal state. In addition, the myopic-greedy policy of communication is found by computing the
earliest time t, for which Θc(d1 + d2, s1, δA∗

1 , δA∗
2 ) < Θnc(d1, d2), that is, what is the best time

to communicate such that the expected cost to meet is the least. The myopic-greedy policy of
communication is a vector that states the time to communicate for each possible distance between
the agents.

We found the myopic-greedy communication policies for the Meeting under Uncertainty problem
where Pu takes any of the following values: {0.2, 0.4, 0.6, 0.8}, the cost of taking a control action
is Ra = −1.0 and the costs of communicating CΣ tested were {−0.1,−1.0,−10.0}. The resulting
policies of communication are presented in Appendix C. For the smallest cost tested, it is always
beneficial to communicate rather early, no matter the uncertainty in the environment, and almost no
matter what d0 is (the differences in time are between 2 and 4). For larger costs of communication
and a given Pu, the larger the distance between the agents, the later they will communicate (e.g.,
when Pu = 0.4, CΣ = −1 and d = 5, agents should communicate at time 4, but if CΣ = −10, they
should communicate at time 9). For a given CΣ, the larger the distance between the agents is,
the later the agents will communicate (e.g., when Pu = 0.4, CΣ = −10 and d = 5, agents should
communicate at time 9, but if d = 12, they should communicate at time 16). The results from
averaging over 1000 runs show that for a given cost CΣ as long as Pu decreases (the agent is more
uncertain about its actions’ outcomes), the agents communicate more times.

In the 1000 experiments run, the agents exchange information about their actual locations at
the best time that was myopically found for d0 (known to both at time t0). After they communi-
cate, they know the actual distance dt, between them. The agents follow the same myopic-greedy
communication policy to find the next time when they should communicate if they did not meet
already. This time is the best time found by the myopic-greedy algorithm given that the distance
between the agents was dt. Iteratively, the agents approximate the optimal solution to the decen-
tralized control problem with direct communication by following their independent optimal policies
of action, and the myopic-greedy policy for communication. Results obtained from averaging the
global utility attained after 1000 experiments show that these myopic-greedy agents can perform
better than agents who communicate sub-goals (that is a more efficient approach than no commu-
nicating at all). The results for CΣ = −0.1 are presented in Tables 7 and 8. Additional results
obtained for other costs of communication appear in Appendix D.

Average Joint Utility
Pu No-Comm. Ideal CΣ = 0 SubGoals9 Myopic-Greedy
0.2 -104.925 -62.872 -64.7399 -63.76
0.4 -51.4522 -37.33 -38.172 -37.338
0.6 -33.4955 -26.444 -27.232 -26.666
0.8 -24.3202 -20.584 -20.852 -20.704

Table 7: CΣ = −0.10,Ra = −1.0.

The Myopic-greedy approach attained utilities statistically significantly greater than those ob-
tained by the heuristic case when CΣ = −0.1.10 Ideal always attained higher utilities than Myopic-
greedy, but when CΣ = −0.1 and Pu = 0.4 both values were not significantly different with prob-

9The results are presented for the best p, found empirically.
10Statistical significance has been established with t-test.
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ability 98%. When CΣ = −1 the utilities attained for the Myopic-greedy approach when Pu < 0.8
are significantly greater than the results obtained in the heuristic case and for Pu = 0.8, the heuris-
tic case for the best p was found to be better than Myopic-greedy (Myopic-greedy obtained -21.3,
and the SubGoals with p = 0.1 attained -21.05 (variance=2.18)). The utilities attained by the
Myopic-greedy agents, when CΣ = −10 and Pu in {0.2, 0.4}, were not significantly different from
the SubGoals case for the best p with probabilities 61% and 82%, respectively. However, the heuris-
tic case yielded smaller costs for the other values of Pu = 0.6, 0.8. One important point to notice
is that these results consider the best p found for the heuristic, but in general a designer may not
know this value. In all the settings tested, Myopic-greedy always attain utilities higher than those
attained in the SubGoals case with the worst p.

Average Communication Acts Performed
Pu No-Comm. Ideal CΣ = 0 SubGoals Myopic-greedy
0.2 0 31.436 5.4 21.096
0.4 0 18.665 1 11.962
0.6 0 13.426 1 8.323
0.8 0 10.292 1 4.579

Table 8: CΣ = −0.10,Ra = −1.0.

For the same parameters tested so far, experiments were run with two deadlines, T in {8, 15}
(i.e., if the agents did not meet by T , a penalty was given to the system). We tested how the policies
of communication change as a result of these penalties. Examples of the communication policies
computed when the cost of communication was set to −10 are presented in Appendix E. In general,
the myopic-greedy policy found may instruct the agent not to communicate if Θnc < Θc, i.e., had
the agents communicated, unnecessary information had been exchanged (because the agents are
going to meet anyway incurring less cost if they do not communicate). On the other hand, this
policy may instruct an agent not to communicate, if given a deadline, the agent is not going to
be able to reach the goal (i.e., communication is not beneficial, it cannot help). In the first case,
limiting the deadline to be earlier, results in policies of communication, which instruct the agents to
communicate earlier, compared to the case when there are no deadlines (for large values of d0 with
low uncertainties Pu). When no deadlines are assumed, the agents may benefit from exchanging
information later. When a short deadline is assumed, if the agents have the chance to meet without
communication given a later deadline, they will need to communicate earlier if the time stipulated
in the policy with no deadlines is larger than the deadline T . If the deadline T is large enough for
these agents to meet, they do not need to communicate at all. For shorter d values if the policy
with no deadline allows the agent to communicate at a time smaller than the deadline T , the same
policy holds.

In the second case, the agents may not communicate if they may not meet at all by the stipu-
lated deadline. The empirical results show that by extending the deadline T , agents benefit from
communicating at a time that is later than the time found by the myopic-greedy policy when no
deadlines were assumed. Since, in this case there is a chance of not meeting at all, agents need to
wait more time until it becomes beneficial to communicate.
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8 An Optimal Communication Policy

As in the previous section, we assume that a set of individual behaviors are provided for each global
states. In this section, we characterize the set of monotonic goal-oriented Dec-MDPs for which we
provide an algorithm that finds the optimal policy of communication. First, we define the rank of
a global state to be a function ρ : S → N such that when s is a global goal state (s ∈ G), ρ(s) = 0.
For example, the rank can express the expected cost of the optimal policy to reach the global goal
state.

Definition 12 (Monotonic GO-Dec-MDPs) A goal-oriented Dec-MDP is monotonic with re-
spect to a given mechanism if there exists a ranking function ρ such that for all global states s and
all global states s′ reachable from s (s′ (= s), following the joint policy induced by the mechanism,
ρ(s′) < ρ(s).

Although the transitions are between states with non-increasing rank, the uncertainty about
the outcomes of the agents’ actions does exist, i.e., the agents’ actions can fail. The algorithm
presented in this section finds the optimal policy of communication at the meta-level of control.
This policy instructs the agents to synchronize the information in their partial views at the most
beneficial time.

We assume a goal-oriented Dec-MDP with independent transitions and observations and a finite
horizon T (time is discrete). Each agent i can choose an action aj

i , 1≤j≤m, from its set of actions
Ai. The notation we use in the algorithm is as follows: aj∗

i denotes the optimal action that agent i
chooses given δAi , i.e., the provided mapping from global states to individual behaviors (assigned to
i by the mechanism). After successfully performing the optimal control action aj∗

i , agent i moves
to a state s′i that is denoted by aj∗

i (si, 1). aj∗
i (si, 0) represents the resulting state when agent i fails

to perform action aj∗
i .11 EU i(s, si, t) denotes the expected joint utility of the multi-agent system,

computed by agent i at time t, when the synchronized global-state is s and agent i’s partial view is
si. The set of global-states are ordered by the rank assumed for monotonic Dec-MDPs. The states
with rank k are represented by Sk (K is the largest rank that a state can have). For example, if
the agents’ goal is to meet, then the state of the Dec-MDP-Com may be given by the Manhattan
distance between the agents, and the goal state is reached when this distance is zero. The rank is
given, then, by the possible Manhattan distances between the agents given a 2D grid. The algorithm
for computing the optimal policy of communication is based on backward induction. It is shown
in Figure 6. EUC and EUNC are two temporary variables that denote the expected joint utility
when agent i decides to communicate or when it does not. Penalty is the reward obtained when
the agents do not achieve their goal by the time limit of the problem. ΦC(P1, P2, R,CΣ, s0, si, t)
computes the expected joint utility when agent i communicates its partial view si at time t+1,
and the current synchronized global-state is s0. This function computes the possible synchronized
global-states in which the system could be (given that agent i communicates), the expected costs
incurred to arrive at these states, and the joint expected utility of these new states. Notice that
since we deal with monotonic Dec-MDPs, the ranks of these new states are at most as high as the
rank of the last synchronized state.

Theorem 2 OptCom computes the optimal communication policy for a given monotonic goal-
oriented Dec-MDP-Com with independent transitions and observations and a given mechanism.

11In general, an action ai may have multiple outcomes. Then, the algorithm presented in this section can be
adapted to include all the possible next states reachable when executing ai with the corresponding probability.
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function OptCom(DCM, δAi , Dec-MDP-Com)
returns the optimal communication policy Policy(s, si, t),

where s is the last synchronized state and si is the current partial view and
t is the time when the decision to communicate at t+1 is made.
The value of zero means that the agent will not communicate at t+1.

inputs: DCM is the mechanism for communication, that induces an option opti
for each global state s (i.e., a policy of actions and communications).
δAi is the policy of domain actions.
Dec-MDP-Com=<S,A1, A2,Σ, CΣ, P,R, T >

For each state s ∈ Sk (for k ← 0 to K)
For time t ← T−1 to 0

For each si ∈ Si

if (k = 0) and (t=T−1) then /*agents reached the global goal state*/
Policy(s, si, t) ← 0
EU i(s, si, t) ← 0

else if (t = T−1) then /*time is over*/
Policy(s, si, t) ← 0
EU i(s, si, t) ← Penalty/*agents did not reach the global goal state*/

else if (t = 0) then /*agents are synchronized*/
Policy(s, si, t) ← 0
EU i(s, si, t) ← ComputeEUNC(δAi , s, si, R, t)

else
EUNC ← ComputeEUNC(δAi , s, si, R, t)
EUC ← ΦC(P,R,CΣ, s0, si, t)
if (EUNC > EUC) then

Policy(s, si, t) ← 0
EU i(s, si, t) ← EUNC

else /*communicate at t+1*/
Policy(s, si, t) ← t + 1
EU i(s, si, t) ← EUC

return Policy

function ComputeEUNC(δAi , s, si, R, t)
returns the expected joint utility given that the agent does not communicate.
inputs: δAi , the given local policy of action for agent i.

s, the last Dec-MDP-Com synchronized state.
si, the current partial view of agent i
R, the Dec-MDP-Com reward function.
t, the current time.

EUSucc ← EU i(s, aj∗
i (si, 1), t + 1)

EUFail ← EU i(s, aj∗
i (si, 0), t + 1)

return (1−Pi)(R + EUFail)+Pi(R + EUSucc)

Figure 6: The OptCom Algorithm for Monotonic Dec-MDP-Com With Independent Transitions
and Observations.
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Proof. The correctness proof of the algorithm is given by induction. The induction is both on
the time t that elapses and on the rank k of the global states.

Basis: Based on the Dec-MDP-Com model, the agents decide to communicate at time t, but
the actual communication act occurs at time t+1. If the time limit is T then it is not beneficial
to decide to communicate at time T−1. If the synchronized state that is known by all the agents
is a global goal state (Sk = S0) and time is T−1 then all agents are aware of having achieved this
global goal state. Therefore, it is optimal not to communicate then. If time is t = T −1, and no
global goal state is reached, then a penalty will be awarded.

We assume that the algorithm OptCom computes the optimal time to communicate for any
state s ∈ Sk for any 0 ≤ k ≤ K ′ (for some K ′ < K, K is the largest rank of a global state), and
for any time 0 ≤ t < T .

By induction on k and t, we prove that the OptCom algorithm presented in Figure 6 finds the
optimal time to communicate for any state s ∈ SK ′+1 and time t. Following the algorithm, when
the agent decides whether to communicate or not in state s ∈ SK ′+1, it compares its utility when it
does not communicate (EUNC) with its utility when it does communicate (EUC). If the agent does
not communicate, then it chooses the optimal control action aj∗

i based on the δAi (i.e., the given
individual behavior). The outcome of this action is given by the transition probability Pi, i.e., with
probability Pi agent i moves to state s′i = aj∗

i (si, 1) and with probability 1− Pi it moves to a state
s
′′
i = aj∗

i (si, 0). Therefore, EUNC = (1 − Pi)EU i(s, s′′
i , t + 1) + PiEU i(s, s′i, t + 1). In general, an

action could have multiple outcomes. In any case, due to the monotonicity of the process, we know
that ρ(s′′

i ) < ρ(si) and ρ(s′i) < ρ(si), therefore s
′′
i ∧ s′i ∈ Sk for some k < K ′ + 1. This is true for

any possible next state. Based on the assumption of the induction, these values are optimal and
have taken into account the optimal decision when to communicate.

The expected utility if the agent decides to communicate is EUC = EU(s′′′
, 0). A communica-

tion act always succeeds because we assume messages are reliable. Time becomes 0 because after
communicating the agents become synchronized (thus they are reset). Since the Dec-MDP is mono-
tonic, ρ(s′′′) < ρ(s). Therefore, the expected utility of this state at time 0 is known and has been
computed optimally. Therefore, the algorithm presented finds the optimal policy of communication
given a monotonic Dec-MDP with independent transitions and observations. !

Lemma 7 Deciding a monotonic Dec-MDP-Com with OptCom is in P.

Proof. Each agent implements a local policy of action when the mechanism is applied. The
complexity of finding the optimal communication policy by running the OptCom algorithm is the
same as dynamic programming, therefore computing the resulting policy of communication is also
in P. !

8.1 Experiments - Monotonic Goal-oriented Dec-MDPs

The performance of the OptCom algorithm is exemplified on the Meeting under Uncertainty ex-
ample presented in Appendix B. We compare here the OptCom results to the No-Communication,
Ideal and Myopic-greedy cases, described in Section 7.1.

The results from experimenting with different communication costs (and averaging over 1000
runs) appear in Table 9 and in Appendix F.12 The cost of taking a moving action was set to -1.0.
In the Ideal case, CΣ is zero. Note that the setup of these experiments differs from the setting we

12Although we do have a program that can precisely compute the solution for the No-Communication case, the
results presented were obtained from averaging over 1000 empirical tests, which result less time consuming than the
analytical solution for the finite-horizon case.
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studied in Section 7.1 because here the agents may not meet by the time limit and consequently
they are penalized. In the former experiments (without deadlines) the time limit was large enough
so that the agents always met.

Average Joint Utility
P No-Comm. Ideal CΣ = 0 Myopic-greedy OptCom
0.2 -71.138 -62.968 -62.834 -63.226
0.4 -42.112 -37.372 -37.778 -37.734
0.6 -29.078 -26.518 -26.782 -26.642
0.8 -22.344 -20.52 -20.714 -20.574

Table 9: CΣ = −0.10.

The results obtained by OptCom in Table 9 for P = 0.2 are not significantly different nei-
ther from Ideal (with probability 65% ) nor from Myopic-greedy (with probability 48%). Table 10
shows the average number of messages exchanged in each one of the tested cases when the cost
of communication was −0.1. Since the Meeting under Uncertainty example is indeed a monotonic
Dec-MDP, the results obtained by the backward-induction algorithm (OptCom) are optimal. Even
in this simple example, we notice that when CΣ = −0.1 and P is either 0.6 or 0.8, the results in
the backward-induction column are significantly greater than in the greedy column. For smaller
uncertainties (0.2 and 0.4) the results in this case are not significantly different with probabili-
ties 48% and 88% respectively. The results obtained for increasing costs of communication (see
Appendix F) lead to significantly different utility values between the backward-induction and the
greedy algorithm. When the price of communication is higher, it is more important to decide opti-
mally when to communicate. The greedy implementation does not compute the optimal policy of
communication, therefore, it cannot consider how crucial these decisions are. Therefore, the greedy
agents do not communicate as much as necessary to find the optimal joint solution (see Table 10).

Average Communication Acts Performed
P No-Comm. Ideal CΣ = 0 Myopic-greedy OptCom
0.2 0 31.484 20.778 30.613
0.4 0 18.686 12.171 17.867
0.6 0 13.259 8.252 12.321
0.8 0 10.26 4.588 9.287

Table 10: CΣ = −0.10.

9 Beyond Goal-oriented Behavior

The models presented in this paper assumed that actions incur a negative cost and that a positive
joint reward (JR) is awarded to the system at time T (the finite horizon) if the system is at a
global goal state. That is, no positive intermediate rewards can be obtained before the horizon is
reached. We can think of a mechanism as an approach to approximate the optimal joint solutions
of a decentralized process by contemplating the decentralized problem as a Dec-SMDP-Com (not
necessarily goal-oriented as defined in Definition 6). We propose the mechanism approach as a
general approximation method to solve decentralized processes, by computing temporal abstracted
actions (either goal-oriented or not). Agents controlling such processes will follow these local
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behaviors between communications. The only difference between a Dec-SMDP-Com over an un-
derlying Dec-MDP-Com and the goal-oriented version relies in the definition of the reward function:
RN (s, t, opt1, opt2, s′, t+N). In the goal oriented case this reward was given by 2Cost(a)(t+N)+CΣ

since each primitive domain action taken when following the options incurs some cost Cost(a) and
JR(s) if s is a global goal state and t+N is T . In the general case, primitive actions may yield
some positive reward given by Ri(si, ai, s′i) which should be considered in the computation of RN .
Moreover, if the options are not totally independent of each other (e.g., they can be ∆−dependent
(see Definition 11)) then the computation of RN will take these additional dependent values into
account. Designing algorithms for computing mechanisms for communication for the general Dec-
SMDP-Com case remains for future work.

10 Conclusions

Solving decentralized control problems optimally requires the optimization of a global reward func-
tion computed over global states with stochastic transitions. Our previous work [13] has analyzed
the complexity of solving optimally certain classes of decentralized problems when direct or indirect
communication may occur. We showed that this complexity ranges between NEXP and Polyno-
mial. In particular, we studied goal-oriented Dec-MDPs when no information sharing is allowed.
We proved that solving optimally these cases is equivalent to solving a combination of single agent
MDP problems. This paper focuses on goal-oriented Dec-MDPs with direct communication and
many global goal states. This is a particular hard class of problems because due to the possible
information exchange, the global goal-oriented behavior may not be decomposed into individual
goal-oriented processes. Therefore, in this paper, we approximate this optimization problem by de-
composing the global reward function into local and temporal problems. Communication between
the decision makers serves as a synchronization point where local information is exchanged in order
to assign to each controller an individual behavior. In real and practical applications this com-
munication has a cost associated with the complexity of computing the messages, the bandwidth
of the communication or the risk of revealing information to competitive parties operating in the
same environment. We presented the mechanism for communication approach, which decomposes
the global problem into temporal and individual behaviors and combines these with communication
acts to overcome the lack of global information from time to time. All the complexity results known
for Dec-MDPs are summarized in Figure 7.

We, first, formalized our mechanisms for communication for a decentralized problem with goal-
oriented behavior approach as a decentralized semi-Markov process with communication (GO-Dec-
SMDP-Com). We proved that solving optimally such problem with temporal abstracted actions is
equivalent to solving optimally a multi-agent MDP (MMDP) known to be P-complete. However, in
our case, the input of the GO-Dec-SMDP-Com problem is now double-exponential in the number of
actions. We presented the multi-step backup policy iteration algorithm adapted to the decentralized
case, which solves optimally the GO-Dec-SMDP-Com problem. It is based on heuristic search and
converges to the optimal solution. This algorithm provides us with the optimal mechanism for
communication, i.e., the optimal joint solution over temporal abstracted actions. This is the first
algorithm to tackle a general GO-Dec-MDP-Com problem.

Then, we presented a refinement of this algorithm to provide a practical approximation. The
idea behind this mechanism is that agents can adopt local goals. That is, the optimal algorithm
that we presented assigns the best pair of local goals found for each global state (which is fully
observable since communication occurs at these states). The algorithm also finds the optimal period
of time to work towards these goals. The policy of communication instructs the agent to exchange
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information when this period of time is over, even though none of them may have reached their
assigned local goals. We prove that this algorithm takes only polynomial time.

The paper ends by presenting a simpler approximation method. It assumes that a certain
mechanism is given, i.e., human-designed knowledge is combined into the model to provide agents
with individual policies of actions (not including communication acts). We showed two approaches
to compute a policy of communication, given a mechanism. First, we showed a greedy-approach
that computes the best time to communicate assuming there is only one opportunity for exchang-
ing information. Then, we presented an optimal algorithm that computes when to communicate
assuming that the decentralized process is monotonic. We support our approaches with empirical
results. Future work will look into generalizing the mechanism technique to situations that may not
be factored as assumed in this paper. Such a generalization may require a non-trivial decomposition
of the set of global states, the system transition function and the system reward function.
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A Mechanism Design - Related Work

Mechanism design was originally studied in Game Theory to design games that yield outcomes with
certain characteristics. Later, research in Computer Science has looked at adapting this approach
to achieve social coordination and optimization of social welfare in distributed systems. We are
interested in mechanisms that result in near-term behaviors that produce good approximations to
the optimal control of a decentralized cooperative system. Here, we review the classic approach to
mechanism design, followed by studies done for computational systems.

A.1 The Economic Approach

Mechanism design or implementation theory is studied in Game Theory [24] in order to find rules
for a game with certain characteristics. The players in this game, have each a preference function
over the outcomes of the game. Given a choice rule from profiles of preferences to a subset of feasible
outcomes, the question is whether a game can implement this choice rule in a such a way that a
certain solution concept is attained (e.g., the Nash equilibrium is reached). The players are self-
interested and therefore information about their own preferences is kept private. A designer of the
game looks for a mechanism that will produce the desired outcome (e.g., a Nash equilibrium) when
the players reveal some part of their information as input to the designer. Notice that following
our approach, each time that the agents apply the mechanism for decentralized control DCM , they
are faced with a behavior to follow that is only a temporary step in the complete solution to the
decentralized problem. In the economic approach the mechanism itself solves the problem.

An algorithmic view to mechanism design is found in [23]. The mechanism designer sets the
algorithm for interaction among the agents and a payment structure that motivates the agents to
participate in the interaction. This literature is concerned with agents that are self-interested and
may hold privately known information about their preferences. Thus, the main question handled
by a designer of a mechanism is to combine the private preferences of the players into an outcome
state that corresponds to the “social choice”. Since Nisan and Ronen took an algorithmic approach
to mechanism design, they were interested in poly-time computable mechanisms, i.e., mechanisms
whose output and payment functions are computable in polynomial time.

Following this economic approach, agents are self-interested. Therefore, they are not willing to
reveal private information to prevent competitors from taking advantage of their actions. Therefore,
an important notion in this approach is whether the mechanism is truthfully-implementable, i.e.,
whether the implementation will induce the agents to report their true types and preferences.
An example of a truthful implementable mechanism is the known Clarke mechanism [8], where
a set of compensation rules is given as an incentive structure, leading the agents to reveal their
true preferences as their optimal strategies. In cooperative decentralized systems, it is clear that
any mechanism for communication is truthfully-implementable. However, an interesting feature
of these mechanisms is that the whole system may benefit if one of the agents does not send its
actual observation, but a function of it. An agent may take an action as a result of receiving a
message, and move eventually to a new state. Observing this new state may lead the agent to take
an additional action that was not the original aim of the message sent, but it is the result of an
effect the sender of the message had on the resulting state. So, even though agents are truthful they
may benefit by not changing exactly what they observe. Notice that the contents of the messages
are not set by the mechanism. The mechanism assumes that the agents are programmed, knowing
which are the messages they can exchange. Another interesting research area is to study the design
of languages of communications for decentralized control.
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Based on Wellman’s definition of multi-agent systems [36], the role of a mechanism in a co-
operative system (with global objectives) is “to coordinate local decisions and disseminate local
information in order to promote these global objectives.” We study mechanisms that lead each
agent to face possibly new local policies of behavior, which are simpler to compute. The mecha-
nism also comprises a policy of communication that enables the agents to coordinate their local
information. Achieving the global objectives of the system results from interleaving near-term local
behaviors with exchanging information when the mechanism is applied.

A.2 Social Laws

The areas related to mechanism design in distributed artificial intelligence are social laws and
negotiation mechanisms. Social laws were defined as mechanisms of coordination. Two approaches
were studied: Shoham and Tennenholtz [32] define social laws as constraints on the agents’ actions.
Goldman and Rosenschein [11] define social laws as extensions to the agents’ local plans of actions.

Shoham and Tennenholtz study social laws as mechanisms for coordination that will induce
agents to avoid conflicts between their actions. A social law is a predicate over a local state
prohibiting some of the actions that an agent is capable of performing. Once the social law is
imposed on a multi-agent scenario, its effects are transparent to the agents. A modified multi-
agent system is created in which only the permitted actions and the corresponding transitions are
allowed. When designing mechanisms for communication, the agents are actively applying the
convention at each global state they reach. In our case, agents’ plans of actions can be affected
by the messages received on-line. In the social-laws analysis, once the law is imposed, the agents
find a plan of action that is not going to change anymore because of the law. More recently [33],
a rational social-law was defined assuming that the agents play a game g, and that a social law
sl induces a sub-game gsl of g that includes only the actions that are not prohibited by sl.13 In a
game theoretical sense, rational agents are captured as utility maximizers. As such, the solutions
that will be preferred by the agents in such settings will be either the maximin strategies, Nash
equilibrium, or Pareto Optimal strategies(more details about these solutions can be found in [33]).

Goldman and Rosenschein [11] define social laws as extensions to the agents’ local plans of
actions. Social laws are intended to transform the global world state for the benefit of the whole
system. Each agent is assigned a level of cooperation value that determines how much effort the
agent will invest in extending its own plan in order to follow the law (this effort could be null).
The social law in this case was studied as a simpler (less complex) means to reach coordination
rather than computing the optimal multi-agent joint plan. Mechanisms for communication are
also introduced to reduce the complexity of solving the complete decentralized control problem
with communication. In our case, the information exchanged by the agents together with the
mechanisms imply two local individual behaviors. Social laws are more strict in the sense that
either they prohibit the execution of certain actions, or demand the execution of longer plans in
order to follow the social rule.

The implementation of social laws in the two approaches aforementioned is aimed at improving
the coordination level of the multi-agent system. Flexible social laws were studied by Briggs and
Cook [7]. Agents are allowed to choose from laws with various levels of strictness starting with the
most strict and moving to more lenient laws when they cannot succeed in finding a plan. These
social laws follow the approach taken by Shoham and Tennenholtz as restrictions to the agents’
actions, reducing the chance of interaction between the agents. Mechanisms for communication
are not intended to avoid interactions, the assumption is that for certain costs of communication,

13A social convention [33] is a social law that restricts the agents’ behaviors to one particular strategy.
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the exchange of information is indeed beneficial. The mechanisms for communication will induce
the agents to better coordinate and thus attain increased joint utility. The works explained so far
assume that the social laws are designed off-line. Another line of research study the emergence of
these conventions [35, 33].

In the cases described above, the agents are motivated to follow the social laws implicitly because
the agents comprise a cooperative system. Therefore, it is in their benefit to implement the law.
In the next section, we describe work done on self-interested agents who need to be motivated to
follow a social mechanism.

A.3 Negotiation Mechanisms

Self-interested agents need to be motivated to follow a certain interaction mechanism (similarly to
the economic approach). Negotiation mechanisms were developed by Zlotkin and Rosenschein [30].
They suggested a negotiation protocol over possible joint deals. This protocol can either end in
reaching the conflict deal (i.e., no cooperation is beneficial and each agent ends up performing its
initially locally assigned deals) or the negotiation ends with an agreement that corresponds to some
division of the set of both agents’ deals. In this process the goal-oriented agents are interested in
achieving their pre-set local goals at the minimum cost through possible cooperation and resolution
of conflicts if they exist. The goal of this line of research is to find distributed consensus mechanisms
such that agents that follow simple and stable strategies will obtain efficient (Pareto Optimal [19]14)
outcomes. They studied monotonic negotiation mechanisms that are guaranteed to converge to a
deal [30]. They also studied incentive-compatible mechanisms, and show that whether an agent will
benefit from lying or not depends on the domain characteristics (e.g., concave/sub-additive/modular
Task Oriented Domains). For example, it was proved that no lie (i.e., hidden, phantom or decoy)
is beneficial in any encounter of two agents in concave15 Task Oriented Domains with any optimal
negotiation mechanisms over all-or-nothing deals.

This work does not deal with sequential decision making. The agreements could be over a set
of many tasks that eventually will be performed in a sequence. However, the negotiation process
is over all the possible deals as one decision. All the possible deals are already known when the
negotiation mechanism is applied. In our case, we are interested in applying the communication
convention as part of the control process in order to optimally behave and communicate.

A.4 Evaluation Criteria

Mechanism designers in Economics (e.g., [20, 24]) are interested in stable mechanisms so that they
cannot be manipulated by self-interested agents. Thus, mechanisms are sought to implement a
solution concept such as dominant strategies or Nash equilibrium for example. Economists are also
interested in truthfully-implementable mechanisms that will induce the players to report their true
preferences to the system designer. A good mechanism should have the following characteristics:
strategy-proof , efficient and budget-balanced [18]. A mechanism is strategy-proof if the agents are
motivated to participate in it and will reveal their true preferences. A mechanism is efficient if its
output state maximizes the utility of the system (i.e., the social-welfare is optimized taking into
account the individual selfish utilities of the agents). A mechanism is budget-balanced if the total
monetary transfer from the agents to the center (the system designer) is non-negative. Kfir-Dahav

14A deal is Pareto optimal if it cannot be improved for one agent without decreasing the utility of another agent
from the same deal.

15A Task Oriented Domain is concave if for all finite sets of tasks X ⊆ Y, Z ⊆ T, c(Y
⋃

Z)−c(Y ) ≤ c(X
⋃

Z)−c(X).
c is the cost function.
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et al. show [18] that the procedures of the Clarke mechanism used to optimize the social welfare are
NP-hard and they suggest a heuristic that will maintain the strategy-proof and budget-balanced
features at the expense of social-welfare efficiency.

According to the economic approach, an optimal social-law is one that attains maximal utility
at the system level. Based on [9], social laws should impose the minimal possible number of
constraints on the agent’s actions and they should be easy to implement. The features discussed
in [11] for cooperative state-changing rules include the following. A rule is: 1) guaranteed if it will
not increase global work with certainty. 2) reversible if its effects can be undone. 3) redundant if
performing the extra work will cause the agent to remain in the same state. 4) resource-dependent
if following the rule implies the use of consumable resources. 5) state-dependent if the rule can be
applied only in a certain state.

Negotiation mechanisms [30] were evaluated based on the following criteria: 1) Symmetric dis-
tribution, i.e., no agent is to have a special role in the negotiation mechanism. In our case, since
the agents are cooperative we do not risk having manipulating malevolent agents. However, the
designer may want a more capable agent to have more influence on another agent when it commu-
nicates (e.g., by sending an instruction message). 2) Efficiency , i.e., the solution arrived at through
negotiation should be efficient (e.g., satisfy the criterion of Pareto Optimality). 3) The strategies
should be stable (e.g., strict Nash equilibrium where no single agent can benefit by changing its
strategy, though a group might). 4) Simplicity , i.e., a good negotiation mechanism should have low
computational complexity. The mechanism for communication is a means to interpret messages
received and translate them into near-term problems that can be solved locally and optimally. No-
tice that the communication in our case is not in the form of KQML commands where the reaction
to a message received is the clear and expected response action to the performative command.

We summarize the differences among these approaches in Figure 8:
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Figure 8: A Comparison Between Mechanism Design Approaches.

Cases (a) and (d) — Economic agents are self-interested. The agents send their state-worth
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functions to the center who outputs a state and a payment structure. The agents’ input to the
center states how much they are willing to pay for a certain output-state (i.e., how desirable that
state is with regard to the goal the agent intends to achieve). A mechanism sets the rules for
a game; in our approach, a mechanism decomposes a global problem into two temporary local
behaviors. The agents may communicate based on their policy of communication, in which case,
the decomposition into two individual behaviors is applied again.
Cases (b)(Goldman and Rosenschein approach) and (d) — Although the mechanism induces
the agents to change a global state, by adopting a temporary local subgoal, the parameters of the
law are based on the features of the agent’s own observations, and not as a result of another agent
sending its observations.
Cases (b)(Shoham and Tennenholtz approach) and (d) — This approach imposes a social
law on the multi-agent system, which is then transformed into another system including only those
actions that are allowed by the law. From then on, the agents plan as usual. In our case the
mechanism is actively applied by the agents while they compute their optimal policies of action
and communication.
Cases (c) and (d) — The mechanism is applied once and it provides the agents with the solution
of a joint plan. Agents are self-interested and they negotiate assuming that both agents have
fully-observable information (although it may not be reliable).

B Meeting under Uncertainty Example

The testbed we consider is a sample problem of a GO-Dec-MDP-Com involving two agents that
have to meet at some location as early as possible. The environment is represented by a 2D grid with
discrete locations. In this example, any global state in which the agents are at the same location
can be considered a global goal state. The observations and the transitions are independent. The
set of control actions includes moving North, South, East and West, and staying at the same
location. The agents can initiate direct communication. Each agent’s partial view (which is locally
fully-observable) corresponds to the agent’s location coordinates. There is uncertainty regarding
the outcomes of the agents’ actions. That is, with probability Pi, agent i arrives at the desired
location after having taken a move action, but with probability 1 − Pi the agent remains at the
same location. Due to this uncertainty in the effects of the agents’ actions, it is not clear that
setting a predetermined meeting point is the best strategy for designing these agents. Agents may
be able to meet faster if they change their meeting place after realizing their actual locations. This
can be achieved by exchanging information on the locations of the agents, that otherwise are not
observable.

Adding direct communication to this setting allows the agents to attain full observability of
the global state of the system. Each time the agents exchange information, a mechanism is ap-
plied to the decentralized process resulting in two single-agent goal-oriented behaviors. We have
implemented the locally goal-oriented mechanism that assigns a single local goal to each agent at
each synchronized state, i.e., it instructs each agent to reach the location in the middle of the
shortest Manhattan path between the agents’ locations (this distance is revealed when information
was exchanged). This mechanism has low computational complexity (i.e., each agent computes the
location in the middle of the Manhattan path with the information acquired by communication
in constant time and the policy of communication can be found in polynomial time). Section 7
presents a myopic-greedy policy of communication for which this mechanism is complete, eventually
the agents achieve their global goal and meet.

Intuitively, it is desirable for a mechanism to set a meeting place in the middle of the shortest
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Manhattan path that connects the two agents because in the absence of communication, the cost
to meet at that point is minimal. This can be shown by computing the joint expected time to meet,
Θnc, for any pair of possible distances between the two agents and any location in the grid, when
no communication is possible. The minimal value is attained when these distances are equal. To
simplify the exposition, we use a function that takes advantage of the specific characteristics of the
example. In Section 7, we return to the notation of the general case. The notation is as follows:
agent 1 is at distance d1 from the meeting location, agent 2 is at distance d2 from that location,
the system incurs a cost of one at each time period if the agents have not met yet. and P is the
transition probability of the Dec-MDP-Com. If both agents are at the meeting location, the joint
expected time to meet is zero, Θnc(0, 0) = 0. If only agent 2 is at the meeting location, but agent
1 has not reached that location yet, then the joint expected time to meet is given by

Θnc(d1, 0) = P1(−1 + Θnc(d1−1, 0)) + (1−P1)(−1 + Θnc(d1, 0)) =

= P1Θnc(d1−1, 0)) + (1−P1)Θnc(d1, 0)) − 1

i.e., with probability P1 agent 1 succeeds in decreasing its distance to the meeting location by
one, and with probability 1 − P1 it fails and remains at the same location. Recursively, we can
compute the remaining joint expected time to meet with the updated parameters. Similarly for
agent 2: Θnc(0, d2) = P2(−1 +Θnc(0, d2−1)) + (1−P2)(−1 + Θnc(0, d2)). If none of the agents has
reached the meeting place yet, then there are four different cases in which either both, only one, or
none succeeded in moving in the right direction and either or not decreased their distances to the
meeting location respectively:

Θnc(d1, d2) = P1P2(−1 + Θnc(d1−1, d2−1)) + P1(1−P2)(−1 + Θnc(d1−1, d2))+

+(1−P1)P2(−1 + Θnc(d1, d2−1)) + (1−P1)(1−P2)(−1 + Θnc(d1, d2)) =

= P1P2Θnc(d1−1, d2−1)+P1(1−P2)Θnc(d1−1, d2)+(1−P1)P2Θnc(d1, d2−1)+(1−P1)(1−P2)Θnc(d1, d2)−1

We computed Θnc(d1, d2) for all possible distances d1 and d2 in a 2D grid of size 10 × 10. The
minimal expected time to meet was obtained when d1 = d2 = 9 and the expected cost was −12.16.

In summary, approximating the optimal solution to the Meeting under Uncertainty example
when direct communication is possible and the mechanism applied is the one described above will
unfold as follows: At time t0, the initial state of the system s0 is fully observable by both agents.
The agents set a meeting point in the middle of a Manhattan path that connects them. Denote
by d0 the distance between the agents at t0 and gt0 = (g1

t0 , g
2
t0) the goal state set at t0. Each one

of the agents can move optimally towards its corresponding component of gt0 . Each agent moves
independently in the environment because the transitions and observations are independent. Each
time t, when the policy of communication instructs an agent to initiate exchange of information,
the current Manhattan distance between the agents dt is revealed to both. Then, the mechanism is
applied, setting a possibly new goal state gt, which decomposes into two components one for each
agent. This goal state gt is in the middle of the Manhattan path that connects the agents with
length dt revealed through communication.

C Policies of Communication - Myopic-greedy Approach

Tables 11, 12, and 13 present the complete policies of communication for agents acting in the
Meeting under Uncertainty scenario (see Appendix B). Each row corresponds to a configuration
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tested with different state-transition uncertainties. Each column corresponds to a synchronized
state, given by the possible Manhattan distance between the agents moving in a 2D grid of size
10x10. Given a certain value for Pu and a certain global distance, each agent interprets the value
in any entry as the next time to communicate its position. Time is reset to zero when the agents
exchange information. As long as the distance between the agents is larger and the communication
cost increases the policy instructs the agents to communicate later, i.e., the agents should keep
operating until the information exchanged will have a better effect on the rescheduling of the
meeting place.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
0.4 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
0.6 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
0.8 2 2 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4

Table 11: Myopic-greedy Policy of Communication: CΣ = −0.1,Ra = −1.0.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 3 4 3 5 3 6 4 7 4 7 5 7 5 8 5 8 6 9
0.4 2 3 3 4 4 5 4 6 5 7 5 7 6 8 6 8 7 9
0.6 2 2 3 4 4 5 5 6 6 7 6 8 7 8 7 9 8 10
0.8 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

Table 12: Myopic-greedy Policy of Communication: CΣ = −1.0,Ra = −1.0.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 9 9 11 13 14 17 18 20 21 23 25 27 28 30 32 34 35 37
0.4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.6 4 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 15 16
0.8 3 3 4 4 5 5 6 7 7 8 8 9 10 10 11 11 12 12

Table 13: Myopic-greedy Policy of Communication: CΣ = −10.0,Ra = −1.0.
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D The Average Performance of the Myopic-greedy Approach

Tables 14 and 16 present the results obtained after running 1000 experiments when the cost of
communication was zero (Ideal case), when sub-goals could be communicated and when the myopic-
greedy policy of communication was computed. When communication is not allowed, the results
were computed based on the analytical functions explained in Appendix B (a meeting point was set
in the middle of the grid at time 0). Tables 15 and 17 present the average number of communication
acts performed in each one of these cases. When the cost of communication was −1, in all the cases
when the transition probability was 0.2,0.4, or 0.6 the results obtained by the greedy approach
were significantly greater than the results obtained by communicating sub-goals. When P =
0.8, the greedy approach produced poorer results than the communicate subgoals did. When the
communication cost was increased to −10, the results obtained for the greedy implementation and
the communication of sub-goals (ad-hoc rule) were insignificantly different (with probability 61%
and 82% when P = 0.2 and P = 0.4 correspondingly).

Average Joint Utility
Pu No-Comm. Ideal CΣ = 0 Comm. SubGoals – Best p Myopic-greedy
0.2 -104.925 -62.872 -65.906 0.3 -63.84
0.4 -51.4522 -37.33 -39.558 0.2 -37.774
0.6 -33.4955 -26.444 -27.996 0.2 -27.156
0.8 -24.3202 -20.584 -21.05 0.1 -21.3

Table 14: CΣ = −1.0 in SubGoals and Myopic-greedy,Ra = −1.0.

Average Communication Acts Performed
Pu No-Comm. Ideal CΣ = 0 Comm. SubGoals Myopic-greedy
0.2 0 31.436 1.194 6.717
0.4 0 18.665 1 3.904
0.6 0 13.426 1 2.036
0.8 0 10.292 0 1.296

Table 15: CΣ = −1.0 in Myopic-greedy and SubGoals,Ra = −1.0.

Average Joint Utility
Pu No-Comm. Ideal CΣ = 0 Comm. SubGoals – Best p Myopic-greedy
0.2 -104.925 -62.872 -69.286 0.1 -68.948
0.4 -51.4522 -37.33 -40.516 0.1 -40.594
0.6 -33.4955 -26.444 -28.192 0.1 -28.908
0.8 -24.3202 -20.584 -21.118 0.1 -22.166

Table 16: CΣ = −10.0 in SubGoals and Myopic-greedy,Ra = −1.0.
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Average Communication Acts Performed
Pu No-Comm. Ideal CΣ = 0 Comm. SubGoals Myopic-greedy
0.2 0 31.436 0 0.416
0.4 0 18.665 0 0.417
0.6 0 13.426 0 0.338
0.8 0 10.292 0 0.329

Table 17: CΣ = −10.0 in Myopic-greedy and SubGoals,Ra = −1.0.

E Myopic-greedy Policies of Communication with Deadlines

Table 18 presents the policy of communication computed following the myopic-greedy approach
when the agents continue acting until they meet (no deadlines). Tables 19 and 20 show how this
policy changes if different deadlines are added to the system, i.e., agents are penalized if they do
not meet by the deadline.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 9 9 11 13 14 17 18 20 21 23 25 27 28 30 32 34 35 37
0.4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.6 4 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 15 16
0.8 3 3 4 4 5 5 6 7 7 8 8 9 10 10 11 11 12 12

Table 18: Myopic-greedy Policy of Communication: CΣ = −10.0,Ra = −1.0, No Deadline.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 0 0 0 0 0 0 0 0 0 0 0 0 5 5 4 4 4 4
0.4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.6 4 4 5 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0
0.8 3 3 4 4 5 5 6 7 7 8 0 0 0 0 0 0 0 0

Table 19: Myopic-greedy Policy of Communication: CΣ = −10.0,Ra = −1.0, Deadline at T=8,
Penalty=-100.0.
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d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 9 9 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.4 5 6 7 8 9 10 11 12 13 0 0 0 0 0 0 0 0 0
0.6 4 4 5 6 6 7 8 9 9 10 11 12 12 13 0 0 0 0
0.8 3 3 4 4 5 5 6 7 7 8 8 9 10 10 11 11 12 12

Table 20: Myopic-greedy Policy of Communication: CΣ = −10.0,Ra = −1.0, Deadline at T=15,
Penalty=-100.0.

F The Average Performance of the OptCom Algorithm

Tables 21 and 23 present the joint utilities attained by a monotonic goal-oriented Dec-MDP, im-
plemented in the Meeting under Uncertainty example when CΣ took the values −1 and −10. We
compare between the No-Communication case (where the meeting point is fixed at time 0 in the
middle of the grid), the Ideal case with communication cost zero, the myopic-greedy case that pun-
ishes the agents if they did not meet by the finite-horizon, and the results obtained from running the
OptCom algorithm (see Section 8). As can be seen from these results, even in this simple example,
backward-induction attains results significant higher than the greedy approach. Tables 22 and 24
present the corresponding average number of communication acts in each case.

Average Joint Utility
P No-Comm. Ideal CΣ = 0 Myopic-greedy OptCom
0.2 -71.138 -62.55 -63.298 -62.776
0.4 -42.112 -37.292 -38.014 -37.622
0.6 -29.078 -26.716 -27.178 -26.692
0.8 -22.344 -20.57 -21.23 -20.622

Table 21: CΣ = −1.0.

Average Communication Acts Performed
P No-Comm. Ideal CΣ = 0 Myopic-greedy OptCom
0.2 0 31.275 6.687 30.388
0.4 0 18.646 3.99 17.811
0.6 0 13.358 2.115 12.346
0.8 0 10.285 1.233 9.311

Table 22: CΣ = −1.0.
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Average Joint Utility
P No-Comm. Ideal CΣ = 0 Myopic-greedy OptCom
0.2 -71.138 -62.7 -69.516 -63.4
0.4 -42.112 -37.788 -40.994 -37.678
0.6 -29.078 -26.644 -28.974 -26.89
0.8 -22.344 -20.606 -22.09 -20.59

Table 23: CΣ = −10.0.

Average Communication Acts Performed
P No-Comm. Ideal CΣ = 0 Myopic-greedy OptCom
0.2 0 31.35 0.444 28.957
0.4 0 18.894 0.428 16.032
0.6 0 13.322 0.33 11.474
0.8 0 10.303 0.301 9.2

Table 24: CΣ = −10.0.
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