
Collecting Correlated Information from a Sensor Network

Micah Adler∗

Department of Computer Science
University of Massachusetts, Amherst

Email: micah@cs.umass.edu

August 3, 2004

Abstract

A fundamental problem in the study of sensor networks is collecting data to a central server
from a set of k distributed sensor nodes. A considerable amount of recent research in this area
attempts to reduce the number of bits sent by the nodes by taking advantage of correlations
between the data items collected from different nodes. In this paper, we study this problem in
the following model: let D be a probability distribution over k binary strings of length n. D
is given to the server but not the nodes. A sample X̄ is drawn from D and the k strings of X̄
are revealed to the nodes, one string per node. The goal is to inform the server of all k strings
of X̄. Our primary objective is to minimize the total number of bits sent by the nodes, but we
also seek to minimize both the bits sent by the server and the number of rounds required. This
problem is a natural parallelization of the model introduced in [2], and is also well motivated by
recent work on distributed source coding for sensor networks. Our main result is a protocol that
allows the server to correctly determine X̄ . In this protocol, the nodes send O(H(D)+k) bits in
expectation, where H(D) is the binary entropy of D; this is asymptotically optimal. The server
sends O(kn + H(D) log n) bits in expectation, and the number of rounds is O(1 + log!H(D)")
in expectation. We also demonstrate that if the server is allowed to produce an incorrect result
with probability up to ∆, then the expected number of bits sent by the server can be reduced
to O(k log(nk

∆) + H(D) log n), without increasing the other measures of performance.

1 Introduction

We consider the problem of collecting information to a central server from a set of k distributed
nodes. In particular, we assume that each of the k nodes has an n-bit string to send to the server, and
these strings are correlated in some manner. We denote such a set of strings as X = (x1, x2, . . . , xk),
where xj is the n-bit string known to node j. We assume X is drawn from a probability distribution
D over such sets, where D(X) denotes the probability that X is drawn from D. Note that D
captures both the a priori information known about what strings each node is likely to hold, as
well as the correlations between the strings given to different nodes.

The specific problem we study is defined as follows: the distribution D is revealed to the server
but not the nodes. A sample X̄ is drawn from D and the k strings of X̄ are revealed to the nodes,
one string per node. The server starts with no information about X̄ other than the distribution D;
the objective is to inform the server of all k strings of X̄. Communication proceeds in rounds as in

∗Supported by NSF Research Infrastructure Award EIA-0080119, NSF Faculty Early Career Development Award
CCR-0133664, and NSF ITR Grant (ITR-0325726).

1

Yao’s communication complexity model [27]. In the first half of each round, the server sends bits
to the nodes, where each such bit is received by a single node specified by the server. In the second
half of each round, the nodes send bits back to the server. The nodes are not able to communicate
directly with each other. Our primary objective is to minimize the total number of bits sent by the
nodes. We are also concerned with the total number of bits sent by the server, as well as the total
number of rounds required.

The motivation for this problem is two-fold. First, it is a natural parallelization of the asymmetric
communication problem introduced in [2], and studied subsequently in [13], [12], [24], and [25].
That work deals with the version of the problem where there is only a single node (i.e., k = 1), and
has led to a number of different protocols for informing the server of the node’s n-bit string, where
the expected number of bits sent by the node is O(H(D)+1), and the expected number of bits sent
by the server is O(n). Here, H(D) is the binary entropy of D. These protocols vary on a number
of measures, such as the number of rounds required and the constants hidden in the asymptotic
notation. Techniques from these protocols have been shown to be useful in circumventing web
censorship and surveillance [8], as well as in the design of websites [4].

Second, our problem addresses the main difficulty of a fundamental issue in sensor networks: collect-
ing correlated information distributed across a set of sensor nodes to a central server. Information
collected by different nodes in a sensor network can be correlated in a number of different scenarios,
such as measuring weather conditions in a geographic region or sensing the visual image of an object
from similar but distinct viewpoints. Furthermore, sensor nodes are often quite limited in terms of
both available power and computational capabilities. This motivates our primary objective: since
wireless transmission is a power intensive operation, we wish to minimize the number of bits sent
by the nodes. Furthermore, the limited computational capabilities of the sensor nodes motivate
the assumption that the nodes do not have a priori access to the distribution D.

This sensor networks application has generated considerable research in the last few years on what
is known as distributed source coding (DSC). DSC dates back to the seminal work of Slepian
and Wolf in the early 70s [21]. Stated in terms of our model, the objective of a DSC is to send a
sequence of r independent samples drawn from the probability distribution D to the server, without
the nodes receiving any feedback from the server (and, as in our model, without communicating
with each other). Slepian and Wolf demonstrate in [21] that there exists an encoding scheme such
that as r grows, the number of bits that must be sent to the server approaches rH(D), which is
optimal. Since this result is asymptotic (in the sense that r must grow without bound), as well
as not constructive, there has been intense study recently of more practical DSC techniques. We
provide a brief description of this work in Section 1.1, and refer the reader to the survey in [26] for
more information (the bibliography of the Web version in particular is quite extensive and recent).

We here point out that all existing work on DSC makes one of two assumptions: either the cor-
relation between the strings has a restrictive structure1 or the required value of r is large2. Note
that a value of r > 1 can also be viewed as the case where r = 1 with a significant restriction on
the distribution D: the strings can all be partitioned into equal length substrings, each of which is
i.i.d. The survey [26] describes generalizing the correlation model as the main issue for practical
deployment of DSC to sensor networks, and states that this is ”still an open and very challenging
DSC problem.” In this paper, we introduce a protocol that works for any distribution D with r = 1,
and thus for any correlation model. Note, however, that the communication model we consider in

1For example, in the case where k = 2, both strings may be uniformly distributed, and the correlation model is
that there is a bound on the Hamming distance between them.

2Typical values of r described in [26] are 104 and 105, and [14] describes experiments where r = 5 × 105.

2

this paper is more powerful than the classical DSC model of [21], as we allow interaction where the
server sends information back to the nodes. Such feedback has already been utilized in more recent
work on DSC, for example in [5].

This kind of interactive communication is also used for the case where k = 1 in [2]. In fact, a
protocol from [2] called Round-Efficient could be used to solve the problem we consider in this
paper using two different methods, both of which are suboptimal. In the first method, Round-
Efficient is used on each of the nodes independently and in parallel. This would require O(nk) bits
to be sent by the server and O(1) rounds (both in expectation). As we describe below, Ω(nk) total
bits must be exchanged, and thus both of these measures are optimal. However, if D has a large
amount of correlation between the k strings, the number of bits sent by the nodes can be as large
Ω(kH(D)), a factor of k larger than optimal. In the second method, Round-Efficient is used in a
serial fashion: the server first collects the string from one node, conditions on the value it receives,
and then moves on to the next node, until it has all k strings. The expected number of bits sent
by the nodes in this protocol is O(H(D) + k) (by the definition of conditional entropy) and the
expected number of server bits is O(nk), both of which are asymptotically optimal. However, the
expected number of rounds required is O(k), which for large k would be quite time consuming.

Our main result is to provide a new technique for this problem that is significantly more parallel
than such a serial application of Round-Efficient, while requiring roughly the same number of bits
to be sent by both the server and the nodes. In particular, we introduce a protocol that solves the
information collection problem, where the expected number of bits sent by the nodes is O(H(D)+k),
the expected number of bits sent by the server is O(nk + H(D) log n), and the expected number of
rounds is O(1 + log!H(D)"). This protocol applies to any probability distribution D (and hence
any correlation structure) over the k strings of length n.

To construct this protocol for general probability distributions, we first consider a restricted class
of distributions D. In particular, we consider support uniform distributions: distributions that are
uniform over their support set. For a support uniform distribution D, let χ(D) be the support set,
i.e., the set of possible inputs X such that D(X) > 0. This special case is actually a natural parallel
communication complexity problem. We can think of the distribution D as a k-dimensional binary
matrix, with side length 2n, where the 1 entries of the matrix represent the elements of χ(D).
The server is given this matrix. An entry of the matrix containing a 1 is chosen uniformly at
random, and node i is given the ith coordinate of this entry. The objective is for the server to
determine which entry of the matrix has been chosen. We provide a protocol for the case of support
uniform distributions such that the expected number of bits sent by the nodes is O(m + k), where
m = !log |χ(D)|" (and thus the performance could also be stated as O(H(D) + k)). The expected
number of server bits is O(nk + m log n), and the expected number of rounds is O(1 + log m).
We then demonstrate that this protocol can be adapted to the case of an arbitrary probability
distribution.

Shannon’s Theorem implies that in our protocol for arbitrary distributions, the expected number
of bits sent by the nodes is asymptotically optimal. Furthermore, Theorem 5 of [2] implies that
if the server must determine the set of strings held by the nodes with no probability of error,
then at least nk bits must be exchanged between the server and the nodes. Our protocol requires
O(nk + H(D) log n) expected server bits. The O(nk) term is thus asymptotically optimal for an
error-free protocol that is efficient in terms of bits sent by the nodes. The H(D) log n term, on the
other hand, could potentially be improved, but since the problem we consider is of most interest
when H(D) # kn, this term will typically be smaller than the O(nk) term.

3

We also demonstrate that if we allow the server some probability of returning the wrong result, then
we can reduce the expected number of server bits. In particular, we show that if the probability
of making an error can be as large as ∆, for any 0 < ∆ < 1, then the expected number of bits
sent by the server can be reduced to O(k log(kn

∆) + H(D) log n), without effecting (asymptotically)
the number of bits sent by the nodes or the number of rounds. Reducing the expected number of
server bits is an important consideration for the application of these techniques to sensor networks,
since in some scenarios (see for example [9]), receiving bits at a mobile node consumes only a small
constant factor less power than sending bits from a mobile node.

1.1 Previous Work

Although a full description of the current state of DSC is well beyond the scope of this paper, we
here provide a flavor of this work. Perhaps the best studied case of DSC is for the binary symmetric
channel (BSC), and its variants. In this model, each sample drawn from D is a pair of correlated
binary Bernoulli(0.5) random variables x̄1 and x̄2, and Pr[x̄1 $= x̄2] = p, for p < 1

2 . Note that in
this case n = 1 and k = 2. A number of different schemes for sending a sequence of r independent
such samples using close to rH(D) bits have been proposed, including [10, 3, 1, 15, 16]. The case
of two binary sources (again, k = 2 and n = 1) where the correlation between the two bits can be
arbitrary was considered in [20]. The case where the number of nodes is larger than two has been
considered in [20, 23, 17, 14]. The case of uniformly distributed M -ary bits has been studied in
[14]. Memory between the different samples (which is closer to our model of arbitrary correlation
with r = 1) is considered in [11]. That work considers the case of k = 2, where the sequence of
bits for one node is i.i.d. and uniform, and the second sequence of bits is correlated via a hidden
Markov model. They do not provide analytic bounds on the relationship between the amount of
memory present and the value of r required by their technique, but describe simulation results for
a Markov model with two states and r = 16384.

Another consideration for this line of research is how many bits each of the nodes sends (instead
of just the total number of bits). The original proof of Slepian and Wolf [21] demonstrated that
efficient DSC is possible for any partition of the bits that satisfies the natural conditional entropy
requirements. This generality has been matched by some of the more practical schemes. For
example, [20] demonstrates the analogous result for two binary sources (i.e., n = 1) and arbitrary
correlation between the pair of bits. This is an aspect of the problem that is still relevant for the
problem we consider in this paper. Refining our techniques so that the O(H(D)) bits sent by the
nodes can be divided up arbitrarily (subject to the conditional entropy constraints) is an interesting
open problem.

A number of papers have also considered the case of correlated continuous distribution. This
is motivated by applications such as a network of sensors measuring the temperature. In this
research, the correlation is often modeled by assuming that the value given to a node is a ”noisy”
version of the value given to other nodes. For example, [19] considers the case of two nodes, where
x̄2 = x̄1 + N , where x̄1 and N are both zero mean Gaussian random variables. In this area, it
is also usually assumed that the nodes are distributed over a geographic area, and the amount of
correlation between a pair of nodes depends on the distance between them. In [18], it is assumed
that the nodes are distributed over a continuous two-dimensional field; they study the effect of
increasing the sensor density to infinity. A linear predictive model is considered in [5].

Another area of work in the field of collecting correlated information from sensor networks (again,
a full description of this work is beyond the scope of this paper) has focused on incorporating the

4

routing structure of the sensor network into the compression technique. See for example [7, 22, 18].
This research models the fact that most sensor networks are expected to require multi-hop routing
through the sensor network to send the data to the server. Incorporating such considerations into
the techniques described in this paper is another interesting open problem.

2 Intuition for and description of a support uniform algorithm

In the remainder of this paper, we use X to refer to a generic possible input, and X̄ to refer to the
actual input drawn from D and given to the nodes. Also, lowercase variables, such as xj, x′

j, or
x̄j, refer to a string given to node j on the corresponding (uppercase) inputs, such as X, X ′, or X̄ ,
respectively.

We start by giving some intuition for our algorithm for the support uniform case. A key tool we
use in this algorithm is what we call a fingerprint bit function. This is a class of functions that
map an n-bit string to a single bit such that if f is chosen uniformly at random from the class,
then for any y1 $= y2, Pr[f(y1) = f(y2)] ≤ p, for some p > 1

2 . Standard techniques allow such a
class of functions to be constructed for any constant p > 1

2 , where the size of the class of functions
is nO(1). Thus, a randomly chosen function from the class can be described using O(log n) bits.
Furthermore, such a description allows even a sensor node with limited computational abilities to
easily compute the resulting fingerprint bit. Since the value of the constant p only effects constants
we hide with asymptotic notation, we here assume p = 2

3 .

We start with a naive attempt at a solution for the support uniform case that will help highlight
some of the difficulties we shall encounter. Recall that χ(D) is the support set for the distribution
D, and m = !log |χ(D)|". In this solution, in each round, the server chooses m fingerprint functions
independently and uniformly at random. The server sends to each node a description of m/k of
these functions. Each node j applies these functions to the string x̄j that it has, and returns the
resulting fingerprint bits to the server. This process is repeated until there is only a single element
of the support set χ(D) that is consistent with all of the fingerprint bits received by the server.

Note that in the case where k = 1, after the only node present has sent cm fingerprint bits, the
expected number of incorrect inputs that agree on all fingerprint bits is at most (|χ(D)| − 1)(2

3)cm.
This is because any incorrect input X disagrees with any given fingerprint with probability at least
1
3 , independently of all previous fingerprint bits, and thus after cm fingerprint bits, any X $= X̄ has
a probability of (2

3)cm of agreeing on all fingerprint bits. The result then follows via a union bound
over all |χ(D)|−1 incorrect inputs. Thus, O(m) bits are sufficient using this technique when k = 1.

On the other hand, in the case where k > 1, a fingerprint bit sent by a node j can only help eliminate
an incorrect input X $= X̄ if xj $= x̄j . Thus, for example, if for all j > 1 and all X ∈ χ(D), xj

is the same, then only node 1 has any information about which input has been drawn from the
distribution D, and so only the bits sent by that node can eliminate incorrect inputs. As a result,
this first naive technique can require the nodes to send as much as a factor of k times more than
the optimal number of bits.

Ideally, we would like each fingerprint bit sent by the nodes to eliminate at least a constant fraction
of the remaining elements of χ(D) (in expectation). We shall informally refer to a bit with this
property as useful; a more precise definition is provided below. Our objective will be to obtain many
useful bits from the nodes without receiving too many bits that are not useful. However, whether
or not a fingerprint bit sent by a specific node j is useful depends on several factors, including the

5

structure of the set χ(D), as well as the value of X̄ . Thus, the server will not know if a fingerprint
bit sent by node s will be useful or not, since it does not yet know X̄. For example, if all but one
element of χ(D) has xj = 0, and one element has xj = 1, then usually a fingerprint bit sent by
node s will not be useful, but occasionally it will be (very) useful.

Note that whether or not a fingerprint bit is useful depends on the elements of χ(D) that have not
been eliminated by earlier fingerprint bits. Since many fingerprint bits must be sent in parallel to be
efficient in terms of rounds (both from the same node and from different nodes) the decision about
how many fingerprint bits a node sends must be made before it is known whether or not those bits
will be useful. This is because bits sent in parallel by other nodes may effect whether they are or
are not useful. This is perhaps the most difficult aspect of determining whether a fingerprint bit
will be useful.

Despite these difficulties, the server can determine a property on a fingerprint bit that ensures that
the expected fraction of the elements remaining in χ(D) that it eliminates is a constant. Even
though the bits from the nodes are sent in parallel, we think of the server as processing them
sequentially in an arbitrary order within each round. Thus, let It be the tth bit of information sent
by the nodes. (In addition to the fingerprint bits, the nodes send other information, to be described
below. These are included in the sequential ordering.) Let χt(D) be the elements of χ(D) that are
still possible given the first t bits of information received by the server. We say that fingerprint
bit It, sent by node j, is unbalanced if there is an x′

j such that for more than half of the elements
X ∈ χt−1(D), x′

j = xj. If there is no such a value of xj , then the bit It is called balanced. Note that
the server can decide if a bit It is balanced without any knowledge of X̄ other than the structure of
χt−1(D). Furthermore, for a balanced bit It sent by node i, at most half the elements of χt−1(D)
can agree with X̄ on xi; the other elements of χt−1(D) can potentially be eliminated by It. Thus,
the expected fraction of χt−1(D) eliminated by It is at least a sixth. Our protocol requires the
nodes to send the server Θ(m) balanced bits. The key will be to do so without sending more than
O(m) unbalanced bits.

Before we describe how we do so, we point out another difficulty: determining how many bits each
node sends during each round. We could construct a protocol where each node sends a single bit in
each round, but such a protocol would not be efficient in terms of total rounds. However, sending
more bits per round can be inefficient in terms of the total number of bits the nodes send. To see
why, let’s make the (very optimistic) assumption that each fingerprint bit a node sends is balanced,
until some point in time where it is defined. We say node j is defined at time t if all of the elements
of χt−1(D) have the same string for xj . Thus, a node is defined if and only if the server knows the
string for that node.

Let ki be the number of undefined processor remaining at the start of round i. Note that k1 = k.
A simple protocol would be to have each undefined processor send m/ki fingerprint bits in round
i. However, consider what happens if in each round, all but a fraction of 1

log k of the undefined
nodes are made defined by (say) a single fingerprint bit sent from a node that remains undefined.
If this continues for log k

2 log log k rounds, there are still undefined nodes. However, in each round, the
nodes send m bits, and yet the total number of balanced bits received after all those rounds is
o(m). Thus, it is possible that this simple protocol sends a factor of log k

log log k more total bits from
the nodes than the O(m) we were hoping for. We shall deal with this with a form of “slow start”:
as nodes become defined, the remaining nodes do not increase the number of bits they send in each
round too quickly. This leads to more total rounds, but ensures that the expected total number of
bits sent by the nodes is O(m).

6

2.1 Description of support uniform algorithm

Our algorithm consists of a series of phases, each consisting of two rounds. In phase i, let Ui be
the set of nodes that are undefined at the start of phase i, and again, ki = |Ui|. In the first round
of phase i, every node in Ui sends bi = min(3

2bi−1, !m/ki") fingerprint bits, each specified by a
fingerprint function chosen randomly and sent to the nodes by the server. We define b1 = k. The
server then chooses any sequential ordering of the fingerprint bits received in a round, and processes
them in that order. When each fingerprint bit is processed, the inputs in χ(D) that do not agree
with that bit are discarded from consideration by the server.

Before processing each fingerprint bit It sent by node j, the server checks to see if it is an unbalanced
bit: i.e., if some string x′

j agrees with more than half of the elements of χt−1(D). For each node
j in phase i, if there is any unbalanced bit, round i is referred to as being unbalanced for node j.
We let hij be the string x′

j that agrees with at least half of the inputs in χt−1(D), where It is the
first unbalanced bit sent by node j in phase i. hij is called the heavy string of unbalanced round i
for node j. The server also keeps track of the total number of balanced bits that it has received.

During the second round of each phase i, let t be the total number of bits received by the server
through the end of the first round of that phase. The server checks each heavy string hij to see if
it is still consistent with some input in χt(D) and if node j is still undefined. If so, it sends the
string hij to node j . Node j responds with a single bit indicating whether or not hij = x̄j . These
queries are refereed to as heavy queries; they and their responses are performed in parallel for all
nodes that require them.

The server continues this process until it has received c · m balanced bits, for a constant c to be
described below, or until there is only one possible input remaining in χ(D). It then sends a
description of the remaining possible inputs to the nodes, sending the appropriate string of the
input to each node. Each node i then sends the index of the string within this list that corresponds
to x̄i. These queries are called index queries. We call this algorithm Multi-Uniform. It should be
clear that this algorithm returns the correct answer; in the next section we analyze its performance.

3 Performance of support uniform algorithm

In order to analyze the performance of Multi-Uniform, we start by pointing out a useful fact about
how the distribution over the elements of χ(D) evolves as the server collects information from the
nodes. In particular, the following claim demonstrates that as the server receives fingerprint bits
and responses to queries concerning heavy strings, some of the inputs in χ(D) may be eliminated,
but the relative probability weight between the remaining inputs will be unchanged. Thus, when
D has a uniform probability weight over χ(D), the distribution over the inputs of χ(D) that are
not eliminated by a sequence of fingerprint bits will be uniform even after conditioning on those
received bits.

Recall that It refers to either a fingerprint bit, or the response to a heavy query. Let Xi be some
input in χ(D). Let Z be a random variable denoting all the fingerprint functions chosen by the
server. Let Dt(Xi) = Pr[X̄ = Xi|I1 . . . It,Z], and thus Dt is the distribution D conditioned on all
information learned by the server up to bit It.

Claim 1 For all Xi, Xj , and t, if Dt(Xi) > 0 and Dt(Xj) > 0, then Dt(Xi)
Dt(Xj) = D(Xi)

D(Xj) .

7

Proof: From the definition of conditional expectation, we see that

Dt(Xi) = Pr[X̄ = Xj |I1 . . . It,Z] =
Pr[(X̄ = Xi ∩ I1 . . . It)|Z]

Pr[I1 . . . It|Z]
.

However, Z and X̄ together specify all information sent by the nodes. Thus, either Pr[(X̄ =
Xi ∩ I1 . . . It)|Z] = Pr[X̄ = Xi|Z] or Pr[(X̄ = Xi ∩ I1 . . . It)|Z] = 0, depending on whether or
not Xi leads to bits I1 . . . It being sent on Z. However, we assume that Dt(Xi) > 0, and so
Pr[(X̄ = Xi ∩ I1 . . . It)|Z] = Pr[X̄ = Xi|Z] = Pr[X̄ = Xi] = D(Xi). Thus, Dt(Xi) = D(Xi)

Pr[I1...It|Z] ,

and similarly Dt(Xj) = D(Xj)
Pr[I1...It|Z] . The claim follows.

This leads us to the following central lemma:

Lemma 1 The expected number of fingerprint bits sent by the nodes during Multi-Uniform is
O(m + k).

Proof: We demonstrate that the expected number of unbalanced bits that are sent is O(m + k).
To do so, we use an accounting scheme where we charge each unbalanced bit sent after the first
round to either a balanced bit, or to a bit that is sent in the first round. We do so in a way that
guarantees that the expected number of times that any bit is charged is a constant.

Each unbalanced bit is charged to a bit sent previously by the same node. In particular, an
unbalanced bit sent in round i > 1 by node j is charged to a balanced bit sent by j in the latest
round i′ < i such that round i′ is balanced for node j. If there is no such round, then the unbalanced
bit is charged to a bit sent by j in the first round. The unbalanced bits charged to bits sent by
node j in any round i′ are distributed as evenly as possible among the bits in round i′ sent by j:
i.e., the difference between the most unbalanced bits charged to one of j’s bits in round i′ and the
least bits charged is no more than 1.

Let ct be the random variable indicating how many unbalanced bits are charged to bit It. If It is
neither a fingerprint bit sent in the first round nor a balanced bit, then ct = 0. Otherwise, ct can
be larger, but the following claim bounds how much larger.

Claim 2 For any t, E[ct] = O(1).

Proof (of Claim): Consider some round i that is unbalanced for node j. Let Iu be the first
unbalanced bit sent by j in round i, and let hij be the corresponding heavy string. Let Fij be
the event that node j is defined at the end of the second round of the phase containing round i.
We first point out that Pr[Fij |I1 . . . Iu−1] ≥ 1

2 . To see this, note that since Iu is unbalanced, hij

corresponds to at least half of the elements in χu(D). By Claim 1, we see that Du is uniform over
the elements of χu(D), and so Pr[x̄j = hij |I1 . . . Iu−1] ≥ 1

2 . The second round of the phase will
cause node j to be defined whenever it is the case that x̄j = hij .

A bit sent by node j in the first round of phase p can only be charged to by a bit sent by node
j in phase p + v, for v a positive integer, if the first round of all phases p + 1, . . . , p + v are
unbalanced. Since a defined node no longer sends any fingerprint bits, the probability of that
happening is at most 1

2v−1 . Since the number of bits sent by node j increases from phase to phase
by at most a factor of 3/2, the expected number of bits charged to a bit in phase p can be at most∑∞

v=1(
1
2)v−1(3

2)v = O(1).

8

Since the number of bits sent in the first round is k!m
k ", and the total number of balanced bits sent

in subsequent rounds is at most cm, the lemma now follows from the linearity of expectation.

Lemma 2 Let T be the largest t such that It is either a fingerprint bit or a response to a heavy
query. E[|χT (D)|] = O(1).

In other words, in protocol Multi-Uniform, the expected number of inputs in χ(D) that are still
possible after receiving all of the fingerprint bits and responses to heavy queries is O(1).

Proof: Consider some possible input X ′ ∈ χ(D). When X̄ = X ′, then X ′ ∈ χT (D). We demonstrate
that when X̄ $= X ′, Pr[X ′ ∈ χT (D)] ≤ 1

2m . To see this, let It be any balanced bit sent by node
j. The fact that It is balanced, combined with Claim 1, implies that Pr[x̄j = x′

j |I1 . . . It−1] ≤
1
2 . If x̄j $= x′

j, then the probability that X ′ is eliminated by It is at least 1
3 . Thus, Pr[X ′ ∈

χt(D)|I1 . . . It−1] ≤ 5
6 . In particular, this holds even when I1 . . . It−1 have not already eliminated

X ′. Therefore, the probability that X ′ is not eliminated after cm balanced bits, for c = log6/5 2, is
at most 1

2m . The lemma now follows from the linearity of expectation.

Lemma 3 The expected number of rounds is O(1 + log m).

Proof: Call the first round of a phase sparse if the total number of fingerprint bits sent in that
round is at most 2

3m. In any sparse round, the number of bits sent by a node that is not yet defined
increases by a factor of 3

2 . Since no node sends more than m bits in a round, the total number of
sparse rounds can be at most O(log m). Since the expected number of fingerprint bits that are sent
is O(m), the expected number of rounds that are not sparse can be at most O(1).

Theorem 1 The protocol Multi-Uniform has the following performance: the total expected num-
ber of bits sent by the nodes is O(m + k), the expected number of bits sent by the server is
O(kn + m log n), and the total expected number of rounds is O(1 + log m).

Proof: The bound on the expected number of rounds was already stated in Lemma 3. For the
bound on the expected number of bits sent by the nodes, note that nodes send three types of bits:
fingerprint bits, yes/no responses to heavy queries, and bits responding to index queries at the end
of the protocol. We saw in Lemma 1 that the expected number of fingerprint bits is O(m + k).
From Lemma 2, we see that the total expected number of index bits is a constant per node. We
argued in the proof of Claim 2 that whenever a node sends an unbalanced bit, it will be defined
by the end of the phase containing that bit with probability at least 1

2 . Therefore, the expected
number of bits sent in response to heavy queries is also a constant per node.

As for the expected number of server bits, note that the server must send three different types of
bits: descriptions of fingerprint functions, heavy queries, and index queries. The expected number
of fingerprint bits is O(m), and each can be described using O(log n) bits. Thus the expected
number of bits of the first type is O(m log n). Since the expected number of yes/no responses to
heavy queries from each node is a constant, the total expected number of server bits of the second
type is O(n) per node. Lemma 2 implies that the expected number of bits of the third type is also
O(n) per node. Thus, the total expected number of server bits is O(nk + m log n).

9

4 Extension to arbitrary distributions

We now turn our attention to arbitrary probability distributions. We combine the protocol Multi-
Uniform with a technique used in [2] to obtain a protocol that requires a constant expected number
of rounds when k = 1. In this technique, we sort the possible inputs from most likely to least likely.
Let β1 be the first h1 inputs in this sorted order, where h1 is chosen so that |

∑
X∈β1 D(X) − 1

2 | is
minimized. In other words, β1 has as close to half of the total probability weight as possible. β2

has as close to half the remaining probability weight as possible, and in general, βi has as close as
possible to half the probability weight not included in β1 . . . βi−1. For ease of presentation, we here
make the assumption that for some v ≤ 2kn,

∑
X∈βi D(X) = 1

2i for all i < v, and βv consists of a
single input X such that D(X) = 1

2i−1 . The case where the partition is not this exact leads to a
number of technical details which we defer to the full version of the paper. However, this simplified
case contains all of the major concepts required for the general case.

In our protocol for the case of arbitrary distributions, which we call Multi-Arbitrary, the server
tests each of the sets βi, in order starting with β1, to see if X̄ ∈ βi until it finds the correct such
set. This test is done using a variant of the protocol Multi-Uniform, and when it reaches the
correct set βi, it provides the server with the identity of the input X̄. It is easy to see that the
expected number of sets βi that need to be examined is a constant. Furthermore, techniques from
[2] are sufficient to show that if the expected number of bits sent by the nodes for the set βi is
O(log hi) (which it will be), then the expected total number of bits sent by the nodes is O(H(D)).

To use Multi-Uniform to test if X̄ ∈ βi, the server basically makes the assumption that the
probability distribution is support uniform, with the support set βi. Thus, βi will be used as the
set χ(D) is used in Multi-Uniform. However, there are two problems to overcome: first, the
probability distribution over the strings in βi is no longer uniform. Second, in the support uniform
case, we are guaranteed that X̄ ∈ χ(D), whereas in the case of Multi-Arbitrary, there is some
probability that X̄ is not in the current set βi. While this probability starts out at approximately
1/2 for each set βi considered, it can become quite large as elements of βi are eliminated. The
technique used to collect balanced bits can cause the total probability weight of the remaining
elements of βi to be much smaller than the total probability weight of the remaining elements of
the other sets.

In what follows, we demonstrate that these problems can be overcome by an appropriate gener-
alization of the definition of balanced and unbalanced bits for the case of arbitrary probability
distributions. In particular, we say that a fingerprint bit It sent by node j is balanced if there
is no value x′

j such that Pr[x̄j = x′
j |I1 . . . It] > 1

2 , where I1 . . . It represents (as in the protocol
Multi-Uniform) all of the information learned by the server thus far. In addition to accounting
for a non-uniform probability distribution over the elements of βi, a key property of this generalized
definition of balanced bits that our protocol exploits is that it is with respect to the probability
distribution over all of the remaining inputs, and not just those in the current set βi being tested.

The protocol proceeds as follows: the server tests each set βi in order, starting with β1. For each
such test, the server uses the protocol Multi-Uniform with the following changes, where we refer
to the call to this protocol used to process βi as Multi-Uniformi:

• The value of m used during Multi-Uniformi is !log hi".

• During Multi-Uniformi, the probability distribution D is conditioned on the information
learned in previous calls. Thus, elements of βi may be eliminated even before Multi-

10

Uniformi starts.

• A node j is considered to be defined during Multi-Uniformi if there is a string x′
j such that

∀X ∈ βi that are still possible given the information received thus far, xj = x′
j .

• The server uses the generalized definition of balanced and unbalanced bits described above.
Note that this may mean that during Multi-Uniformi, the heavy string for an unbalanced
bit may not be consistent with any X ∈ βi.

• When the server sends the index queries to the nodes at the end of Multi-Uniformi, each
node is allowed to respond ”none of the above”.

It should be clear that this protocol is guaranteed to return the correct answer. The following
theorem describes its efficiency.

Theorem 2 Protocol Multi-Arbitrary has the following performance: the expected total number
of bits sent by the nodes is O(H(D) + k), the expected number of bits sent by the server is O(kn +
H(D) log n), and the expected number of rounds is O(1 + log!H(D)").

Proof: We first demonstrate that Lemmas analogous to Lemmas 1 and 2 can be proven in this more
general scenario. In the following, let Ii

t be the tth bit of information sent by the nodes during
Multi-Uniformi (again, subject to an arbitrary ordering of the bits sent within the same round),
including the responses to the index queries at the end of Multi-Uniformi. Let I(i, t) be all bits of
information sent before Ii

t , including those sent in Multi-Uniform1 through Multi-Uniformi−1.
Let M i be the event that X̄ $∈ βi′ for any i′ < i.

Lemma 4 The expected number of fingerprint bits sent by the nodes during Multi-Uniformi,
given M i, is O(k + log hi).

Proof: We use the same charging scheme to bound the number of unbalanced bits as in the proof
of Lemma 1, where the ”first round” is here considered to be the first round of Multi-Uniformi.
Using the generalized definition of balanced bits, we see that it is still the case that Pr[x̄j =
hi

qj |I(i, u)] ≥ 1
2 , where Ii

u is the first unbalanced bit sent by node j in round q of Multi-Uniformi,
and hqj is the corresponding heavy string. Thus, the same argument as in the proof of Lemma
1 demonstrates that this scheme still only charges an expected constant number of bits to each
balanced bit or bit sent in the first round of Multi-Uniformi.

Let βi
t be the elements of βi that are still possible given I(i, t) and Ii

t . Let T i be the largest t such
that Ii

t is either a fingerprint bit or a response to a heavy query in Multi-Uniformi. Let s(βi
t) be

the number of elements in βi
t.

Lemma 5 E[s(βi
T i)|M i] = O(1).

Proof: The proof is nearly identical to the proof of 2. Consider any input X ′ ∈ βi such that
X ′ $= X̄. For any balanced bit Ii

t sent by some node j, the generalized definition of balanced bits
implies that Pr[x̄j = x′

j|I(i, t)] ≤ 1
2 . Thus, the probability that any given balanced bit eliminates

X ′ is at least 1
6 . This implies that Pr[X ′ ∈ βi

Ti
|M i] ≤ 1

hi
. Even though some elements of βi may

11

be eliminated before Multi-Uniformi, we still have s(βi) ≤ hi. Thus, the Lemma follows by the
linearity of expectation.

We next use the following claim, which is implied by the argument in Theorem 2 of [2].

Claim 3 There is a constant c such that for any distribution D,
∑

i
log hi
2i−1 ≤ cH(D).

It is easy to see that the protocol must process the set Xi if and only if M i holds, and that
Pr[M i] = 1

2i−1 . Thus, Lemma 4 combined with Claim 3 tells us that the expected number of
fingerprint bits sent by the nodes during all of Multi-Arbitrary is O(H(D) + k). Furthermore,
from Lemma 5, the expected number of index bits sent during Multi-Uniformi, given M i, is
a constant per node. Thus, the expected total number of index bits sent during all of Multi-
Arbitrary is also a constant per node. Similarly, as in the proof of Theorem 1, we can argue that
the expected number of responses to heavy queries is also a constant per node.

To see that the expected number of bits sent by the server is O(kn + H(D) log n), note that Claim
3 implies that it suffices to show that the expected number of server bits sent during Multi-
Uniformi, given M i, is O(kn + (log hi)(log n)). This now follows from an argument analogous
to that used to bound the expected number of server bits in Theorem 1. Thus, the theorem now
follows from the following Lemma:

Lemma 6 The expected number of rounds required by protocol Multi-Arbitrary is O(1+log!H(D)").

Proof: Using the same argument as in the proof of Lemma 3, we see that there is a constant c1 such
that the expected number of rounds required by Multi-Uniformi, given M i, is at most c1(1 +
log log hi). Thus, the expected number of rounds used by the protocol is at most c1

∑
i

1+log log hi
2i−1 .

Claim 3 implies that each individual term of the sum
∑

i
log hi
2i−1 must be at most cH(D), and thus

we see that ∀i, log hi ≤ c2i−1H(D). Thus, the expected number of rounds required is at most
c1

∑
i

1+log(c2i−1H(D))
2i−1 ≤ 2c1(1 + log(cH(D))) +

∑
i

i
2i = O(1 + log H(D)).

5 Reducing the number of server bits by allowing errors.

We next point out that if we allow the protocol to make errors, then the number of server bits can
be reduced. In order to do so, we introduce the protocol Multi-Error, which we now describe.

During the protocol Multi-Uniform, a significant portion of the bits sent by the server are used
to describe various n-bit strings during heavy queries and index queries. These strings are sent to
some node j to perform an equality test: ”Is x̄j = x′

j?” The protocol Multi-Error mimics Multi-
Arbitrary, except that in each subroutine Multi-Uniformi, these equality tests are performed
using a standard fingerprinting technique for such tests. In particular, for a heavy query, instead of
sending the n-bit string hij to node j, the server chooses a random prime p of size at most (nk

∆)2,
and sends node j this prime as well as the value int(hij) mod p, where int(hij) is the n-bit string hij

interpreted as an integer between 0 and 2n−1. The node j checks to see if int(hij) = int(x̄j) mod p,
and sends a single bit response indicating the result of this test back to the server. In the case
of equality, the server assumes for the remainder of the protocol that the strings are equal. Note
that information received later by the node or by the server may contradict this. In that case,
Multi-Error gives up and declares an error.

12

When the server sends the nodes index queries at the end of Multi-Uniformi, this is treated
similarly to heavy queries. The only difference is that the server may now have r different strings
x1

j , . . . , x
r
j that it would send to node j, instead of just the one string hij . Thus, the protocol

first performs a pre-processing step to narrow the set of possibilities down to one. To do so, the
server chooses a random prime p of size at most n2r3. It then checks to see if ∃u $= v such that
int(xu

j) = int(xv
j) mod p. If so, it chooses a new random prime p, until no such u and v exist.3

The server then sends node j the prime p, as well as int(xu
j) mod p, for 1 ≤ u ≤ r. If node j sees

that int(xu
j) = int(x̄j) mod p for some u, it sends the server the index u. The server and node

then perform the same procedure with xu
j as in the case of a heavy query. Otherwise, the node j

informs the server that X̄ $∈ βi, and the protocol continues on to Multi-Uniformi+1.

The definition of balanced and unbalanced bits in the protocol Multi-Error is the same as in
Multi-Arbitrary, in the sense that it takes into account all the information learned by the server
thus far. Note, however, that the information learned during an equality test is now slightly
different; the server takes this into account when determining whether or not a bit is balanced. In
particular, if a node indicates during an equality test that the fingerprints are different, then in
addition to the string being tested, the server is also able to eliminate any other string that would
have led to the same fingerprint. In the case where the node indicates that the fingerprints are
the same, again, the server assumes that the underlying strings really are the same, and computes
whether or not bits are balanced based on this assumption.

This assumption does not lead to any problems if we condition on there being no false positives
(i.e., equality tests where the fingerprints are the same but the underlying strings are different).
In the case where there is a false positive, the server has an incorrect view of the conditioned
probability distribution over inputs, and thus may incorrectly classify subsequent bits as balanced
and unbalanced. This makes the performance of the resulting protocol execution difficult to predict.
To deal with this, we impose an upper bound on the total number of bits the server sends and
receives in the protocol Multi-Error. This, combined with a small probability of ever encountering
a false positive, allows us to provide an upper bound on the expected number of bits sent and
received by the server in Multi-Error.

In more detail, in Multi-Error, the server keeps track of the total number of bits it has sent and
received. If the number it sends ever exceeds n[k log(kn

∆) + H(D) log n], then the server informs
the nodes of this fact, and the protocol switches to the protocol Multi-Arbitrary, where the
server discards all information it has received thus far. We refer to this as falling back on Multi-
Arbitrary. If the number of bits it receives ever exceeds n[H(D) + k], then it informs the nodes
of this fact, and the nodes then simply send their strings directly to the server. We refer to this as
falling back on uncompressed transmission.

Theorem 3 Given any ∆ > 0, Multi-Error allows the server to determine an input X ′ such that
Pr[X ′ = X̄] ≥ 1 −∆, and the expected total number of bits sent by the nodes is O(H(D) + k), the
expected number of bits sent by the server is O(k log(kn

∆) + H(D) log n), and the expected number
of rounds is O(1 + log!H(D)").

Proof: For a run of the protocol where there is no false equality, Multi-Error will return the
correct answer. In this case, the bounds on the performance of the protocol follow from the same
arguments as for Multi-Uniform, except that we can replace the n-bit strings sent by the server

3Note that this is not unduly expensive computationally for the server: the probability that a choice of p is suitable
is at least 1

2 .

13

with the description of the equality fingerprint we use, which requires only O(log(kn
∆)) bits. The

only other difference is that if the number of bits sent by the server or by the nodes becomes
too large, then the protocol falls back on a different tactic. However, by Markov’s inequality, the
probability that the number of server bits used in Multi-Error exceeds n[k log(kn

∆) + H(D) log n]
is O(1

n). Thus, the contribution of falling back on Multi-Arbitrary to the expected number of
bits sent by the server is O(k + H(D) log n

n). Similarly, the contribution to the expected number of
bits sent by the nodes of falling back on uncompressed transmission is O(k). Thus, to analyze the
protocol, we only need to demonstrate that the probability of a false positive is not too large, and
that the contribution of runs of the protocol containing false positives to the total expected number
of bits sent by the server or by the nodes is not too large.

We next point out that the probability that the protocol ever makes an error is at most ∆. Standard
arguments concerning the equality test we use demonstrate that the probability of a false positive
on any given test is at most min(1/n,∆)

8k . Let Bi
tj be the event that the first false positive of Multi-

Error is during the tth heavy query performed with node j during Multi-Uniformi (and hence
the protocol does in fact reach Multi-Uniformi, and performs at least t heavy queries with node j
within Multi-Uniformi). The probability of reaching Multi-Uniformi, assuming that there have
been no prior false positives, is at most 1

2i−1 . Similarly, the probability of reaching the tth heavy
query within Multi-Uniformi, assuming no prior false positives and that the protocol reaches
Multi-Uniformi, is at most 1

2t−1 . Thus, Pr[Bi
tj] ≤

min(1/n,∆)
k2i+j+1 . Similarly, the probability of the

first false positive occurring during the index query for node j during Multi-Uniformi is at most
min(1/n,∆)

k2i+1 . Therefore, by using a union bound over all nodes and all possible times for each node to
have the first false positive, we see that the probability of any false positive is at most min(1/n,∆).

It only remains to bound the contribution of runs of Multi-Error containing false positives to the
total expected performance of the protocol. However, we have constructed Multi Error in such
a way that the maximum number of server bits that can ever be sent is n[k log(kn

∆) + H(D) log n],
not counting falling back on Multi-Arbitrary. Since the probability of a false positive is at most
1
n , the contribution of runs of the protocol containing false positives to the expected number of
server bits sent is O(k log(kn

∆) + H(D) log n]). Similarly, the contribution of false positives to the
expected number of bits sent by the nodes is O(H(D) + k).

References

[1] A. Aaron and B. Girod, ”Compression with side information using turbo codes,” Proc. DCC’02,
Snowbird, UT, April 2002.

[2] M. Adler and B. Maggs. Protocols for asymmetric communication channels. Journal of Com-
puter and System Sciences 63(4), pages 573–596, December 2001. (Special issue of best papers
from FOCS 1998.)

[3] J. Bajcsy and P. Mitran, ”Coding for the Slepian-Wolf problem with turbo codes,” Proc.
GlobeCom’01, San Antonio, TX, November 2001.

[4] P. Bose, D. Krizanc, S. Langerman, and P. Morin. Asymmetric communication protocols
via hotlink assignments. Theory of Computing Systems, 36(6):655-661, 2003. Special issue
of selected papers from The IXth International Colloquium on Structural Information and
Communication Complexity (SIROCCO 2002).

14

[5] J. Chou, D. Petrovic, and K. Ramchandran, ”A Distributed and Adaptive Signal Processing
Approach to Reducing Energy Consuumption in Sensor Networks,” In Proc. of Infocom 2003.

[6] T. Coleman, A. Lee, M. Medard, and M. Effros, ”On some new approaches to practical Slepian-
Wolf compression inspired by channel coding,” Proc. DCC’04, Snowbird, UT, March 2004.

[7] R. Cristescu, B. Beferull-Lorazano, and M. Vetterli, ”On Network Correlated Data Gathering,”
in Proc. of Infocom 2004.

[8] Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David Karger,
”Infranet: Circumventing Censorship and Surveillance,” In Proc. 11th USENIX Security Sym-
posium, San Francisco, CA, August 2002. (Awarded Best Student Paper.)

[9] L. M. Feeney and M. Nilsson ”Investigating the energy consumption of a wireless network
interface in an ad hoc network”, In INFOCOM, 2001.

[10] J. Garcia-Frias and Y. Zhao, Compression of correlated binary sources using turbo codes,
IEEE Communications Letters, vol. 5, pp. 417-419, October 2001.

[11] J. Garcia-Frias and W. Zhong, ”LDPC codes for compression of multiterminal sources with
hidden Markov correlation,” IEEE Communications Letters, pp. 115-117, March 2003.

[12] S. Ghazizadeh, M. Ghodsi, and A. Saberi, ”A New Protocol for Asymmetric Communication
Channels, Reaching Lower Bounds,” Scientia Iranica, 8(4), 2001.

[13] Leonardo Holanda and Eduardo Laber, ”Improved bounds for asymmetric communication
protocols,” Information Processing Letters 83(4), pp 205-209.

[14] C. Lan, A. Liveris, K. Narayanan, Z. Xiong, and C. Georghiades, ”Slepian-Wolf coding of
multiple M-ary sources using LDPC codes,” Proc. DCC’04, Snowbird, UT, March 2004.

[15] A. Liveris, Z. Xiong, and C. Georghiades, ”Distributed compression of binary sources using
conventional parallel and serial concatenated convolutional codes,” Proc. DCC’03, Snowbird,
UT, March 2003.

[16] A. Liveris, Z. Xiong and C. Georghiades, ”Compression of binary sources with side information
at the decoder using LDPC codes,” IEEE Communications Letters, vol. 6, pp. 440-442, October
2002.

[17] A. Liveris, C. Lan, K. Narayanan, Z. Xiong, and C. Georghiades, ”Slepian-Wolf coding of
three binary sources using LDPC codes,” Proc. Intl. Symp. Turbo Codes and Related Topics,
Brest, France, September 2003.

[18] D. Marco, E. Duarte-Melo, M. Liu, D. Neuhoff, ”On the Many-To-One Transport Capacity of
a Dense Wireless Sensor Network and the Compressibility of Its Data,” in Proc. International
Workshop on Information Processing in Sensor Networks (IPSN), April 2003.

[19] S. Pradhan, J. Kusuma, and K. Ramchandran, ”Distributed compression in a dense microsen-
sor network,” IEEE Signal Processing Magazine, vol. 19, pp. 51-60, March 2002.

[20] D. Schonberg, S. Pradhan, and K. Ramchandran, ”Distributed code constructions for the
entire Slepian-Wolf rate region for arbitrarily correlated sources,” Proc. DCC’04, Snowbird,
UT, March 2004.

15

[21] D. Slepian and J.K. Wolf. Noiseless encodings of correlated information sources. IEEE Trans.
on Information Theory, IT-19:471–480, July 1973.

[22] A. Scaglione and S. Servetto, ”On the Interdependence of Routing and Data Compression in
Multi-Hop Sensor Networks,” in Proc. of Mobicom 2002.

[23] V. Stankovic, A. Liveris, Z. Xiong, and C. Georghiades, ”Design of Slepian-Wolf codes by
channel code partitioning,” Proc. DCC’04, Snowbird, UT, March 2004.

[24] John Watkinson, ”New Protocols for Asymmetric Communication Channels,” Masters Thesis,
university of Toronto, 2000.

[25] John Watkinson, Micah Adler, and Faith Fich, ”New Protocols for Asymmetric Communica-
tion Channels”, in Proceedings of 8th International Colloquium on Structural Information and
Communication Complexity (Sirocco) 2001.

[26] Zixiang Xiong, Angelos D. Liveris, and Samuel Cheng, ”Distributed Source Coding for Sensor
Networks,” to appear in IEEE Signal Processing Magazine, September 2004. Web version
available at http://lena.tamu.edu/~zx/papers/SPM.pdf.

[27] A.C. Yao, ”Some Complexity Questions Related to Distributive Computing,” In Proc. of 11th
ACM Symposium on Theory of Computing, (STOC) pp. 209-213, 1979.

16

