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Abstract

There is increasing interest in concurrent passive monitoring of IP flows at multiple locations within an IP
network. The common objective of such a distributed monitoring system is to sample packets belonging to a large
fraction of IP flows in a cost-effective manner by carefully placing monitors and controlling their sampling rates.
In this paper, we consider the problem of where to place monitors within the network and how to control their
sampling. To address the tradeoff between monitoring cost and monitoring coverage, we consider minimum cost
and maximum coverage problems under various budget constraints. We show that all of the defined problems are
NP-hard. We propose greedy heuristics, and show that the heuristics provide solutions quite close to the optimal
solutions through experiments using synthetic and real network topologies. In addition, our experiments show that
a small number of monitors are often enough to monitor most of the traffic in an entire IP network.

I. INTRODUCTION

Traffic measurement and monitoring are important in order to understand the performance of a network infras-

tructure and to efficiently manage network resources. In particular, a passive monitoring system can be used to

study packet-level traffic, estimate packet-size distributions, estimate the fined-grained volume of network traffic

with different attributes for usage-based charging, and more [1]. In practice, a monitor is placed inside a router or

deployed as a standalone measurement box that taps into a communication link. Once a monitor is placed on a link,

it may capture or sample packets carried by the link depending on its specific sampling configuration. In order to

observe a large fraction of a network’s traffic, we need to monitor multiple links concurrently since only a relatively

small fraction of the traffic can be seen at any single measurement point in a large IP network. Placing a monitor

on a link incurs a deployment cost that includes fixed cost components such as the monitor’s hardware/software

cost, a space cost, and a maintenance cost. Therefore, it is important that the number of placed monitors be kept as

small as possible. In addition, the actual monitoring operation performed by a monitor also factors into its operating

This research was supported in part by the National Science Foundation under NSF grants EIA-0080119, ANI-9973635, and ANI-0085848.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the funding agencies. The Appendix is included in the submission for the reviewers’ perusal and will be excluded from the
final version of the paper.



2

cost. Considering that the per-packet operating cost of each monitor depends mainly on the link speed, we may

take advantage of the monitors with lower per-packet operating costs whenever possible.

In this paper, we consider the problem of sampling packets in a cost-effective manner by carefully placing

monitors and controlling their sampling rates. We consider IP networks in which each IP flow is routed along

a single path. Because of single path routing, we are able (to first order) to observe all packets in an IP flow

by monitoring any one of the links on the flow’s path. Roughly speaking, we have two conflicting optimization

objectives. One objective is to maximize the fraction of IP flows being sampled and the other objective is to

minimize the total monitoring cost. We begin by introducing novel monitoring cost and coverage models of both

sampling and non-sampling monitor modes for a distributed monitoring system. The monitoring cost is defined

as the sum of deployment cost and operating cost. Based on these models, we formulate several variations of the

problem of optimizing the deployment and sampling strategies of monitors. The solution of each of these problems

determines the minimal number of monitors and their optimal locations under various constraints; the operating

strategy determines the optimal flow sampling rate of each monitor. We show that all of the problems are NP-hard.

Therefore, we propose greedy heuristics and show that the greedy solutions provide solutions that are quite close

to optimal for a variety of problems based on synthetic and real network topologies. As a second contribution,

we determine the relationship between the number of monitors and the maximum coverage of flows. Using both

synthetic topologies and real topologies, we show that a relatively small number of monitors are sufficient to sample

a large fraction of all IP flows in the network.

Several recent efforts have addressed the monitor placement problem in IP networks. The use of active probing has

been proposed to obtain Internet topology and performance measurements (such as link delay and the existence of

faults). The location of these active measurement devices or beacons has been determined using various heuristics [2–

5]. Also, Horton et al. [6] determined the minimal number of required beacons in a network and their optimal

locations in order to obtain accurate Internet topology. While these works investigated active monitoring, the IPMon

project at Sprint [7] deployed multiple passive packet-level monitors inside their network to capture IP headers.

However, they consider neither the problem of monitor location nor the choice of sampling methodology in their

monitoring architecture. Recently, in parallel with our work, M. Sharma et al. [8] proposed a heuristic for locating

passive monitors. However, they do not consider operating costs or a sampling mode of operation, and do not

analyze the complexity of the formulated monitoring problems as we do in this paper.

The remainder of this paper is structured as follows. In the next section, we define a graph-based model of the

monitoring problem, the key ideas, and the performance metrics which include deployment cost, operating cost, and

monitoring reward. Sections III and IV formulate various budget-constrained and coverage-constrained monitoring

problems in both sampling and non-sampling modes of operation along with their complexity analysis. In Section

V, we evaluate the proposed greedy heuristics and examine the coverage issue. A summary of related work is

presented in Section VI. We conclude with a summary of our results and a discussion of future work.
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Parameter Definition
L Set of feasible links where monitors can be deployed
D Set of all flows in the network
Si Set of all flows carried by link i (Si ⊆ D)
S Set of all Si’s, i ∈ L (Si ∈ S)
yi {0, 1} indicator if a flow monitoring station is deployed at link i, i ∈ L.
fi Deployment cost of a monitor at link i
ρj traffic demand of flow j (unit: packets/time or bytes/time)
ci Unit operating cost of monitor at link i (unit: cost/packet or cost/byte)
xij {0, 1} indicator if flow j is being monitored by a monitor at link i, i ∈ L, j ∈ D.
mij Fraction of flow j sampled by a monitor at link i
Mj Fraction of flow j sampled by all monitors
uj(Mj) Nondecreasing concave function of the fraction of flow j sampled by all monitors

TABLE I
PARAMETERS IN THE MODEL.

II. PROBLEM SETTING

In this section, we consider the distributed monitoring problem, and propose three models — a deployment cost

model, an operating cost model, and a monitoring reward model — to represent different aspects of the monitoring

problem. We will further investigate the interaction among these three models in Sections III and IV, and show that

it is possible to achieve near-optimal monitor placement and operating conditions under various budget constraints

and monitoring objectives.

We represent an IP network as an undirected graph, G(V, E), where V and E ⊆ V x V denote the set of nodes

and links, respectively. We define a traffic flow to be a collection of packets that originate and terminate at the same

nodes, sharing the same route in the graph, i.e., ingress router to egress router flow. Flows can also be defined

at different granularities. For instance, a flow may represent network-to-network flow 1, ingress router-to-egress

router flow, host-to-host flow, or application-level flow. We have chosen the definition of flow as ingress router-

to-egress router flow for the following analysis since we believe that it is most interesting for traffic engineering.

The conclusions drawn from our analysis apply equally well to other flow definitions. We summarize the important

flow and monitoring parameters in Table I.

The solution to a distributed monitoring problem consists of two parts, (i) a set of links L, L ⊂ E at which

to place a monitor (ii) a monitoring strategy (e.g., sampling rate) at each monitor. In determining the number of

monitors and sampling rate at each monitor, we are interested in the tradeoff between monitoring cost and monitoring

coverage. Therefore, we first design general cost and reward models for a distributed monitoring system. We define

the monitor deployment and operating costs, and the reward from flow monitoring as follows (using the notation

from Table I). Here, we use D and Si to denote a set of all flows in the network and a set of all flows carried by

link i, respectively. We use yi to indicate whether a monitor is deployed at link i:

1PoP-to-PoP flow, AS-to-AS flow, and Customer-network-to-Customer-network flow may be typical examples of network-to-network flow.
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• Deployment cost model. The deployment cost model captures the cost associated with deploying a monitoring

station. We use fi to denote the deployment cost of a monitor at link i. Since the cost to place a monitor at a

specific link may depend on geographical location or accessibility, the deployment cost to monitor link i, fi,

can differ from link to link. Hence, the total deployment cost is:

CD =
∑

i∈L fiyi (1)

• Operating cost model. The operating cost model captures the cost associated with the monitor’s sampling

operation, assuming that a passive monitoring station is able to monitor traffic that traverses link in both

directions. We use ci to denote the unit operating cost of monitor i. This could represent the cost of sampling

a single packet at monitor i. The values of ci at each monitor can differ, e.g., because of link speed. We also

use mij and ρj to denote the fraction of flow j sampled by a monitor at link i and the traffic demand of flow

j, respectively. The total operating cost at link i is a function of the total amount of traffic from all flows, j,

sampled at link i:

CO =
∑

i∈L yici
∑

j∈D ρjmij (2)

• Monitoring reward model. The monitoring reward model captures the benefit of traffic monitoring. Let utility

function uj(Mj) denote the benefit gained by monitoring flow j, where Mj is the fraction of flow j that has

been monitored in the network. For example, uj(Mj) may simply represent the monitored traffic demand of

flow j.

CM =
∑

j∈D uj(Mj) (3)

We assume that no additional benefit can be gained by repeatedly monitoring the same traffic. Thus we can

express Mj in either of two ways:

Mj = 1 −
∏

i(1 − mij) (4)

Mj =
∑

i mij (5)

Equation (4) models a monitor that independently samples packets. Equation (5) models monitors that mark

sampled packets and only sample unmarked packets. We assume that uj() is non-decreasing concave. A simple

linear function may be a reasonable candidate. Alternatively, we might choose a form of uj() that accounts for

sampling errors, in which case uj() will also be a strictly non-decreasing concave function [9, 10].

III. A SET OF PASSIVE MONITORING PROBLEMS WITHOUT SAMPLING

In this section, we introduce several monitoring problems under the assumption that each monitor collects all

packets of monitored flows, i.e., mij = 1 or 0 for all i, j. We address the following three problems — the Budget

constrained maximum coverage problem (BCMCP), the Maximum deployment cost problem (MDCP), and the

Minimum deployment and operating cost problem (MDOCP). We show that all of these problems are NP-hard

problems and that there exist approximate algorithms that give results close to optimum. Table II summarizes the

set of passive monitoring problems described in this section.
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Problem Placement Cost Operating Cost Budget limit Optimization Goal Reducible Problem
BCMCP variable N/C yes max reward of flows budgeted MCP
MDCP variable N/C no min placement cost minimum SC
MDOCP variable variable no min placement+operating cost uncapacitated FLP

TABLE II
A SET OF PASSIVE FLOW MONITORING PROBLEMS WITHOUT SAMPLING

A. Budget Constrained Maximum coverage problem without sampling (BCMCP)

The objective of BCMCP is to maximize the monitoring reward without violating a constraint on the total

deployment cost. Each monitor has an associated deployment cost and there is a limited budget to cover this cost.

Initially, we ignore the operating cost. Once a monitor is deployed at a link, all flows carried by the link are fully

monitored. We maximize monitoring coverage by optimally assigning monitors to links.

Let B denote the maximum budget for the total deployment cost, and variable xj indicate whether flow j is

being monitored, where xj = 1 means that flow j is monitored and xj = 0 means that flow j is not monitored 2.

The BCMCP can be formulated as an integer linear program:

Maximize
∑

j∈D uj(xj)

subject to xj ≤
∑

i:j∈Si

yi, j ∈ D

∑
i∈L fiyi ≤ B

yi ∈ {0, 1}, i ∈ L

xj ∈ {0, 1}, j ∈ D

This problem can be shown to be NP-hard by a straightforward reduction from the budgeted maximum coverage

problem (MCP). The budgeted maximum coverage problem is defined as follows. We define a collection of sets

S = {S1, S2, . . . , Sm} with associated costs {ci}m
i=1 over a domain of elements X = {x1, x2, . . . , xn} with

associated weights {wj}n
j=1. The objective is to determine a collection of sets S′ ⊆ S, such that the total weight

of elements covered by S′ is maximized, while the total cost of elements in S′ is less than a given budget L [11].

The reduction can be done in the following way. S maps to the set of links; the associated cost ci is mapped to

the deployment cost fi; and Si maps to the set of flows carried by link i. Elements of X , xj , map to each flow

j in a given network. Weight wj of each element maps to the utility uj(xj) of each flow j and the budget L is

mapped to the budget constraint for the total deployment cost, B.
2Here, we use xj instead of mij to emphasize the fact that it takes one of only two values. Also, the index i ∈ L is dropped because the

location does not affect the objective function to be maximized.
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We propose a (1 − 1/e)-approximation algorithm for BCMCP, which is adapted from greedy heuristic for the

budgeted MCP proposed by S. Khuller et al. [11]. For a special case of the problem, where each subset has unit

cost, the simple greedy heuristic picks, at each step, a subset, Si, maximizing the utility value of the uncovered

flows. For the general case in which each subset is associated with a different deployment cost, the proposed

approximation algorithm computes two candidate solution sets and outputs the one with higher utility value as a

final solution. The first candidate solution is the highest utility solution among all subsets of S of cardinality less

than k that have cost at most B. The second candidate solution is obtained using simple greedy heuristics with

a different seed element. More specifically, for each subset G ⊆ S of cardinality k that has cost at most B, G

is included as a very first element to a candidate solution. After that, the candidate solution is augmented with

other subsets in S, which greedily maximize the utility value of the uncovered flows j ∈ D. Among candidate

solutions, the one with highest utility value is returned as a final greedy solution. The formal description of the

approximation algorithm for the general case is presented in Figure 1, where w(G) and c(G) denote the utility

value of the flows covered by any set in G and the deployment cost of monitors of G. In addition, we use wi to

denote the utility value of the flows covered by set Si, but not covered by any set in G. Note that the parameter

k is a tunable parameter that is chosen by a user. For 3 ≤ k ≤ |L|, the approximation algorithm in Figure 1 is

proved to achieve an approximation factor of (1 − 1/e) for BCMCP [11].

Approximation algorithm (B,k)
(1) H1 ← argmax {w(G) , such that G ⊆ S, |G| ≤ k, and c(G) ≤ B}
(2) H2 ← 0
(3) For all G ⊆ S, such that |G| = k and c(G) ≤ B do
(4) U ← S\G
(5) Repeat
(6) Select Si ∈ U that maximizes wi/ci

(7) If c(G) + ci ≤ B then
(8) G ← G ∪ Si

(9) U ← U\Si

(10) Until U = 0
(11) If w(G) > w(H2) then H2 ← G
(12) If w(H1) > w(H2), output H1, otherwise, output H2

Fig. 1. (1 − 1/e)-approximation algorithm for the general case of BCMCP

B. Minimum deployment cost problem without sampling (MDCP)

The dual of BCMCP is the minimum deployment cost problem, whose objective is to minimize the placement

cost of monitors given a monitoring reward requirement. Again operating costs are not considered, and once a

monitor is deployed at a link, all flows carried by the link are captured by the monitor. For example, if the utilities

of each flow are set equal to a constant value, MDCP simply minimizes the deployment cost while the number of

flows being monitored is equal or greater than the given monitoring reward, K. If the utility of each flow represents

the traffic demand of the flow, MDCP is defined to minimize the deployment cost subject to the constraint that

some minimum fraction of packets be monitored.
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The integer linear program formulation of MDCP is as follows. We want to find an assignment for the variables

yi, that:

Minimize
∑

i∈L fiyi,

subject to

xj ≤
∑

i:j∈Si

yi, j ∈ D

∑
j∈D uj(xj) ≥ K

yi ∈ {0, 1}, i ∈ L

xj ∈ {0, 1}, j ∈ D

Since MDCP is the dual problem of BCMCP, MDCP also is NP-hard. It can also be directly shown that MDCP

is NP-hard by constructing a dependency matrix whose rows represent links and whose columns represent network

flows. Here, we only prove the case that the utilities of all monitored flows are equal; the NP-hardness of the other

cases with different utilities can be proven in the similar way. Each entry (i, j) in the matrix can take binary values

{0, 1} such that if flow j traverses link i, entry (i, j) has value 1 and has value 0 otherwise. We need to choose a

subset of rows that covers at least K columns with the total cost of selected subset minimized. This is exactly a

weighted version of the partial set cover problem, which is known to be NP-hard.

For the general case, we can get an (log(|D|)+1)-approximation solution by adapting the approximation algorithm

for partial K-set cover problem proposed in [12]. We present the approximation algorithm for MDCP in Figure

2, where fj denotes the monitor deployment cost at link j. In the first step of the algorithm, we normalize the

utility values of monitored flows in MDCP because the algorithm requires that all utility values be equal. Without

loss of generality, we assume that the utility values of flows are integer values. For each ej ∈ Si, if uj(ej) = M

then we replace ej in Si with M flows ej1, ej2, . . ., and ejM where u(ejm) = 1, m = 1, . . . , M . For example, take

Si = {e1, e2, e3}, where u(e1) = 3, u(e2) = 2, and u(e3) = 1. Then, we replace the original elements {e1, e2, e3}

with new elements with unit utility values such that Si = {e11, e12, e13, e21, e22, e31}. The key idea of the rest of

the algorithm is to choose a subset in each step, taking into account both the number of uncovered flows in D in

order to obtain a K-cover and the number of uncovered flows in each subset Si.

Approximation algorithm (K)
(0) Replace each flow j ∈ Si, where uj(xj) = m for xj = 1, with new flows j1, j2, . . . , jm, with unit utility values.
(1) Set J as the collection of the indices of all Si

(2) Set J∗ = 0 and D = ∪iSi

(3) Set r = K − | ∪j∈J∗ Sj |, i.e., r is the number of flows of U yet to be covered in order to obtain a K-cover.
(4) If r ≤ 0, then STOP and output J∗.
(5) Find i ∈ J\J∗ that minimizes the quotient fj

min(r,|Sj |) , for j ∈ J\J∗ and Sj )= 0.
In case of tie, take the smallest such i.

(6) Add i to J∗. For each j ∈ J\J∗, set Sj = Sj\Si. Set D = D\Si. Return to Step (2).

Fig. 2. (1 + log|D|)-Approximation algorithm for the general case of MDCP with integer utility values
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C. Minimum deployment and operating cost problem without sampling (MDOCP)

The objective of MDOCP is to minimize the sum of deployment and operating costs. We assume that the operating

cost of a deployed monitoring station is determined by two factors: the average rate of the flow being monitored

and the speed of the link where the station is deployed. Unlike BCMCP and MDCP, each monitor is allowed to

selectively monitor a set of flows, instead of monitoring all the flows. If a flow is monitored, however, all packets

in that flow will be sampled. In this problem setting, we minimize the total deployment and operating cost.

This problem can be formulated as the following integer program. We want to find an assignment to the variables

yi and xij , such that the objective function is minimized:

Minimize
∑

i∈L fiyi +
∑

i∈L

yici

∑

j∈D

ρjxij

subject to

xij ≤ yi, i ∈ L, j ∈ Si

∑
i∈L xij = 1, j ∈ D

xij ∈ {0, 1}, i ∈ L, j ∈ Si

yi ∈ {0, 1}, i ∈ L

It can be shown that this problem is NP-hard by directly mapping this problem to the well-known uncapacitated

facility location problem (FLP). The uncapacitated FLP is defined as follows. We are given a set of locations

N = {1, . . . , n} with the distances between them denoted as cij , i, j=1, . . . , n. We may open a facility at potential

facility locations, F ⊆ N ; building a facility at location i ∈ F has an associated non-negative cost fi. We also have

a set of demand points that must be assigned to an open facility, denoted as D ⊆ N ; for each demand point j ∈ D,

we have a positive integral demand dj that must be shipped to its assigned location. The cost of assigning location

i to an open facility at j is cij per unit of demand shipped. We assume that these costs are non-negative, symmetric,

and satisfy the triangle inequality; that is, cij = cji for all i, j ∈ N , and cij + cjk ≥ cik for all i, j, k ∈ N . The

objective is to determine the set of locations to open facilities and an assignment of demand to the opened facilities,

in order to minimize the total cost that is the sum of facility opening cost and the total shipping cost [13, 14]. D.

Shmoys et al. proposed a polynomial-time approximation algorithm that finds a solution within a factor of (1+2/e)

of the optimal, where 1 + 2/e ≈ 1.736. The approximation solution is obtained by rounding an optimal fractional

solution to a linear programming relaxation [14].

We can map our problem to the uncapacitated facility location problem in the following way. Let’s suppose that

we have a set of flows M and a set of link L in the network. Let N = M
⋃
L, where N is a set of locations in

FLP. Since monitoring stations can be deployed only on links, F = M and D = L, where F and D are subsets

of locations in FLP. Although the original FLP problem definition requires symmetry and the triangle inequality
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properties, these are not of concern to us because F and D are disjoint in our special case. The deployment cost

of a facility, fi, is defined as the deployment cost of monitor at link i; the demand dj is defined as the average

rate (i.e., monitoring demand) of flow j. The distance cij is defined as follows. If flow j traverses link i, then cij

is defined as the unit operating cost of monitor at link i, ci; otherwise, cij = ∞.

IV. A PASSIVE MONITORING PROBLEM WITH SAMPLING

In this section, we define a monitoring problem under the assumption that a monitor can selectively sample

packets in a flow. The sampling rate for each flow at each monitoring station can be adjusted independently. We

introduce the Budget Constrained Maximum Coverage Problem with sampling (BCMCP-S) with the objective of

maximizing the monitoring reward given budget constraints. This is the sampling version of the BCMCP problem

considered in section III.

The objective of BCMCP-S is to maximize the total utility of fractional flows being sampled without violating

the budget constraint for the monitors’ deployment and operating cost. More specifically, we have limited budgets

to cover the deployment cost and operating cost. Once a monitor is deployed on a link, a subset of the flows carried

by the link is sampled by the monitor. The sampling rate per flow at each monitor is controlled independently.

In this setting, our goal is to maximize the sum of the utilities of the monitored fractional flow, by selecting the

number of monitors, their locations and their sampling rates.

A mixed-integer non-linear program (MINLP) formulation of BCMCP-S is presented below, where Si represents

the set of flows carried by link i, B1 represents the budget for deployment cost, and B2 indicates the budget for

operating cost. We now want to find an assignment to the variables yi and mij , that:

Maximize
∑

j∈D uj(Mj)

subject to
∑

i∈L fiyi ≤ B1

∑
i∈L yici

∑
j∈D ρjmij ≤ B2

mij ≤ yi, i ∈ L, j ∈ Si

mij = 0, i ∈ L, j /∈ Si

yi ∈ {0, 1}, i ∈ L

mij ∈ [0, 1], i ∈ L, j ∈ Si

In general, it is difficult to directly obtain an optimal solution, because the yi’s are integer variables and the

uj(Mj) may be nonlinear functions [15]. For example, if we assume that monitors sample flows independently

of each other, the objective function can be represented as
∑

j∈D(uj(1 −
∏

i∈L(1 − mij))). To obtain an optimal

solution, we can apply the branch-and-bound algorithm combined with gradient projection method to reduce the

effect of combinatorial explosion [15]. However, we still need a faster method to compute solutions since the
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branch-and-bound method cannot guarantee a computation time that is polynomial in the number of monitors.

Here, we obtain an approximate solution as follows. We solve BCMCP-S approximately via a two-stage algorithm

consisting of a greedy algorithm for integer variables and a gradient projection method for non-integer variables.

We present the approximation algorithm in Figure 3. First, we apply a greedy algorithm to obtain an assignment of

the yi variables. The greedy algorithm is similar to the algorithm for BCMCP. Once values are assigned to yi’s by

the greedy algorithm, we solve the reduced problem using a gradient projection method since all of the constraints

are linear. Since the constraints are linear and the objective function is also assumed to be concave, the iterative

solution from the gradient projection method converges to an optimal solution of the reduced problem3. However,

this solution is an approximate solution of the original problem.

Approximation algorithm (B1,B2, k)
/* Stage 1 */

(1) H1 ← argmax {w(G) , such that G ⊆ S, |G| ≤ k, and c(G) ≤ B1}
(2) H2 ← 0
(3) For all G ⊆ S, such that |G| = k and c(G) ≤ B1 do
(4) U ← S\G
(5) Repeat
(6) Select Si ∈ U that maximizes

∑
j∈Si

(uj(1)/ρj)/ci

(7) If c(G) + ci ≤ B1 then
(8) G ← G ∪ Si

(9) U ← U\Si

(10) Until U = 0
(11) If w(G) > w(H2) then H2 ← G
(12) If w(H1) > w(H2), then H ← H1, otherwise, H ← H2

(13) For all Si, if Si ∈ H , then yi ← 1, otherwise, yi ← 0
/* Stage 2 */

(14) Run gradient projection method for the reduced problem with yi’s and B2, and output the result

Fig. 3. Two-stage approximation algorithm for BCMCP-S

V. EVALUATION OF GREEDY HEURISTICS, COVERAGE, AND MARGINAL GAIN WITH ADDITIONAL MONITORING

POINTS

In this section, we evaluate the effectiveness of our approximation algorithms for BCMCP and BCMCP-S in

comparison with the optimal solutions. We also investigate the problem of determining the number of monitors

needed to achieve a specific level of monitoring reward. We first describe the specific parameter settings for the

two problems and then show the results of our evaluation.

A. Simulation parameter settings

1) Network topology, traffic matrix, and routing settings: We use both synthetic network topologies and a real

ISP topology for our study. More specifically, we use the PoP-level topology of Cable&Wireless, as inferred by
3By changing the sign of the concave objective function in the maximization problem, the problem becomes a minimization problem. Let

us denote the new convex objective function with changed sign as f . If f is a convex function, then a local minimum of f over X is a

global minimum. If in addition f is strictly convex over X , then there exists at most one global minimum of f over X [16].
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Parameter value
fi 1
ρj traffic demand of flow j
ci 1
Mj (1 −

∏
i(1 − mij))

uj(xj) ρj ∗ xj

uj(Mj) Mj

TABLE III
PARAMETER SETTINGS

the Rocketfuel project [17, 18]. Our synthetic topologies, consist of random topologies and Transit-Stub topologies

generated by GT-ITM [19]. Unfortunately, neither the GT-ITM nor the Rocketfuel dataset provide traffic demand

matrices for each topology generated or inferred. Therefore, in order to generate a traffic matrix, we use the

technique proposed in [20].

In [20], a synthetic topology is produced using GT-ITM. The original topology model of GT-ITM places nodes

in a unit square, thus generating a distance δ(x, y) between each pair of nodes. These distances lead to random

distribution of 2-level graphs with local access arcs and long distance arcs. The topology model does not include a

model for the demands and so the demands are modeled as follows. For each x, two random numbers are chosen:

Ox, Dy ∈ [0, 1]. Further, for each pair of nodes (x, y), a random number C(x,y) ∈ [0, 1] is chosen. The demand

between x and y is then αOxDyC(x,y)e
−δ(x,y)/2∆, where the Euclidean distance between x and y is δ(x, y), ∆ is

the largest Euclidean distance between any pair of nodes, and α is a parameter that scales the demand [20].

We take a flow to be an ingress-router-to-egress-router flow, unless stated otherwise. However, other flow

definitions result in a similar problem formulation. We assume that the routing path of each flow is determined by

a shortest path routing algorithm assuming that a single path is always taken by each flow.

2) Utility functions and cost assignment: Table III lists the utility function uj() for each flow j, the deployment

cost fi for each monitor at link i, and the values of all of the parameters. In Table III, the traffic demand of flow

j, ρjxj , is taken as the utility uj(xj) for BCMCP. We take the fraction of monitored packets in flow j, Mj , as the

utility uj(Mj), which we call a linear utility, for BCMCP-S. Specifically, we assume that each monitor samples

packets independently in BCMCP-S, such that Mj = (1 −
∏

i(1 − mij)). We take unit value 1 for deployment

costs, fj .

B. Simulation results of BCMCP

Figure 4 plots the fraction of monitored packets as a function of the number of monitors using the greedy

BCMCP heuristic for a random network of 10 routers listed in Table IV. The x-axis represents the number of

deployed monitors and the y-axis the fraction of packets monitored. Though BCMCP is an NP-hard problem, we

can compute optimal solutions for small problem sizes and compare them to solutions produced by our heuristics.

The graph in Figure 4 shows that the optimal solutions achieve higher reward than the greedy solutions, although



12

Type Num of nodes Num of links Num of flows Additional information
Random 10 14 36
Transit-stub 27 31 41 3 trans-node; 2 stubs/trans-node; 4 nodes/stub
Transit-stub 100 187 8885 4 trans-nodes; 3 stubs/trans-node; 8 nodes/stub

TABLE IV
GT-ITM TOPOLOGIES AND THE TOTAL NUMBER OF FLOWS
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Fig. 4. BCMCP in a 10 node, 14 link, and 36 flow GT-ITM Random topology

the differences between the optimal and heuristic solutions are quite small. In this graph, we observe that, by

deploying monitors at 29% of the possible locations (in this case, 4 monitors), we can monitor more than 90% of

the network’s packets. We also observe that the marginal increase in the fraction of monitored packets decreases

as additional monitors are added.

Figure 5 shows similar results for the case of a transit-stub topology of 27 nodes listed in Table IV. Because

of the combinatorial explosion, we could only compute optimal solutions for up to 5 monitors for this problem.

Interestingly, the greedy solution for 3 monitors results in approximately 90% of the packets being monitored, and

produces the same result as the optimal solution. We again observe decreasing marginal returns as the number

of monitors increases. In section III, we have shown that (1 − 1/e) is the theoretical bound of approximation

ratio of the greedy solution to the optimal solution in BCMCP. However, in Figure 4 and 5, we observe that

the greedy algorithm comes much closer to optimal. We conjecture that the better approximation performance is

made possible by various factors such as shortest-path routing, the hierarchical structure of the topologies, and

all-pair traffic demands among nodes. One more interesting observation is that in Figure 5, a smaller fraction of

monitoring locations is needed than in Figure 4 to achieve similar monitoring rewards. For example, to cover



13

! ( &! &( "! "( 3! 3(
!.((

!.$

!.$(

!.)

!.)(

!.%

!.%(

!.*

!.*(

&

+umber of monitors

Fr
ac

tio
n 

of
 m

on
ito

re
d 

pa
ck

et
s

>?M?A (Transit Stub with ") nodes, 3& links and #& flows)

Greedy solution
Mxact solution

Fig. 5. BCMCP in a 27 node, 31 link, and 41 flow GT-ITM Transit-Stub topology

90% of the packets, only 10% of the locations require monitoring in latter case, while, about 29% of the locations

require monitoring in the former case. We conjecture that this is due to the fact that transit-stub model produces

transit links and that these links are traversed by most of the flows.

Figure 6 shows the results for a larger transit-stub graph of 100 nodes. Again we could not compute exact

solutions for all possible number of monitors. This graph also shows the decreasing monitoring reward gain. In

addition, in Figure 6 a smaller fraction of monitoring locations is required by the network than the 27 node network

to achieve a same level of monitoring reward (up to 90% of monitored packets), suggesting that a larger topology

tends to require a smaller fraction of monitoring locations for the same monitoring reward.

In Figure 7, we use the PoP-level topology 4 of Cable & Wireless as inferred by the Rocketfuel project [17,

18]. Since the topology data from the Rocketfuel project does not contain traffic matrices, we again generate the

traffic demand matrix according to the model in [20]. Also, we use a shortest path routing algorithm to find the

routing path for each flow, assuming that a single path is always used. In Figure 7, we also observe similar trends

such as a diminishing reward gain.

C. Simulation results for BCMCP-S

Figure 8 shows simulation results for the BCMCP-S approximation applied to the 10-node random graph listed

in Table IV. In addition to the parameter settings in Table III, we select a budget, B2, for the total operating

cost such that it is impossible to sample 100% of packets of the flows covered by monitors for any set of monitors

that satisfy the budget constraint, B1. We generate optimal solutions in a brute-force way by selecting every set

of monitors that satisfies the budget constraint, B1, and running the gradient projection method for each selected
4We treat each POP as a single router in this POP-level topology for our evaluation.
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Fig. 6. BCMCP in a 100 node, 187 link, and 8885 flow GT-ITM Transit-Stub topology

set of monitors. The graph shows that the greedy solution is quite close to the optimal solution. In Figure 9, we

use the same random topology as in Figure 8, but replace the linear utility with an exponential utility function.

Specifically, the objective function is uj(Mj) = (1− exp(−5.0 ∗Mj)), where Mj = (1−
∏

i(1−mij)). We again

observe that the greedy solution is close to the optimal solution. In addition, both Figure 8 and 9 show that the

marginal increase in monitoring reward decreases as additional monitors are added. Although we omit the exact

number of sampled flows and sampling rates here, we observe that in the latter case that uses the exponential

function more flows are monitored (although smaller sampling rates are obtained on average) than in the former

case that uses the linear function.

VI. RELATED WORK

Several recent efforts have addressed the placement problem of active monitors and packet filters in networks. In

addition, the question of how to sample packets in a single monitor has been addressed by several researchers. The

problem formulation presented in this paper is unique when compared to prior work in those areas. We summarize

prior work in this section.

A. Number and location of tracers in the Internet

To obtain topology and performance measurement such as link delay and existence of faults etc. measurement

points that send “active probe” messages may be used. The location of these measurement devices or beacons

has been determined according to various heuristics in the literature [2–5]. These efforts are similar to our work

in the sense that near optimal locations of measurement devices are obtained using greedy heuristics. Horton et

al. [6] showed the minimal number of required beacons on a network and their near-optimal locations. Barford
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Fig. 7. BCMCP in Cable&Wireless PoP-level topology from Rocketfuel dataset

et al. [21] presented empirical observation that the marginal utility of adding additional active measurement sites

declines rapidly after the second or third site. In other words, both works show that a relatively small number of

active measurement points is generally sufficient to obtain an accurate network topology [6, 21]. This conclusion

is similar to our observation that only a small number of passive monitors is necessary to achieve high monitoring

coverage. However, these earlier works were concerned about active, rather than passive, monitors.

B. High coverage power with a small number of passive monitoring/filtering locations

K. Park and H. Lee [22] showed that the well-known vertex cover problem can be an approximation to the

problem of placing route-based packet filters on routers to prevent distributed DoS Attack. Since the vertex cover

problem is known to be NP-hard, they investigated several greedy heuristics. Also, they argued that the installation

of route-based packet filters in the border routers of a small number of ASes is enough to achieve high defense

coverage against DDoS attacks, because it is known that AS graphs follow a power-law. Our work is similar to

their work in the sense that greedy heuristics are proposed because of the NP hardness of the problems. We also

show that a few locations are enough to achieve high coverage. However, we deal with the problem of distributed

monitoring, a different problem than route-based packet filtering systems. Also, we propose both deployment and

operating strategies for distributed monitoring.

C. Network tomography

The objective of Minimum cost Multicast Tree Cover Problem (MMTCP) in [23] is: given a set of links whose

behavior is of interest, how does one choose a set of minimum cost multicast trees within the network to determine

the behavior of the links in question, particularly link loss rate. They introduce a cost function that accounts for a
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Fig. 8. BCMCP-S in a 10 node, 14 link, and 36 flow GT-ITM Random topology

per tree cost and per link costs. The MMTCP is similar to our MDCP because simple greedy heuristics for weighted

minimum set-cover problem was proposed for both problems. However, MMTCP is again concerned with active

measurements, which is different from a passive measurement problem considered by MDCP. In addition, sampling

is not considered in [23].

D. Sampling strategies

Sampling methodologies at a single measurement point [1, 9, 24] are related to BCMCP-S. In practice, sampling

accuracy may be measured by the magnitude of the variance or the relative size of the confidence interval to

the mean value of unbiased estimators. If we model uj(Mj) as the sampling accuracy of flow j, the objective

of BCMCP-S becomes that of maximizing the overall sampling accuracy under a constrained monitoring cost.

However, in [9, 24], the minimum number of sampled packets is calculated under the given bounding constraint

for the sampling error to infer the total volume of packets with some common attributes. In [1], in order to jointly

control the volume of samples N̂ and the variance of the estimator X̂ without assumptions on the distribution of

the sizes xi, a cost function Cz(p) = V arX̂ + z2EN̂ is introduced and it is shown that a size-dependent sampling

which dynamically chooses sampling rate pz(x) = min{1, x/z} 5 minimizes the cost function Cz(p).

VII. CONCLUSION

In this paper, we have presented near-optimal monitor placement and operating strategies in a distributed

monitoring system, which operate either in sampling or non-sampling mode. Each deployment strategy determines

the maximum number of monitors and their locations under a given budget constraint or determines the minimum
5where z is a tunable parameter and x is the size of a given flow being monitored.
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Fig. 9. BCMCP-S in a 10 node, 14 link, and 36 flow GT-ITM Random topology

deployment cost for a maximum number of monitors. Also, the operating strategy of each monitor determines the

flow sampling rate. More specifically, we first introduced novel monitoring cost and reward models for a distributed

passive monitoring system, which can accommodate both sampling and non-sampling modes of the monitoring

system. Based on these models, we formulated a set of placement and operating problems assuming different

constraints for budget and coverage requirements. We also showed that various placement problems are NP-hard.

We proposed approximation algorithms based on greedy heuristics to determine placement locations and used a

gradient projection method to get sampling rates.

Secondly, we evaluated the relationship between the number of monitors and the maximum reward of flows using

both synthetic and an ISP topology. Through the experiments, we showed the decreasing gain of monitoring reward

whenever additional monitors are added. Also, we showed that only a small fraction of links need be monitored to

achieve a high level of monitoring reward.

Finally, we presented the experimental results showing that the proposed approximation algorithms achieve very

good solutions. More specifically, according to our experiments with network topologies, our proposed greedy

solutions achieved much better approximation ratios than the well-known theoretical bounds for the approximation

algorithm for budgeted maximum coverage problem, O(1 − 1/e). We conjecture that the hierarchical structure of

topologies, shortest path routing, and all-pair traffic demands among nodes result in a small set of links carrying

most of the flows. We conjecture that such links are the early candidate links in our greedy solutions, and are

consistent with the links chosen in optimal solutions. However, further study on this issue is needed to validate this

insight.

As on-going work, we are evaluating our heuristics on more diverse real ISP topologies such as Sprint and AT&T

networks as inferred by Rocketfuel projects. Also, we are considering the case of route changes caused by link
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failures. We plan to evaluate the effectiveness of the approximation algorithm for MDOCP. In addition, we are

investigating whether a tighter bound of the approximation ratio of the greedy solution can be found for power-law

networks.
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