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Abstract—
In this paper, we study the interaction between overlay

routing and Multiprotocol Label Switching (MPLS) Traffic
Engineering (TE) in a single Autonomous System (AS). We
formulate this interaction as a two-player non-cooperative
non-zero sum game, where the overlay tries to minimize
the delay of overlay traffic and TE’s objective is to mini-
mize the network cost as a whole. Two types of games, a
Nash game with best-reply dynamics and a static Stackel-
berg game, are studied. In a Nash routing game, overlay
and TE are of equal status, and take turns to compute their
optimal strategies based on the response of the other player
in last round. We give analytical proof of existence, unique-
ness and global stability of Nash equilibrium point (NEP)
for a simple network. For general networks, we show that
the selfish behavior of an overlay can cause huge cost in-
crease and oscillations to the whole network. Even worse,
we have identified cases, both analytically and experimen-
tally, where the overlay’s cost increases as the Nash rout-
ing game proceeds even though the overlay plays optimally
based on TE’s routing at each round. We propose that the
overlay play as a leader in a Stackelberg game with TE to
completely eliminate oscillations and optimize its own per-
formance. We provide a gradient projection search heuris-
tic to solve for Stackelberg strategy. We also discuss various
practical issues, such as, time scale discrepancy between TE
and overlay, overlay routing with limited information and
the interaction between multiple overlay networks.

I. INTRODUCTION
There are two recent trends in network routing research.

One is overlay routing, and the other one is Traffic Engi-
neering (TE).
Overlay routing (e.g., Detour [29], RON [7]) allows

end hosts to choose routes by themselves. It is applica-
tion level routing, where traffic is routed by application
level routers (computers.) The logical paths and links
of an overlay lie on top of physical paths set by intra-
domain (e.g., OSPF [1], MPLS [2], IS-IS [3]) and inter-
domain routing protocols (e.g., BGP [4].) It is shown
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that these overlay routing schemes are effective in deal-
ing with some of the deficiencies in today’s IP routing
([7][30] [29].) On the other hand, as pointed out by [18]
and [8], Internet Service Providers (ISPs) are working to-
wards better and robust intra-domain routings to adapt to
the prevailing traffic through Traffic Engineering (TE).
In this paper, we are interested in overlay networks

within a single ISP, and study the interaction between the
routing of an overlay network and MPLS Traffic Engi-
neering. Our work is motivated in part by the work of
Qiu, Yang, Zhang, and Shenker [26], in which the interac-
tion between overlay selfish routing and TE is brought up.
However, our work is different in that [26] assumes each
overlay user controls an infinitesimal amount of traffic de-
mand and makes routing decisions independently. We
study a single large scale and centrally controlled over-
lay network that controls a non-negligible portion of traf-
fic demand and does optimal routing on application level.
Akamai examplifies the type of overlay of interest to us.
We further assume that the proportion of overlay traffic
is significant enough to influence the routing decisions of
TE. 1
There is a fundamental mismatch between the objec-

tives of an overlay routing and TE routing. An overlay is
interested in the optimal routes for its own group of users.
TE is interested in improving the whole network perfor-
mance by considering all users including both overlay and
non-overlay (or underlying) users. The overlay evaluates
its cost or delay on each logical path and link, whereas,
TE evaluates its cost on each physical path and link. The
cost functions of overlay and TE could be different. Fur-
thermore, the routing decisions of overlay (traffic flows on
logical links) are essentially the input to TE (interpreted
as traffic demands), and in turn, routing decisions of TE
(traffic allocation on each physical link) will influence fu-
ture routing decisions made by the overlay by affecting
the costs or delays on logical links. Figure 1 shows con-
ceptually how overlay and TE interacts with each other.
Since both overlay and TE optimize their routes over

1There is no fixed cutoff value for this significant proportion, since it
depends on how different the two objective functions are, and depends
on the network topology and traffic patterns. Later in the paper, we
will give more detailed discussions on this issue.
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time, the interaction between their decisions can be under-
stood as an iterative process ([26]). For example, initially,
in the first round, overlay users allocate traffic among all
logical paths (set routing decisions) based on current log-
ical link delays. Each logical path might include sev-
eral logical links. The traffic flow on a logical link be-
tween two nodes is interpreted by TE as traffic demand
between these two nodes. In the second round, an ISP
performs Traffic Engineering. It takes as input the traffic
demand matrix (each demand pair includes traffic demand
from underlying traffic and/or demand from overlay traf-
fic), and computes a set of physical level routes using TE
scheme such as [18] to minimize overall network cost or
to minimize maximum link utilization. This process re-
peats itself. In this process, TE and overlay changes the
input for each other in turn. Overlay routing decisions
are the logical link traffic flows, which are in turn inter-
preted as traffic demands by TE, and on the other hand,
TE changes the delays of logical paths by adjusting the
actual physical-level routings of overlay traffic. This rout-
ing interaction process was first introduced by Qiu et al
[26]. Some numerical results are given in [26], and the
comment there is that MPLS TE interacts well with over-
lay routing, but OSPF TE interacts badly with overlay.

Overlay

Traffic
Engineering

(TE)

flows on 
logical links

TE demands
from overlay traffic 

TE demands
from underlying traffic 

overlay demands

flows on 
physical links

delays on 
logical links

Fig. 1. Interaction between overlay optimizer and Traffic Engineering
optimizer.
The central questions we address in this paper are on

the dynamics of this interaction process. We formally
model this interaction as a non-cooperative non-zero sum
two player game. Overlay and TE are essentially two
players with different objectives. From now on, we re-
fer an overlay routing optimizer as overlay, and refer a
TE routing optimizer as TE. In the interaction process, or
best-reply dynamics, each player adjusts its response op-
timally based on the other player’s decisions in the previ-
ous round. Given the mismatch between the objectives of
overlay and TE, we ask questions such as: does a Nash
equilibrium exist in this game? If a Nash equilibrium ex-
ists, is it unique? How about the stability of Nash equi-
libriums? Does the interaction process always converge
to a Nash equilibrium? What effects on the performance
of TE and overlay can be caused by this interaction pro-
cess? How does the information availability influences

the strategies of both players and further influences the
interaction process?
In general, the objective of TE is to minimize the over-

all network cost or to minimize the maximal link utiliza-
tion [18]. In this paper, we consider MPLS routing to
achieve TE. Specifically, we consider minimizing overall
network cost [18]. On the other hand, there are a vari-
ety of objectives for different overlay structures, we focus
on an overlay optimizer to minimize the overall delay for
its own traffic on top of the routings set by TE. We also
address other overlay objectives, such as selfish routing
([28] and [26]) or user-equilibrium problem([17]).
The key contributions and results are summarized as

follows.
First, we formulate and evaluate the routing interaction

problem as a non-cooperative non-zero sum two player
game. We focus on two types of games. In the first type
of game, overlay and TE are equal in status, and the inter-
action process is best-reply dynamics. We call this type of
game a Nash routing game. The general insights into this
game are that overlay routing will never improve the per-
formance of TE if TE uses MPLS (analytically proved),
and in most cases, TE’s cost will be increased a lot in
the interaction with overlay, and the cost increase of TE
is a function of the percentage of overlay traffic. If over-
lay traffic is about 50% of total traffic, then, overlay’s in-
fluence on TE’s performance achieves the largest. To il-
lustrate the interaction process, for a simple network, we
give an analytical proof on the existence and uniqueness
of Nash equilibrium, and we prove that the interaction
process always converges to the equilibrium. For general
networks, the existence and uniqueness of Nash equilib-
ria depend on network topology and traffic patterns. In
addition, given that there is a Nash equilibrium, the game
playing or interaction process may not converge to the that
Nash equilibrium. The convergence property is problem
specific.
One interesting finding is that under certain network

condition, overlay’s cost may increase when it plays a
Nash routing game with TE. We give an analytical proof
for a simple example. We have observed this also in ex-
periments with a 14-node tier-1 ISP topology. Thus, it
may not be wise for an overlay to always optimize its
routes each time TE does physical routings, because in
the long run, overlay’s cost may be increased. This ob-
servation is of practical importance to an overlay routing
structure, even though it is not surprising from a game-
theoretic point of view because this is the inherent ineffi-
ciency characteristic of the NEP.
Second, in the Stackelberg game, we further assume

that the overlay knows the optimization algorithms used
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by TE, so that it can predict the response (physical level
routings) from TE. For this game, we study the static
Stackelberg strategy of overlay for the case that the over-
lay has higher status than TE. We call this type of game
Stackelberg routing game. Our results show that, if an
overlay plays (as a leader) a static Stackelberg game
against TE, not only can oscillations be completely elim-
inated, but also the performance of overlay can be im-
proved. Since solving a static Stackelberg game (a bi-
level programming problem) is NP-hard, we give a heuris-
tic to solve this Stackelberg routing game. This heuristic
uses random start and gradient projection search. Our pre-
liminary results show that it is very promising to use this
heuristic to solve for the approximate Stackelberg routing
strategy for an overlay network.
Third, in the previous two types of games, we assume

overlay knows necessary information to play the Nash
routing game and static Stackelberg routing games. In
practice, an overlay most likely cannot access this infor-
mation. So, we further study the interaction processes in
which overlay has only limited information. According
to the ways an overlay to measure and estimate necessary
information and the ways to implement its routing deci-
sions, we further study two types of overlay: a one-step
overlay v.s. incremental overlay. We give a simple ex-
ample to show that one-step overlay can lead bad oscil-
lations and badly degraded performance for both players.
For incremental overlay, we prove the existence of Nash
equilibrium and the convergence of dynamic interaction
process for a simple network. An numerical example is
given to verify our results. In general, incremental algo-
rithms are recommended to an overlay network routing
optimizer. Even though oscillations could be decreased,
they still exist in many cases because the fundamental
problems are not solved by incremental algorithms. We
discuss the tradeoffs between performance improvement
and measurement costs to an overlay network.
Finally, we discuss issues on: the interaction between

multiple overlays; frequency and time scale of game play-
ing process; online learning in this interaction game.
The rest of the paper is organized as follows. In Section

2, related work is given. In Section 3, we formally model
the interaction process as a two-person non-cooperative
non-zero sum game. Nash routing game is given in Sec-
tion 4, and static Stackelberg routing game is given in Sec-
tion 5. In Section 6, we study games in which overlay has
limited information. General discussions are given in Sec-
tion 7. Conclusions are given in Section 8.

II. RELATED WORK

Noncooperative games in the context of routing have
been studied in the areas of transportation networks for a
long time. In that framework, each user controls just an
infinitesimally small portion of the network flow, and tries
to minimize its own delay or cost. Dafermos and Spar-
row [16] show that a simple transform of the cost function
can make the routing game a standard network optimiza-
tion problem, which is called user equilibrium model. On
the contrary, a system optimum model has an objective to
minimize the overall delay of the whole network. In the
area of computer networks, the user equilibrium model
is called selfish routing ([23][28][26].) Orda [25] and
Korilis [22] studied a model in which users control non-
negligible portion of flow. Orda [25] investigates the ex-
istence and uniqueness of Nash equilibrium in a routing
game in which each user attempts to optimize its own per-
formance by controlling its own portion of traffic. In [22],
a a central manager is introduced into the model. Other
related work can be seen in [6] and [27].
Our work differs from that on selfish routing ([26],

[17], [28]) in that each user or player controls a non-
negligible portion of flow in our work. Our work also dif-
fers from [25] and [22]. In our work, the view of network
of each player (overlay and Traffic Engineering) is differ-
ent. Overlay has a logical view of the network, whereas
Traffic Engineering has a physical view of the network.
In addition, each player’s decision can change the input
for the other player. The routing interaction problem was
first studied by Qiu et al [26]. Two experimental studies
were given to show the interaction between overlay and
MPLS TE, and the interaction between overlay and OSPF
TE. Our work starts from this base to formally model this
interaction as a noncooperative game.
Solving for the static Stackelberg strategy is essentially

a bi-level Programming problem, which in general is NP-
Hard ([20], [9], [12], [33].) Inspired by decent method
([31], [21]) and projection methods for optimal routing
in [14] and [13], we propose a gradient projection search
heuristic.

III. MODELS OF INTERACTION

A. Formulations of Traffic Engineering Optimizer and
Overlay Routing Optimizer

Recently proposed Traffic Engineering, OSPF opti-
mizer [18] or MPLS optimizer [26], are load-sensitive
routing algorithms. They run periodically in response to
load changes. In general, both OSPF and MPLS optimiz-
ers have the same objective, to reduce the total network
cost. But they have different ways to reach that objective.
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OSPF optimizer searches for a best set of link weights,
and runs the OSPF protocol to achieve routings that can
make the total network cost as close as possible to its ob-
jective. On the contrary, MPLS can directly set routings
to reach its objective. MPLS can arbitrarily split traf-
fic among available paths, but OSPF can only do all or
nothing traffic allocation on available paths (traffic may
be split evenly among paths which have the same cost.)
Note, even though both optimizers have the same objec-
tive (i.e., same expected cost), they may end up with dif-
ferent realized costs because of the ways they use to set
up routings. Theoretically speaking, MPLS can exactly
achieve its objective, but OSPF cannot do so. We mostly
focus on MPLS optimizer, and also discuss the effects if
using OSPF optimizer.
We assume that the routing optimizer of an overlay

minimizes the overall cost of overlay traffic.
In the following, starting from an example network

([26]) in Figure 2, we introduce our formal formulations
of both the TE and overlay optimizers. All notations used
in our formulations are given in Table I. There are three
overlay nodes 1, 4, 7. All overlay nodes in the overlay
network are willing to forward traffic for demands origi-
nated from any other overlay node, even if the destination
nodes are not overlay nodes. In this example, we have
one overlay demand pair d(1′,9′) from 1 to 9. There are
three logical paths for this overlay demand pair: path 1 is
1 → 4 → 9; path 2 is 1 → 9; path 3 is 1 → 7 → 9. Let
h(s′,t′)

p denote the flow of overlay demand d(s′,t′) routed
on logical path p. Then, overlay optimizer’s job is to route
this demand pair optimally among three logical paths, i.e.,
finding {h(1′,9′)

1 , h(1′,9′)
2 , h(1′,9′)

3 }. Note, logical paths are
mapped into logical links. For example, path 1 is mapped
onto logical links (1, 4) and (4, 9). Mapping coefficient
δ(s,t)
(s′,t′,p) = 1 denotes that logical link (s, t) is on logical
path (s′, t′, p) of overlay demand d(s′,t′).
Note, one logical path h(s′,t′)

a flow decided by overlay is
mapped to logical link flows, which in turn are interpreted
by TE as demand d(i,j)

overlay, where (i, j) is any logical link
on logical path a. In the sequel, we represent the routing
decisions of overlay by using either d(i,j)overlay or h(s′,t′)

a . As a
comparison, the demand seen by TE that comes from un-
derlying traffic is denoted as d(i,j)

under, and the total demand
seen by TE at a node pair (i, j) is d(i,j) = d(i,j)

overlay+d(i,j)
under.

It is very important to keep these notations in mind while
studying those games in the sequel.
In this example, if we assume at time t, overlay op-

timizer’s routing decision is to put d(1
′,9′) exclusively

on path 1, then, h(1′,9′)
1 = d(1′,9′), h(1′,9′)

2 = 0, and

Overlay network

Physical network

Fig. 2. An example overlay network.
h(1′,9′)

3 = 0.
Then, flow on logical path 1 is seen as two demand pairs

by TE: d(1,4)overlay and d(4,9)overlay. If there is an underly-
ing traffic demand d(1,4)underlying, then total TE demands
are: d(1,4) = d(1,4)overlay + d(1,4)underlying and d(4,9) =
d(4,9)overlay. TE optimizer’s job is to route these two de-
mand pairs optimally. Let f(s,t)

a denote the fraction of TE
demand d(s,t) on physical link a, and let v(s,t)

a denote the
flow on physical link a, then, f(s,t)

a = v(s,t)
a /d(s,t). Then,

TE’s job in this example network at time t is to find a flow
fraction vector

(f (1,4)
〈1,2〉 , ..., f

(1,4)
〈8,9〉 , f

(4,9)
〈1,2〉 , ..., f

(4,9)
〈8,9〉 )

which is the collection of fractions of each demand pair
on all physical links, or a link flow vector

(v(1,4)
〈1,2〉, ..., v

(1,4)
〈8,9〉 , v

(4,9)
〈1,2〉 , ..., v

(4,9)
〈8,9〉)

After introducing some notations and concepts through
this example network, we will introduce cost functions
of these two optimizers and their optimization objectives.
Let a or 〈i, j〉 denote a physical link. Then, in general,
traffic flow or load on a physical link a will be

la =
∑

(s,t)

{f (s,t)
a · (d(s,t)overlay + d(s,t)underlying)}

We assume that each link can be modeled as aM/M/1
queue with mean delay 1

Ca−la
. This is the cost seen by a

single packet. We assume both overlay and TE use this
cost function, then, the total cost seen by TE on link a
is la

Ca−la
, but the total cost seen by overlay on link a is

(s,t) f(s,t)
a ·d(s,t)overlay

Ca−la
.

Then, TE wants to minimize the overall cost
∑

a

la
Ca − la

(1)
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d(s′,t′) : Overlay demand on node pair (s, t).
d(s,t) : Demand pair of TE at physical

level.
d(s,t)overlay : TE demand due to overlay flow on

logical link (s, t), which are routing
decisions of overlay.

d(s,t)underlying : TE demand due to underlying traf-
fic.

d(·,t) : Demand of TE to destination t.
h(s′,t′)

p : Overlay flow on logical path p for
d(s′,t′).

P (s′,t′) : Set of logical paths of overlay de-
mand d(s′.t′).

δ(s,t)
(s′,t′,p) : Mapping coefficient, indicating log-

ical path p of d(s′,t′) on a logical link
(s, t).

Ca(or C〈i,j〉) : Capacity of a physical link a (or
〈i, j〉).

la(or l〈i,j〉) : Link traffic at a physical link a.
f (s,t)

a orf (s,t)
〈i,j〉 : Fraction of TE demand d(s,t) on link

a (or 〈i, j〉).
v(s,t)
a : Flow of d(s,t) on link a.

vt
a : Flow destined to t on link a.

Φa : TE cost on a physical link a.
Φoverlaya : Overlay cost on a physical link a.
Joverlay : Total cost of an overlay network.
JTE : Total cost of TE.
N : Number of physical network nodes.

TABLE I
NOTATIONS IN FORMULATIONS OF TE AND OVERLAY

OPTIMIZERS.

The overall cost that an overlay wants to minimize is

∑

a

∑
(s,t) f (s,t)

a · d(s,t)overlay

Ca − la
(2)

Formally, we have the following non-linear program-
ming formulation of an overlay optimizer. Note, we use a
piece-wise linear version in experiments.

min
h
(s′,t′)
p

Joverlay =

∑

a

∑

(s,t)
f (s,t)

a d(s,t)overlay

Ca −
∑

(s,t)
{f (s,t)

a (d(s,t)overlay + d(s,t)underlying)}
(3)

where,

d(s,t)overlay =
∑

(s′,t′,p)

δ(s,t)
(s′,t′,p)h

(s′,t′)
p (4)

subject to
∑

p∈P (s′,t′)

h(s′,t′)
p = d(s′,t′),∀(s′, t′) ∈ N × N (5)

h(s′,t′)
p ≥ 0, ∀(s′, t′) ∈ N × N (6)

An overlay optimizer takes five inputs

{d(s′,t′), δ(s,t)
(s′,t′,p), Ca, f

(s,t)
a , d(s,t)underlying} (7)

and computes out the set of flows on logical paths h(s′,t′)
p

(or flows on logical links d(s,t)overlay). Note, among five
inputs, only d(s′,t′), δ(s,t)

(s′,t′,p) are known by overlay. The
other three inputs can only be estimated. Thus, it might
be difficult for an overlay optimizer to compute out a set
of optimal logical level routings. We will come back to
this issue in the next section.
Similar to the formulation adopted by [18], we use a

piece-wise linear version of (1) for TE optimizer. In order
to scale down the linear programming problem, we only
solve for vt

a, the traffic allocation on each link for traffic
destined to a particular destination t, instead of computing
traffic allocation on each link for a particular source and
destination pair (s, t). After we solve this LP problem,
we can recover v(s,t)

a from vt
a based on the assumption of

proportional allocation of traffic. We use dt to represent
the total demand destined to destination t: dt =

∑
s

d(s,t).

We give the TE optimization formulation as follows,

min JTE =
∑

Φa

a∈A

(8)

subject to

GTE(Ca, la,Φa, v
t
a, d

(s,t)overlay, d(s,t)underlying) (9)

where, GTE
2 is the constraint of Traffic Engineering op-

timizer; Φa is the TE cost on physical link a.
The solution given by the TE optimizer is

{JTE∗, vt
a
∗,Φa

∗} From this solution, we can recover
v(s,t)
a , la (flow/load on a physical link). and f(s,t)

a adopted
by TE.

B. Non-cooperative Non-zero Sum Two-player Game
Based on the formulations of TE and overlay optimiz-

ers, it is clear now that the strategy used by overlay is a
vector of logical link flows. Then, a strategy of overlay is
one feasible flow configuration on the logical links for all
overlay demand pairs:

d(s,t)overlay = (..., d(i,j)overlay, ...) (10)
2To save space, we use this notation to summarize the constraints of

TE optimzier.
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Recall that we use d(s′,t′) to denote overlay demand, but
we use d(s,t)overlay to denote overlay routings which are
interpreted as the demand by TE. As a comparison, the
demand seen by TE that comes from underlying traffic
is denoted as d(s,t)under. The strategy space Γoverlay of an
overlay network is the set of all feasible flow configura-
tions on logical links or paths.
A strategy of TE is one feasible flow configuration on

the physical links for all TE demand pairs:

fTE = (..., f (s,t)
〈i,j〉 , ...) (11)

The strategy space ΓTE of TE is the set of all feasible flow
configurations on physical links.
A strategy profile is γ̄ = (fTE,d(s,t)overlay). The cost

function of TE is JTE(fTE,d(s,t)overlay) and the cost func-
tion of overlay is Joverlay(fTE,d(s,t)overlay).
We have the following definition of Nash equilibrium

for this routing game.
Definition 1: Nash Equilibrium A strategy profile γ̄∗ is
a Nash equilibrium if, for both players, TE and overlay,

JTE(fTE
∗
,d(s,t)overlay∗) ≤ JTE(fTE,d(s,t)overlay∗)

∀fTE ∈ ΓTE (12)
Joverlay(fTE

∗
,d(s,t)overlay∗)≤ Joverlay(fTE∗ ,d(s,t)overlay)

∀d(s,t)overlay ∈ Γoverlay(13)

For a TE optimizer, overlay’s response is observed as
part of the demand matrix. Since TE knows the physical
network’s topology and all link capacities, and if we as-
sume TE can estimate its demand matrix accurately ([5]),
then, TE can compute out its optimal strategy. As for
the implementation, if TE uses MPLS, it can exactly re-
alize its strategy; if TE uses OSPF optimizer, it can only
approximately realize its optimal strategy. However, an
overlay optimizer may not be able to compute out its op-
timal strategy because it might not know the necessary
information mentioned in last section. In the following
sections, we first assume overlay knows the necessary in-
formation to compute out its best response, and model
this interaction as a Nash routing game [11] in the next
section. Later on, we will address the situation in which
overlay only has limited information.
Another situation of interest to us is when one player

can predict the other player’s response (equivalent to
knowing the other player’s optimization algorithm.) In
this case, the player who has this information and can
move faster may choose to play a Stackelberg game ([34],
[11]) against the other player (follower.) For example,
if an overlay optimizer knows the optimization algorithm
used by TE optimizer, then it can predict TE’s new phys-
ical routings in response to overlay’s logical level routing

decisions, and then choose an optimal set of logical level
routings in consideration of TE’s potential responses. We
model this interaction as a static Stackelberg routing game
[34].
Our Nash routing game model is a discrete time model.

One basic assumption is that, during its turn, one player
completes its optimization before the other player starts.
It could be true of course that a player starts its turn even
when the other player has not yet finished. For exam-
ple, OSPF TE will take some time to converge to a steady
state. An overlay network may start its flow re-allocation
during this OSPF’s transient phase. We are not concerned
with such an interaction process in this paper. A similar
process is studied in [10], [24], [15], and [19].
Our static Stackelberg routing game model is static in

a sense that, the leader (overlay network) can compute
off-line the best strategy (Stackelberg equilibrium strategy
for the leader), and sets it strategy before TE responds.
Once TE responds the game is done. The definition of
leader’s Stackelberg equilibrium strategy will be given in
Section V.
In the following two sections, we study Nash routing

game and static Stackelberg routing game. Then, in Sec-
tion VI, we study games in which overlay only has limited
information.

IV. NASH ROUTING GAME

We first give an illustrative example to show the struc-
ture of Nash equilibrium (NEP). For different initial con-
ditions, we give analytical proof on the existence of NEP.
Then, for one particular scenario, we prove the global sta-
bility of NEP for the best-reply dynamics of the game-
playing process. 3 For general networks and general traf-
fic demand patterns, the existence and stability of Nash
equilibrium are much harder problems. And, even if there
exists Nash equilibrium, the interaction process may not
converge to that equilibrium, as shown in our experiments.
Then, the more important question we study is how the
selfish behavior of an overlay routing network influences
the performance of TE in this interaction game. We prove
that TE’s performance will never be improved in this Nash
routing game 4, and this is demonstrated through experi-
ments on a 9-node network given in [26], and a 14-node
tier-1 POP network in [5].

3Since our focus is on analyzing the relationships between routings
and delays or costs, and in order to demonstrate the problem more
clearly, we do not consider propagation delays in these examples. It is
easy to extend these analysis to cases including propagation delays.

4We refer to the best-reply dynamics of the game when both players
are of equal status as Nash routing game.
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A. An Illustrative Example

We use the topology in Figure 3 for this example. We
assume the bandwidth on two physical links between node
2 and 3 is large enough such that the delay on both links
is negligible. Without loss of generality, we assume link
〈1, 2〉 has higher capacity than link 〈1, 3〉. Note, TE has
the physical view of the network. But, overlay has the log-
ical view of the network, so, logical link (1, 2) is actually
mapped into two physical paths 1 → 2 and 1 → 3 → 2.
In the following, we show the actual interaction process
and obtain the NEP for this example.

1 3

2overlay 
demand

1

3

2

underlying 
demand

logical level

physical level

logical link (1,2)
maps to two physical paths

Fig. 3. Topology of a three-node network in example 2.
We assume overly only has demand between node 1 and

3. Then TE optimization can be written down as

min
{l〈1,2〉,l〈1,3〉}

JTE =
l〈1,2〉

C〈1,2〉 − l〈1,2〉
+

l〈1,3〉
C〈1,3〉 − l〈1,3〉

subject to

l〈1,2〉 + l〈1,3〉 = d(1,2)under + d(1,3)under + d(1,3)overlay

(14)
The necessary condition for TE optimum is

∂

∂l〈1,2〉
JTE =

∂

∂l〈1,3〉
JTE (15)

⇒
C〈1,2〉

(C〈1,2〉 − l〈1,2〉)2
=

C〈1,3〉
(C〈1,3〉 − l〈1,3〉)2

(16)

Based on (14) and (16), TE can calculate its optimal traffic
assignment {l∗〈1,2〉, l

∗
〈1,3〉}. Obviously, the optimal routing

fraction {f(1,2)
〈1,2〉 , f

(1,3)
〈1,2〉 } is not unique. To avoid ambiguity,

we force TE to route traffic directly as much as possible.
This is consistent with real case when the bandwidth on
links between node 2 and 3 is finite. So we have:

f (1,2)
〈1,2〉 =





1 d(1,2) ≤ l∗〈1,2〉
l∗〈1,2〉
d(1,2) d(1,2) > l∗〈1,2〉

(17)

and

f (1,3)
〈1,2〉 = max{0, (l∗〈1,2〉 − f (1,2)

〈1,2〉 × d(1,2))/d(1,3)}. (18)

Overlay optimization can be formulated as:

min
{h(1,2),h(1,3)}

Joverlay =

f (1,2)
〈1,2〉h

(1,2) + f (1,3)
〈1,2〉h

(1,3)

C̃〈1,2〉 − f (1,2)
〈1,2〉h

(1,2) − f (1,3)
〈1,2〉h

(1,3)

+
f (1,2)
〈1,3〉h

(1,2) + f (1,3)
〈1,3〉h

(1,3)

C̃〈1,3〉 − f (1,2)
〈1,3〉h

(1,2) − f (1,3)
〈1,3〉h

(1,3)
(19)

subject to h(1,2) + h(1,3) = d(1,3)overlay , where
{C̃〈1,2〉, C̃〈1,3〉} is available bandwidth for overlay on link
〈1, 2〉 and 〈1, 3〉:

C̃〈1,2〉 = C〈1,2〉 − f (1,2)
〈1,2〉 d

(1,2)under − f (1,3)
〈1,2〉d

(1,3)under

(20)

C̃〈1,3〉 = C〈1,3〉 − f (1,2)
〈1,3〉 d

(1,2)under − f (1,3)
〈1,3〉d

(1,3)under

(21)

The necessary condition for overlay optimum with
h(1,2) > 0 and h(1,3) > 0 is :

∂

∂h(1,2)
Joverlay =

∂

∂h(1,3)
Joverlay (22)

which is equivalent to

C̃〈1,2〉

(C̃〈1,2〉 − f (1,2)
〈1,2〉h

(1,2) − f (1,3)
〈1,2〉h

(1,3))2

=
C̃〈1,3〉

(C̃〈1,3〉 − f (1,2)
〈1,3〉h

(1,2) − f (1,3)
〈1,3〉h

(1,3))2
(23)

together with (20), (21), the necessary condition in
terms of link rate is:

C̃〈1,2〉
(C〈1,2〉 − l〈1,2〉)2

=
C̃〈1,3〉

(C〈1,3〉 − l〈1,3〉)2
(24)

Comparing (24) with (16), we can see that for any NEP
with h(1,2) ·h(1,3) > 0wemust have C̃〈1,2〉

C〈1,2〉
= C̃〈1,3〉

C〈1,3〉
. It can

be satisfied for the trivial case when there is no underlying
traffic. When underlying traffic is only between node 1
and 2, we have shown C̃〈1,2〉

C〈1,2〉
+= C̃〈1,3〉

C〈1,3〉
. The possible NEPs

are on the boundary, i.e., h(1,2) = 0 or h(1,3) = 0. Since
the delay on logical path (1, 2) is always smaller than
logical path (1, 3), {h(1,2) = d(1,3)overlay , h(1,3) = 0}
is the only NEP. On the other hand, if d(1,2)under = 0
and d(1,3)overlay < l∗〈1,2〉, there exists only one NEP with
h(1,2) · h(1,3) > 0.
Characteristics of NEPs. We are interested in the char-
acteristics of those NEPs, namely, stability and effeciency
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(for either overlay or TE), since these are of practical im-
portance. To proceed, keep in mind that in this example,
TE’s cost will remain the same in this best-reply dynam-
ics. It is easy to show that those NEPs happening on the
boundary are stable and give overlay lower cost compared
with initial cost.
One interesting NEP is for the scenario where

d(1,2)under = 0 and d(1,3)overlay < l∗〈1,2〉. This NEP is
unique and globally stable, i.e. the overlay routing will al-
ways converges to the NEP regardless of overlay’s initial
routing. See Appendix A for the proof. One interesting
observation is that this NEP is inefficient for overlay for
some inital condition, namely, overlay’s cost at NEP is
higher that its initial cost at the beginning of the interac-
tion process.
To illustrate, we present results from one experiment.

We set C〈1,2〉 = 1, C〈1,3〉 = 0.5, d(1,3)overlay =
d(1,3)under = 0.5. Overlay takes turn at even round, TE
takes turn at odd round. We use Matlab optimization tool-
box to solve TE and overlay’s optimization (14) and (19).
We did two experiments with different initial overlay rout-
ing: h(1,2)(0) = d(1,3)overlay ; h(1,2)(0) = 0. Figure 4
shows that in both cases overlay routing converges to the
NEP. Figure 5 shows the trend of overlay cost as the Nash
game proceeds.

!" 2" $" %" &" '" (" )" *" !""

"+"&

"+!

"+!&

"+2

"+2&

"+$

"+$&

r-u/0

12!
324

567e!
567e2

Fig. 4. Convergence of Overlay Routing

!" 2" $" %" &" '" (" )"

!+(&

!+)

!+)&

!+*

r-u/0

9:
er;

6<
 5

-7
>

567e!
?@A7 ?ur/
9:er;6<A7 ?ur/
567e 2
?@A7 ?ur/
9:er;6<A7 ?ur/

Fig. 5. Overlay Cost Trend
It is interesting to observe that for the case with

h(1,2)(0) = d(1,3)overlay overlay cost actually increases
over rounds even though overlay tries to minimize its cost
at each round. This is because after overlay’s minimiza-
tion, TE will adjust its routing to minimize the whole net-
work cost. The updated TE routing will increase overlay’s
cost. The interaction between TE and overlay routing is

bad for overlay so that the overall trend is increasing un-
til the game converges to its NEP. We observe the same
phenomenon in experiments on a 14-node tier-1 ISP net-
work later. For this example, given TE’s optimization al-
gorithm, the best strategy for overlay is to place all its traf-
fic on logical path (1, 2). This is to say it may not be wise
for overlay to play Nash game with TE. This is consistent
to the inefficiency property of NEP. We will discuss this
more in section on Stackelberg routing game.

Comments on Nash equilibrium (NEP). Even though
there exist Nash equilibrium for the above simple routing
interaction game, we need to point out that, for general
networks, NEPs are dependent on the initial conditions,
topology, and traffic demand patterns. It is a much harder
problem to give general solutions. See [25] for studies on
Nash equilibrium for network routing game where players
are all at the same physical network level. Even if there
exists equilibrium, the interaction process may converge
or may not converge to an equilibrium. Convergence
property also depends on the initial conditions, topology,
and traffic demand patterns. We will observe this in the
following experiments on larger networks. Thus, prac-
tically speaking, the more important question to ask is
how does this interaction process affect the performance
of TE?We address this question in the next section.

B. Effects on the cost of Traffic Engineering

While overlay routing aims at improving the perfor-
mance of overlay traffic, the improvement comes at the
price of degrading the performance of underlying traffic.
In addition, if we assume TE can perfectly implement the
optimal solution, overlay routing won’t be able to improve
the overall network performance. In many cases, overlay
routing will increase the network cost that TE tries to min-
imize.

Base cost of TE.Base cost of TE refers to the optimal cost
achieved when overlay simply give its demand matrix to
TE without making routing decisions on logical level, that
is, without traffic forwarding among themselves. That is,
simply let d(s,t)overlay = d(s′,t′).
Lemma 1: Overlay routing will never improve TE’s

performance (i.e., never reduce TE’s base cost).
Proof: We compare the network cost with and

without overlay routing. Let PO be the set of source-
destination pairs of overlay demand and {D(s,t)

O , (s, t) ∈
PO} be the overlay demand vector. Without overlay rout-
ing, TE will take overlay demand and underlying demand
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directly as its overall physical demand:

d(s,t) =

{
D(s,t)

O + d(s,t)under (s, t) ∈ PO

d(s,t)under (s, t) +∈ PO
(25)

Then TE’s optimal routing {v̄t
a} is the minimum over all

feasible routing under constraint (9), i.e., all {vta} which
satisfy flow conservation and implement all TE demand
(25).
With overlay routing, overlay can assign traffic between

any overlay demand pair {(s′, t′) ∈ PO} on all associated
logical path {p ∈ P (s′,t′)}. Let LO be the set of all node
pairs employed by overlay as logical links. Then the traf-
fic demand seen by TE can be calculated as:

d(s,t) =






d(s,t)under +
∑

(s′,t′,p)
δ(s,t)
(s′,t′,p)h

(s′,t′)
p (s, t) ∈ LO

d(s,t)under (s, t) +∈ LO

(26)
Any TE routing {ṽt

a} (and consequently {f̃
(s,t)
a }) resulted

from any overlay routing {h(s′,t′)
p , (s′, t′) ∈ PO, p ∈

P (s′,t′)}must implement TE demand as described in (26).
At the same time, we can calculate the amount of overlay
traffic destined to each overlay node t′ on each physical
link as:

v̂des(t′)
a =

∑

(s′∈N)

∑

p∈P (s′,t′)

h(s′,t′)
p · (

∑

(s,t)∈N×N

δ(s,t)
(s′,t′,p)f̃

(s,t)
a )

(27)
Based on (27), we can construct a TE destination based

routing

v̂t
a =






∑
s

v(s,t)under
a + vdes(t)

a if t is an overlay node
∑
s

v(s,t)under
a otherwise

(28)
It is easy to check that {v̂t

a} implement TE demand
without overlay routing as described in (25). Therefore,
JTE({v̂t

a}) ≥ JTE({v̄t
a}). At the same time, the ag-

gregate traffic rate vector on all physical links {̂la} under
{v̂t

a} is the same as the link rate vector {̃la} under {ṽt
a}

with overlay routing. Since link cost is only a function of
its aggregate rate, we have JTE({ṽt

a}) = JTE({v̂t
a}) ≥

JTE({v̄t
a}).

Experimental Results. Consider a 9-node example ([26])
in Figure 2. Three nodes are overlay nodes: 1, 4, 7. They
may have demands to each other, or have demands to
other nodes not in the overlay. In any case, each overlay
node can forward traffic originated from any other overlay
node. There are 24 possible overlay demand pairs in this
example. We randomly choose 70% of them. We use a

bimodal traffic matrix ([5]) generated by a mixture of two
Gaussians, one with (µ1 = 1.5,σ1 = 0.2), and the second
with (µ2 = 4,σ2 = 0.2). These means and standard de-
viations are proportional to those used in ([5]). We set the
overlay demands to be 60% of total traffic demands. To
avoid flows exceed the capacities of links we set capac-
ities of all links to be 18. We also perform experiments
when link capacities are randomly distributed in a certain
range. For brevity, we do not present results here. Hetero-
geneous link capacity cases can be seen in experiments in
a 14-node tier-1 ISP network.
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Fig. 6. Cost change of TE and overlay. Percentage of deviation from
cost at step 1 at each step in the interaction process.

Initially, overlay demand pairs are given to TE with-
out any forwarding among overlay nodes, achieving the
base cost of TE. We let TE begin the interaction game.
TE takes turn at odd step, and overlay takes turn at even
step. We let this interaction process run 100 steps. Taking
the cost at step 1 as the base point, we calculate the per-
centage of deviation from it at the following steps. These
percentage of deviations of TE and overlay are plotted in
Figure 6.
We observe from these plots that there are large oscil-

lations in both player’s costs in the observed time interval
(this playing process does not converge.) At each even
step, overlay’s response causes an increase to TE’s cost,
and then TE will react optimally to reduce its cost at the
following odd step. Overlay does the similar thing. On
average, overlay’s cost decreases 1% in this interaction
process, but TE’s cost increases 35.9% as expected.

TE cost change as a function of percentage of overlay
traffic.
We are interested in how the cost change of TE varies

as the percentage of overlay traffic varies. Our conjecture
is as follows. If there is little overlay traffic, then overlay’s
routing decisions will have little influence on TE’s cost. If
all traffic consists of overlay traffic, then overlay’s routing
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Fig. 8. Cost change of TE and overlay. Percentage of de-
viation from cost at step 1. Nine-node network. BWs of all
links are 20.

decision would be the same as that of TE, so, the interac-
tion process will always converge, and TE’s cost will not
be affected. If there is some significant fraction of overlay
traffic, e.g. 50%, TE’s cost increase will be maximal.
In Figure 7 , we plot the cost deviation percentage for

different overlay traffic percentages. Our conjecture is
verified through these experiments. In addition, we notice
that, when overlay demand is approximately half of total
network demand, not only is the average cost increase to
TE the largest, but also the variation range is the largest.
Larger variation of TE cost means greater oscillation in
the interaction process, which is clearly harmful to TE.
Another interesting observation is that, if we increase

link capacities, the decrease of overlay cost by playing
Nash game is not as large as that in smaller link capac-
ity situation. This can be seen by comparing Figure 7
with Figure 8. And, TE’s cost is not affected much by
overlay’s selfish behavior if link capacities increase. In-
tuitively speaking, this is because TE optimizer has more
freedom to allocate traffic to achieve the same minimal
cost when link capacity is large.

C. OSPF optimizer
If TE use an OSPF optimizer instead of MPLS, over-

lay routing may actually help to reduce TE’s cost. We
have demonstrated this using a simple experiment on the
topology in Figure 3. Recall that an OSPF optimizer will
find the best possible link weight settings to approximate
the solution of MPLS optimizer ([18]). In this simple
example, we are able to do an exhaustive search for the
best weight settings. Due to space limitations, we do not
present results here. As for general network topology and
more realistic traffic demand patterns, we might expect
TE’s cost could also be decreased by interacting with an
overlay optimizer, because the OSPF optimizer might not
be able to do as well as the MPLS optimizer. In this con-

text, the interaction dynamics actually depends on the spe-
cific implementation of OSPF optimizer. We will address
this topic in our future work.

D. Experiments with a tier-1 ISP network
We do experiments extensively on a 14-node tier-1 POP

network in [5]. We invert the weights of links to get link
capacities. This is based on the assumption that weights
are set by turning around capacities as recommended by
Cisco. Depending on the traffic matrix used, we multi-
ply these capacities by a certain value to make sure that,
for the traffic matrix we use, no link capacity is exceeded
by traffic on that link. Our experimental results confirm
our hypotheses presented in previous sections. We present
two experimental results here.
In these two experiments, for underlying traffic, we use

a bimodal traffic matrix which is the same as used in the
nine-node experiments earlier.
We choose three nodes 6, 10, 11 as overlay nodes, and

randomly choose 32 overlay demand pairs among all pos-
sible 39 overlay demand pairs. On top of the underlying
demands, we add p% overlay demands. Specifically, for a
node pair that is picked as an overlay demand pair, if the
underlying traffic demand is d, then we add d ·p% overlay
traffic.
In one experiment, we choose p% = 50%. Thus, the

total overlay traffic among all network traffic is 8.1%. We
run this experiment 100 steps. We observe oscillations in
these 100 steps. The mean cost increase for TE is 3.5%,
and the mean cost decrease for overlay is 52.1%. Since
the percentage of overlay traffic is small, the cost increase
to TE is not big, but still, this small percentage of overlay
causes significant oscillations to TE’s cost. The highest
increase to TE’s cost can reach 12%.
In another experiment, we choose p% = 68%. Thus,

the total overlay traffic among all network traffic is 10.8%.
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Fig. 9. Cost change of TE and overlay. Percentage of devi-
ation from cost at step 1. A tier-1 ISP network. Experiment
setting 1.
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Fig. 10. Cost change of TE and overlay. Percentage of devi-
ation from cost at step 1. A tier-1 ISP network. Experiment
setting 2.

We run this experiment 100 steps. The mean cost increase
for TE is 3%. We observe an increasing trend of overlay
cost in these 100 steps. At the final step, even after over-
lay’s optimization, the cost of overlay is 3% higher than
the cost in the very first step when overlay does nothing
in optimizing its routings on logical level. This experi-
ment is consistent with our analysis for a simple network
previously. This gives a warning to an overlay routing op-
timizer that playing a Nash game by optimizing routing at
each step may not a good idea. 5

V. STATIC STACKELBERG ROUTING GAME

In this model, overlay knows TE optimizer’s algorithm
besides the information on physical network topology, un-
derlying traffic demand matrix. Then overlay can choose
either to play a Nash game or to play a static Stackelberg
game ([34], [11] and [33]) by acting as a leader. We will
focus on overlay playing a Stackelberg game in this sec-
tion.
As discussed in previous sections, what TE can control

is physical level routing f(s,t)
a . What overlay can control is

the traffic on logical links, which are interpreted as part of
traffic demand d(s,t) for TE. To simplify our notation, we
use X to represent the latter, and Y to denote the former.
As we know, each player reacts to other player’s action
(chosen strategy) rationally and optimally. Then, in this
two-player routing game, we call a strategy X∗ a static
Stackelberg equilibrium strategy for overlay (the leader) if
it can give the lowest cost(Joverlay∗) to overlay. Formally,
the following condition needs to be satisfied: Joverlay∗ =

5Due to limitations of computation power and LP software
(lp solve) we used, the computation of this network settings takes
long long time, so we are not able to observe more interaction steps
than 100. We will try to improve this in future. For the purpose to
illustrate our points here, this number of steps is sufficient.

inf
X∗

Joverlay(X,Y (X)) 6

The leader (overlay), chooses X to minimize the
cost function Joverlay, while the follower (TE), reacts to
leader’s decision by selecting a strategy Y (X) that min-
imizes his cost function JTE, in full knowledge of the
leader’s decision. Thus, the follower’s decision depends
on the leader’s decision, and the leader is in full knowl-
edge of this. Intuitively, we see that the leader’s strategy
should be, choosing a particular X∗, such that the cost
function Joverlay of the leader is minimum when the fol-
lower chooses its own optimal solution Y as a function of
X∗. We call such a strategy for the leader the Stackelberg
strategy for the leader [34] [11].
Solving for the static Stackelberg equilibrium strategy

for leader (overlay) is essentially solving the following
optimization problem

min
X

Joverlay(X,Y ∗(X))

s.t. Goverlay(X,Y )
Y ∗ = argminJTE(Y )
s.t. GTE(X,Y )

(29)

whereGoverlay(X,Y ) andGTE(X,Y ) are constraints for
overlay and TE respectively. This optimization problem is
classified as Bilevel Programming (BP) problem. See [33]
for general discussions on BP problem.
According to this definition, the Stackelberg equilib-

rium prescribes an optimal strategy for the leader if the
follower reacts by playing optimally, whenever the leader
announces his moves first. Note, this is a static game, in
which, overlay does an off-line computation to find the

6We have used implicitly the assumption that the follower’s response
to every strategy of the leader is unique. Whenever this assumption is
not satisfied, there is ambiguity in the possible responses of the fol-
lower and consequently in the attainable loss levels of the leader. We
will address this problem in future work.
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best strategy, and set this strategy only once. It can be
proved easily that overlay cost with Stackelberg solution
is no worse than overlay cost at any NEP.
Solving (29) is a NP-hard problem [33]. In the next

section, we propose a gradient projection search heuristic.

A. Computation of static Stackelberg strategy for Overlay
Motivated by descent method and projection methods

for optimal routing, we propose a Gradient Projection
Search (GPS) heuristic for solving the static Stackelberg
equilibrium strategy in the routing interaction game. De-
cent direction method to nonlinear bi-level programming
appeared in [31] and [21]. Projection methods for optimal
routing can be found in [14] and [13].
In solving this static Stackelberg routing game, we have

to choose a set of logical path flows h(s′,t′)
pi for each over-

lay demand pair. These logical path flows determine the
set of overlay logical link loads d(s,t)overlay, which are
parts of demand matrix for Traffic Engineering. Based on
the traffic demand matrix, Traffic Engineering will solve a
Linear Programming problem to get an allocation of traf-
fic flows of each demand pair on each link v(s,t)

a , from
which, overlay can evaluate its overall delay or cost. The
optimal set of logical path flows would give overlay the
lowest overall delay. Thus, in solving for it iteratively,
at the (k + 1)th step, we hope to choose the new set of
path flows that decrease the cost compared with the cost
at kth step. This means we need to choose the new set
of flows along descent direction of overlay cost function,
and they need be feasible also, i.e., they have to satisfy the
constraints such as flow conservations, demand, etc.
We modify the feasible direction method given in [14].

Briefly speaking, the feasible direction method is to deter-
mine a minimum first derivative length (MFDL) path for
every SD pair at each iteration. The first derivative length
(FDL) of a logical path h(s′,t′)

p is the first derivative of
objective function with respect to this path ∂Joverlay

∂h(s′,t′)
p

evalu-
ated at the current flow allocation. An increment of flow
change is calculated for each path on the basis of the rela-
tive magnitudes of FDL lengths with respect to MFDL. If
the increment is so large that the path flow becomes neg-
ative, the path flow is simply set to zero. These routing
algorithms can be viewed as constrained versions of com-
mon, unconstrained optimization methods.
In the original feasible direction method, gradient of

cost function can be evaluated directly at each step. How-
ever, in our case, we cannot directly solve for the gradient
by taking the derivatives of the cost function with respect
to each path flow h(s′,t′)

p . This is because, in the cost func-
tion, la is an implicit function of path flows h(s′,t′)

p , which

is defined by the underlying optimization of Traffic Engi-
neering. In general, we cannot get obtain the closed form
explicit functions from these implicit functions.7 For-
tunately, since TE optimization is a linear programming
(LP) problem, we can get the derivative of la with respect
to h(s′,t′)

p by looking at the inverse of the basis of TE’s
LP. Once we got the gradient of cost function with respect
to path flows, we can directly use the descent projection
method given by [14]. The algorithm for decent projec-
tion method is presented in Figure 11.
Xk: the logical path flow vector of overlay;
Y k: the physical link flow vector of overlay traffic;
FDLk

pw
: the first derivative length of logical path pw;

p̄w: the path with minimum first derivative length
among all paths of overlay demand pair w;

W : set of all overlay demand pairs;
Pw: set of paths for overlay demand pair w.
1. repeat
2. Compute,XkJk,overlay = (FDLk

pw
);

3. ∀w ∈ W , ∀p ∈ Pw;
4. let p̄w be MFDL path;
5. ∀p += p̄w, xk+1

p = max{0, xk
p − αk(FDLk

pw
−MFDL);

5. xk+1
p̄w

= dw −
∑

p!=p̄w
xk+1

p ;
6. Solve TE LP problem to get Y ∗(k+1) givenXk+1;
7. Compute Jk+1,overlay(Xk+1, Y ∗(k+1))
8. until |Jk+1,overlay − Jk,overlay| < threshold

Fig. 11. Gradient Projection Search (GPS) for static Stackelberg
routing game.
Since Gradient Projection Search (GPS) is still a local

search heuristic, it can only find a local optimal solution
within the neighborhood of the starting point. Thus, in or-
der to search for the global optimization point, we need to
randomly start the gradient projection search many times.

B. Experiments

Consider the nine-node network (figure 2) again. We
use the same bimodal traffic demand matrix, and the same
overlay demands as those in Nash games in section 4.
We run many experiments using our search heuristic.

Figure 12 shows one typical gradient projection search
path. We see that initially cost of overlay decreases very
fast, but decreases slowly afterwards, and hits a local min-
imum point finally. Since both TE and overlay optimizers
use piece-wise linear cost functions, we might expect that
there are many local minimums. Thus, we need to ran-
domly start search many times. Our initial results show
gradient projection search heuristic is promising. For ex-
ample, in experiments on the nine-node network for five
capacity settings (C = 15, 16, 17, 18, 19), we randomly

7 [24] and [10] gave some discussions on these implicit functions in
the context of solving Nash game in a distributed way.
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start GPS 100 times and choose the lowest cost as the ap-
proximate Stackelberg cost. In 4 out of 5 settings, Stackel-
berg cost is lower than average Nash cost. In two settings,
Stackelberg costs are significantly lower than Nash costs.
35% and 50% cost reduction are achieved. In our future
work, we will improve this search strategy.
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Fig. 12. A sample gradient projection search path.

VI. NASH ROUTING GAMES WITH LIMITED
INFORMATION

A. Overlay Optimizers With Limited Information

We notice that, in order to compute out optimal strategy
an overlay network needs to know physical level routing
information and physical level underlying traffic demand
and physical link capacities. We call an overlay optimizer
without these pieces of information an overlay with lim-
ited information.
Overlay can only measure delays on logical links by

sending out probing packets. Based on how frequently it
takes measurements of the network and how to use these
estimated delay information, we can have two types of
overlay networks: one-step overlay with limited informa-
tion; incremental overlay with limited information.
By one-step overlay with limited information, we mean

that overlay takes one time measurement of delays on log-
ical links, and assume these delays are fixed, and then
computes out a new assignment of flows on logical paths.
For example, an overlay demand pair puts all its traffic on
the logical path with current shortest delay. Let Delay(s,t)
denote the delay on logical link (s, t). The delay on a log-
ical path p is

Delay(s
′,t′)

p =
∑

(s,t)

δ(s,t)
(s′,′t′,p)Delay(s,t) (30)

In turn, logical link delay is

Delay(s,t) =
∑

a

f (s,t)
a

la
Ca − la

(31)

Given that logical-link delay information can be estimated
by overlay, overlay optimization problem can be formu-

lated as

min
h(s′,t′)

p

Foverlay =
∑

p

Delayp · (
∑

(s′,t′)

h(s′,t′)
p ) (32)

subject to flow conservation and non-negative flow con-
straints.
By incremental overlay with limited information, we

mean it can derive its new routing decisions in a sequence
of stages in the step that it takes turn to do optimization.
At each stage, it only puts a small amount of traffic on a
logical path, and then evaluates its cost function by tak-
ing measurements again. This way, it can estimate which
logical paths can lead to a lower cost. In the next stage, it
puts another small amount of traffic on those paths lead-
ing to lower costs. Note, this amount of small traffic is
overlay dependent, that is, any overlay routing structure
itself specifies what amount of traffic to shift at each step.
In our analysis in the next section, we assume that overlay
structure shift an infinitesimal amount of traffic at each
step. This process continues until all its traffic has been
put on available logical paths. We call this process an in-
cremental algorithm. Note, here, we can think of that the
interval between two consecutive TE optimizations is long
enough for these incremental addition of overlay flows to
complete. If one thinks of the total flow as an aggregate
of many infinitesimally small amount of selfish flow be-
tween a common source and a common destination, and
each individual flow decides its own routing by choosing
the shortest delay path, then this incremental algorithm
essentially tries to solve for the Nash equilibrium point
(NEP) in selfish routing at logical level ([28] [26] [17]).
As pointed out in chapter 5 of [32], this incremental algo-
rithm may not converge to NEP for some network settings
even at physical level. Interpreting [32]’s results in our
context, if given the physical routings set by TE fixed at
one round or step, incremental algorithm may not con-
verge to a NEP for all overlay traffic demands, let alone
talking about the NEP between overlay and TE in the in-
teraction process when TE changes round by round.
Comparing one-step and incremental overlay with lim-

ited information, clearly, there is a tradeoff between mea-
surement of network and performance improvement. For
one-step overlay with limited information, the measure-
ment work required of an overlay is small. It can just pe-
riodically send out probing packets to get the logical delay
information, and then allocate all its traffic on the small-
est delay path. The consequence is that the new allocation
might increase the delay dramatically. The performance
loss might be huge and it might cause bad oscillations to
network routings. We will show this through a simple ex-
ample later in the paper. For incremental overlay with



14

limited information, it continuously probes the network
by adding small amount of traffic and measuring the de-
lays again, so, the measurement overhead is huge if this
overlay network has lots of traffic.
In the following, we study these two types of games.

B. Incremental Overlay with Limited Information
Consider again the same network settings used in the il-

lustrative example in the previous section on Nash routing
game Figure 3.
This time, we look at the piece-wise linear version of

overlay network cost function. As described in (9), the
objective of TE is to minimize the summation of cost on
physical link < 1, 2 > and < 1, 3 >:

min JTE = Φ(C〈1,2〉, l〈1,2〉) + Φ(C〈1,3〉, l〈1,3〉) (33)

subject to

l〈1,2〉 + l〈1,3〉 = d(1,2) + d(1,3), (34)

where the link cost Φ is a continuous and convex piece-
wise linear function of traffic rate l:

Φ(C, l) =






k1l + b1 l ∈ [0,α1 · C)
· · · · · ·
kil + bi l ∈ [αi−1 · C,αi · C)
· · · · · ·
kml + bm l ∈ [αm−1 · C,C)

Then the necessary condition for the TE’s optimal solu-
tion dΦ〈1,2〉

dl〈1,2〉
= dΦ〈1,3〉

dl〈1,3〉
means l〈1,2〉/C〈1,2〉 falls into the

same region [αj−1,αj) as l〈1,3〉/C〈1,3〉. To illustrate, we

A E D

B

G

C

F

Fig. 13. Interaction between TE and Overlay
plot in Figure 13 the traffic allocation {l〈1,2〉, l〈1,3〉}. TE’s
optimal must fall into one of the the shaded blocks along
the diagonal. Therefore, TE’s optimal solution set is
[T ∗

1 , T ∗
2 ], the intersection between the constraint line CD

and the shaded area. The non-uniqueness in TE’s opti-
mal solution is due to the piece-wise linear link cost func-
tion. Actually, the finer the piece-wise linear function,

the smaller the shaded area. When the size of pieces go
to zero, the shaded area degenerates to the diagonal line
AB, then TE has a unique optimal solution T∗. TE’s op-
timal routing is calculated as (17, 18). We always have
f (1,2)
〈1,2〉 > f (1,3)

〈1,2〉 . Delay on logical link can be calculated
as:

Delay(1,2) = f (1,2)
〈1,2〉Delay〈1,2〉 + (1 − f (1,2)

〈1,2〉 )Delay〈1,3〉(35)

Delay(1,3) = f (1,3)
〈1,2〉Delay〈1,2〉 + (1 − f (1,3)

〈1,2〉 )Delay〈1,3〉(36)

We assume overlay plays a selfish game, i.e., it tries
to move its traffic to the logic path with minimal delay.
Overlay essentially tries to solve the optimization prob-
lem equivalent to selfish routing (see Appendix.) In this
example, overlay can exactly solve our optimal routings
for itself at each round (equivalent to saying that NEP of
overlay selfish routing is achieved.) We give a proof that
NEP between overlay and TE can also be reached in the
interaction process. This NEP is achieved, if for overlay,
either when the delay on two logical paths are equal or
overlay moves all its traffic to one logical path with min-
imal delay; if for TE, the physical flows l〈1,2〉 and l〈1,3〉
satisfy the necessary conditions.
Then, we can define a routing game as follows. Given

assumptions on network settings defined at the beginning
of this section, if there is only one overlay demand from
1 to 3, and both players take turns to do optimizations
using algorithms defined above. Let TE starts at step 1 and
overlay just gives its demand d(1′,3′) to TE without using
node 2 as forwarding node, that is, at step 1, only one non-
zero demand for TE: d(1.3) = d(1′,3′). In the game playing
process, overlay takes turn at even step and TE takes turn
at odd step.
Lemma 2: The Nash routing game defined above al-

ways converges to a NEP.
Proof: Due to f(1,2)

〈1,2〉 > f (1,3)
〈1,2〉 , the only way to match

the logical delay on two logical paths is to match the delay
on physical link 〈1, 2〉 and 〈1, 3〉. We introduce in Figure
13 the Equal Delay Line EB, where the rate vector makes
the physical delay on link 〈1, 2〉 and 〈1, 3〉 equal, or equiv-
alently

C〈1,2〉 − l〈1,2〉 = C〈1,3〉 − l〈1,3〉

Then any rate allocation in area AEBF will make
Delay〈1,3〉 > Delay〈1,2〉 and Delay〈1,3〉 < Delay〈1,2〉 in
area EGB. Let point O∗ be the intersection between line
EB and the demand line CD. If O∗ falls in TE’s optimal
solution interval [T∗

1 , T ∗
2 ], then O∗ achieves optimum for

both TE and overlay. Therefore O∗ is a NEP and it will be
reached after one round of TE and overlay optimization.
If EB falls outside of [T∗

1 , T ∗
2 ], then after TE’s opti-

mization, we have Delay〈1,2〉 < Delay〈1,3〉 and f (1,2)
〈1,2〉 >
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f (1,3)
〈1,2〉 . Therefore, from (35), we will have Delay(1,2) <
Delay(1,3). When overlay takes over, it always try to move
some of its demand from logical path (1, 3) to logical
path (1, 2) until either all its demand been moved to path
(1, 2) or the rate vector reach point O∗. For the first case,
when TE takes over, it will pull the rate vector back into
[T ∗

0 , T ∗
1 ]. And when overlay takes the turn, it still sees

Delay(1,2) < Delay(1,3). Since all its demand has already
been put on path (1, 2), the game reaches its NEP. For
the second case, TE again will pull the rate vector back
into [T ∗

0 , T ∗
1 ]. When overlay takes the turn, it will increase

d(1,2) and the drive the rate vector back toO∗. The interac-
tion continues and d(1,2) keeps increasing until all overlay
traffic is moved to logical path (1, 2). The game converges
as in the first case.
As we see from this proof, the driving force for this

process to converge to a Nash equilibrium is that TE can
always map a set of logical link load required by overlay
to a physical flow assignment. The logical mapping by
TE plays a key role. Since this logical mapping really
depends on the network topology, it is difficult to give a
general conclusion to a general network topology.

C. One-step Overlay with Limited Information
In this model, at each step, overlay can simply put all

its traffic on the minimum delay path, totally ignorant
of the potential delay increment on this minimum delay
path. We give a simple example to show that this in-
teraction can lead bad performance to both overlay and
Traffic Engineering, and lead to bad oscillations. Con-
sider a simple network topology in Figure 3. We let all
links have capacity 10. There are underlying demands for
source-destination pairs, which are d(1,2) = 8, d(1,3) = 1,
d(2,3) = 1, and d(3,2) = 1. There is only one overlay
source-destination pair d(1′,3′) = 8. TE uses a piece-wise
linear cost function to evaluate the cost on a physical link
([18]). The routing interaction process is shown in Fig-
ure 14.
Overlay has two assumptions. First, its decision of re-

allocating traffic will not change logical path delays. Sec-
ond, the current physical level routings set by TE will not
change. Clearly, the first assumption will not hold if the
amount of overlay traffic is significant in the total network
traffic. Then, the reallocation of overlay traffic on logical
path level will affect the delays on either physical or log-
ical level. Then, we need to re-examine the logical links’
delays to get the realized or actual overall delay seen by
overlay, and compare with expected cost from overlay op-
timizer’s decisions. As we seen in that figure, the realized
overlay cost is extremely high, and bad oscillations hap-
pens over time. Oscillations observed is partly due to the

response of TE, and partly due to the bad routing deci-
sions of overlay itself (similar to the oscillations observed
on traditional load-sensitive routings [14].)
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Fig. 14. Overlay costs. Traffic Engineering does optimization at odd
step. Overlay does optimization at even step.

VII. GENERAL DISCUSSIONS
A natural extension to our work in this paper is the

interaction between multiple overlays and TE. This is a
much harder problem. For example, we can assume TE
does not change its routings during the game playing pro-
cess between N overlays. We can think of each overlay
as a single user who controls a non-negligible amount of
traffic and tries to minimize its own group’s average cost.
Then, this problem is similar to the routing games studied
in [25] and [22] in which all users or overlay work at the
same level and compete with each other. However, there
is a significant difference. In their cases, all users work at
the same physical level, and a link’s cost is only a function
of load on this link. But in our case, all users work at the
logical level, multiple logical links may share the same
physical link, so, the cost of a single logical link might be
coupled with cost of other logical links. This logical link
load coupling makes the existence of Nash equilibrium
problem dependent (on network topology, traffic demand
patterns.) Furthermore, even if a Nash equilibrium exists
for a certain network routing game, the dynamic process
of playing Nash game may not be able to converge to that
point. All these problems are open for future research.
One basic assumption implicitly used in our models is

that both players have the same frequency and timing of
adjusting strategies. But these two issues may have impor-
tant influence on the structure on this routing game. For
example, if overlay knows the starting time of TE’s opti-
mization, it can do its optimization immediately after TE’s
turn, given that the general trend of cost change of overlay
will not increase. In practice, an overlay most likely can-
not have all necessary information to play with TE. Thus,
a good strategy of online estimation and learning may be
important.
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VIII. CONCLUSIONS AND FUTURE WORK
Using game-theory models, we provide insights into

the fundamental problem on the interaction between the
overlay routing optimizer and Traffic Engineering opti-
mizer.
Our analytical results on an example network give us a

clear understanding of the existence, uniqueness and sta-
bility of Nash equilibrium of this interaction game. Our
general conclusion is that, cost of TE will never be im-
proved by the selfish behavior of overlay routing opti-
mizer if TE uses MPLS optimizer. Huge oscillations of
costs of TE and overlay can be expected in this interac-
tion process. Even more surprisingly, the general trend
of overlay’s cost could be increasing even if overlay opti-
mizes its routing at each iteration, which is not only ex-
plained clearly in our analysis of an example network,
but also observed in our experiments in a tier-1 ISP net-
work. Even though this finding seems counter-intuitive
at first thought, it actually points out the inefficiency of
NEP in general. Since there could be bad influence on
overlay’s performance when overlay plays a Nash rout-
ing game with TE, we recommend a static Stackelberg
strategy to overlay. We come up with a gradient projec-
tion search heuristic to solve approximately for the static
Stackelberg strategy (a NP hard problem.) Through ex-
perimental studies, we demonstrate that the cost of over-
lay when using the approximate Stackelberg strategy is
always smaller than the average cost when playing a Nash
game. Our search heuristic is demonstrated as a promis-
ing approach in solving the static Stackelberg strategy for
overlay. Our study on the interaction between TE and an
overlay with limited information gives us an understand-
ing of another routing interaction game structure, which
helps an overlay routing optimizer to understand its lim-
itations in a game playing process in practice and points
out the potential benefits of the incremental algorithm.
We believe our work provides a starting point in the

search for a complete understanding of this fundamental
problem. Even though our analytical and experimental
studies can help us to understand some basic characteris-
tics of NEP in this game, there are still many research and
practical problems. For example, the interaction between
multiple overlays and TE is a very important issue in the
future. The estimation of useful information and choosing
good strategies for both TE and an overlay optimizer are
also important topics.
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IX. APPENDIX

A. Global Stability of the NEP of the Routing game in
Section IV-A

Proof: Let x denote overlay demand on the logical
path (1, 2). When TE takes turn, it updates routing frac-
tion f (1,2)

〈1,2〉 and f (1,3)
〈1,2〉 as a function of x as described in (17)

and (18). Since d(1,2)under=0, and d(1,3)overlay < l∗<1,2>,
we always have f(1,2)

〈1,2〉 = 1 and f (1,3)
〈1,2〉 decreasing with

x. Consequently, the available bandwidth {C̃〈1,2〉, C̃〈1,3〉}
can be recalculated according to (20), (21). It is easy to
show C̃〈1,2〉 (C̃〈1,3〉) is an increasing (decreasing) function
of x. Therefore there is only one solution x0 satisfying

C̃〈1,2〉(x)
C〈1,2〉

=
C̃〈1,3〉(x)

C〈1,3〉
.

As discussed in Section IV-A, x0 is the only NEP.
Let x(k) denote overlay demand on the logical path

(1, 2) after the kth overlay optimization. In order to prove
that the NEP x0 is globally stable, it is sufficient to show
that if x(k) < x0, then x(k) < x(k + 1) < x0; if
x(k) > x0, then x(k) > x(k + 1) > x0. We prove here
for x(k) < x0 only, the case for x(k) > x0 can be proved
similarly.

First we want to show if x(k) < x0, then x(k + 1) >
x(k). Let’s construct a function of {x(k), x} as

g(x(k), x) =
(C̃〈1,2〉 − f (1,2)

〈1,2〉x − f (1,3)
〈1,2〉 (d

(1,3)overlay − x))2

(C̃〈1,3〉 − f (1,2)
〈1,3〉x − f (1,3)

〈1,3〉 (d
(1,3)overlay − x))2

,

where {C̃〈·〉, f
(·)
〈·〉 } are functions of x(k). Since we have

f (1,2)
〈1,2〉 = 1 ≥ f (1,3)

〈1,2〉 , and f (1,2)
〈1,3〉 = 0, it is easy to verify that

for any fixed x(k), g(x(k), x) is a decreasing function of
x. After TE’s optimization and right before the k + 1th
round overlay optimization, the overlay routing variable
is x(k) and the traffic rate vector on physical links is TE’s
optimal solution. Based on (16), we have g(x(k), x(k)) =
C<1,2>

C<1,3>
. After overlay’s optimization, x(k + 1) satisfies

(23). Therefore, g(x(k), x(k + 1)) = C̃<1,2>(xk)

C̃<1,3>(xk)
. Since

C̃<1,2>(x)

C̃<1,3>(x)
is an increasing function of x,

C̃<1,2>(xk)
C̃<1,3>(xk)

<
C̃<1,2>(x0)
C̃<1,3>(x0)

=
C〈1,2〉

C〈1,3〉
= g(x(k), x(k)).

Therefore, g(x(k), x(k + 1)) < g(x(k), x(k)) and x(k +
1) > x(k).
Nowwe have to show if x(k) < x0, then x(k+1) < x0.

Since C̃〈1,2〉 is increasing with x, we have C̃〈1,2〉(x0) >

C̃〈1,2〉(x(k)). Let loverlay
<1,3> denote aggregate overlay traffic

on physical link < 1, 3 >. After overlay’s optimization as
in (19), l∗overlay

<1,3> (x0) < l∗overlay
<1,3> (x(k)). And we have

l∗overlay
<1,3> (x(k)) = (d(1,3)overlay − x(k + 1))f (1,3)

〈1,3〉 (x(k))

l∗overlay
<1,3> (x0) = (d(1,3)overlay − x0)f

(1,3)
〈1,3〉 (x0).

Since f (1,3)
〈1,3〉 (x) is increasing with x, f(1,3)

〈1,3〉 (x0) >

f (1,3)
〈1,3〉 (x(k)), therefore we must have x(k + 1) < x0.

B. Traffic Engineering Formulation

min JTE =
∑

Φa

a∈A

(37)

subject to
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la =
∑

t

vt
a ∀a ∈ A,∀t ∈ N (38)

Φa ≥ la ∀a ∈ A (39)
Φa ≥ 3la − 2/3Ca ∀a ∈ A (40)
Φa ≥ 10la − 16/3Ca ∀a ∈ A (41)
Φa ≥ 70la − 178/3Ca ∀a ∈ A (42)
Φa ≥ 500la − 1468/3Ca ∀a ∈ A (43)
Φa ≥ 5000la − 19468/3Ca ∀a ∈ A (44)
vt
a ≥ 0 ∀a ∈ A,∀t ∈ N (45)

∑

x:(x,y)∈A

vt
(x,y) −

∑

z:(y,z)∈A
vt
(y,z) =

{
d(·,t) if y = t,
−d(y,t)otherwise(46)

∀y ∈ N,∀(s, t) ∈ N × N

where, Ca is the capacity of physical link a; la is the ag-
gregate link traffic at physical link a; Φa is the cost on
physical link a.

C. Optimization Problem Equivalent to Selfish Rouing
This formulation on overlay selfish routing can be de-

rived from [17], [32],[28], and [26].

min
h(s′,t′)

p

Foverlay =
∑

(s,t)

∫ d(s,t)overlay

0

1
C(s,t) − x

dx (47)

subject to

d(s,t)overlay =
∑

s′,t′,p

h(s′,t′)
p ∀(s, t) ∈ N × N (48)

∑

p∈P (s′,t′)

h(s′,t′)
p = d(s′,t′), ∀(s′, t′) ∈ N × N (49)

h(s′,t′)
pi

≥ 0, ∀(s′, t′) ∈ N × N (50)

C(s,t) ≥ 0, ∀(s, t) ∈ N × N (51)


