
Combinatorial Auctions for Resource Allocation in
a Distributed Sensor Network ∗

John Ostwald and Victor Lesser
UMass Computer Science Technical Report 04-72

August 31, 2004

Abstract

This paper discusses a solution to the problems posed by sensor
resource allocation in an adaptive, distributed radar array. We have
formulated a variant of the classic resource allcation problem, called
the setting-based resource allocation problem, which reflects the chal-
lenges posed in domains in which sensors have multiple settings, each
of which could be useful to multiple tasks. Further, we have imple-
mented a solution to this problem that takes advantage of the locality
of resources and tasks that is common to such domains. This solution
involves translating tasks and possible resource configurations into bids
that can be solved by a modified combinatorial auction, thus allowing
us to make use of recent developments in the solution of such auctions.
We have also developed an information-theoretic procedure for accom-
plishing this translation which models the effect various sensor settings
would have on the network’s output.

1 Introduction

The CASA project, funded by NSF, is constructing an adaptive, distributed
array of radar dishes to monitor tornados and other meteorological phenom-
ena. The radar dishes have a number of parameters that can be adjusted,
such as what area they are sweeping across, pulse rate, etc. The resource al-
location problem in this domain is, loosely stated, to decide at each timestep

∗Work supported primarily by the NSF Engineering Research Centers Program under
NSF Award Number EEC-0313747001. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

1

(allocation cycle) what setting to have each sensor in, taking into account
the needs of various monitoring tasks. (See Section 2 for a more precise
statement of the problem.)

For example, consider the sensor layout shown in Figure 1. In this dia-
gram S1 and S2 denote radar dishes, and H1 and R1 are areas of interest for
a hail monitoring and a rainfall monitoring task respectively. In choosing
an allocation for this timestep, a resource allocation process would have to
make a number of decisions. For instance, it would have to decide whether
each sensor should sweep over one task’s area, or both should sweep the
same task if one is more important, or whether one or both of the sensors
should sweep over an area large enough to encompass both tasks. It would
also have to decide whether to optimize the other parameters for each radar
in a manner that is useful to the rain task, the hail task, or both. In short
it would have to look at all the options and consider all the preferences pro-
vided by the tasks, and choose the globally best settings.

The rest of this paper is structured as follows: In Section 2 we present our
resource allocation problem formally and compare it to the classic resource
allocation problem. In Section 3 we compare our problem and approach to
those presented in various well-known papers on resource allocation. In Sec-
tion 4 we present the details of the system we built to solve the problem in
the CASA domain. In Section 5 we discuss the performance of our system,
and finally, in Section 6, we will discuss the significance of our work and
what we plan to do next.

2 Problem Overview

The problem we are addressing, which we will call the setting-based resource
allocation problem, is closely related to the classic resource allocation prob-
lem. We will present the classic problem first, for comparison, then introduce
the setting-based variant. In a classic resource allocation problem, we have a
set R = {r1, r2, ...rn} of resources and a set {t1, t2, ...tm} of tasks. Each task
has a task utility function Ti : Powerset(R) → R representing the utility
that the task would yield for each set of resources that could be allocated to
it. The resource allocation problem is then to choose, for each task ti, a set
Si of resources to allocate such that the Si’s are disjoint and

∑
i≤m Ti(Si) is

maximized.

2

Figure 1: Example Arrangement of Sensors and Tasks

In the setting-based resource allocation problem, we have a set of re-
sources R = {r1, r2, ...rn} each of which has a set Vi of settings it can be in.
We will define a global configuration to be a mapping from the resources to
the elements of their respective Vi’s, specifying what setting each resource
is in. We will let C denote the set of possible global configurations. There
is also a set {t1, t2, ...tm} of tasks. As before, each task has a task utility
function Ti : C → R, but in this domain the function evaluates global con-
figurations instead of sets of resources. The problem is to choose a global
configuration c such that

∑
i≤m Ti(c) is maximized.

3

The intuitive approach to solving this problem is simply to consider ev-
ery possible global configuration and to evaluate every task for each. If we
address the problem in this manner, the number of configurations that will
have to be searched through is

∏
i≤m |Vi| and the number of task utility

functions that will have to be evaluated is m
∏

i≤m |Vi|.

An alternate approach, and the one we will be focusing on in this paper,
requires us to augment the language in which the task utility functions re-
port their values. First, they need to be allowed to specify minimum values
for partial configurations, that is specifications of settings for only some of
the resources. The value for a global configuration is then the highest value
specified for either it or any partial configuration whose settings agree with
it’s own. We will henceforth use the term configuration to refer to both
partial and global configurations. Second, the task utility functions must be
allowed to give a configuration a value of 0 by omission: each task utility
function provides a list of configurations and values for those configurations,
and any configuration not enumerated in the list is assumed to have value 0.
We will refer to this list as a bid and the set of configurations evaluated in
the bid as the explicit domain of the task utility function. It is worth noting
that both of these augmentations make sense in the domain of a sensor net-
work, where it is often the case that the value of a global configuration to a
task depends only on the settings of a few resources (in a sensor net, these
would be the sensors near whatever is being monitored by the task). Also
note that we are not restricting the configurations that the tasks can evalu-
ate or the values they can give them, but simply allowing tasks to evaluate
classes of configurations if they so desire. A task could still evaluate every
global configuration individually if the evaluations of those configurations
required it.

Our proposed approach, then, is as follows: For every task ti, we evalu-
ate Ti for every configuration in its explicit domain. We then find the global
configuration that has the highest utility yielded the task utility functions
of every task. The number of Ti’s that will have to be evaluated in this ap-
proach is

∑
i≤m |explicit domain(Ti)|. We then have the added challenge of

finding the best global configuration considering all the bids, which amounts
to a search through a space of size

∏
i≤m |explicit domain(Ti)|. We call this

approach the task-based approach.

4

Bidset ← ∅
for each task t do

let T denote the task utility function of T
for each set S of resources do

for each configuration c of S do
if c is in the domain of T then

Bidset ← Bidset ∪ {c, T (c)}
end

end
end

end
return bid-combiner(Bidset)

Algorithm 1: Pseudocode for Task-Based Approach

Clearly, the applicability of this approach hinges on two things: the size
of the explicit domains of the task utility functions and the difficulty of com-
bining the bids. We will first examine the size of the explicit domains and
then discuss how we will combine bids. The size of the explicit domains can
vary greatly depending on the specifics of the application. A task could be
concerned with every possible combination of the settings of every resource
(in which case the size of that task’s task utility function’s explicit domain
would be

∏
i≤n |Vi + 1|), or at the other extreme, it could be interested

only in one setting of one resource. In the worst case, if every task utility
function referred to every configuration, the number of evaluations of task
utility functions would be m

∏
i≤n |Vi+1|, which is asymptotically the same

as in the intuitive approach as the Vi’s increase. This means that, if we can
address bid combination, this approach is as reasonable as the intuitive if
the resources have a large number of possible configurations.

The task-based approach becomes even more reasonable for applications
where tasks and resources are linked, that is for any given task, there will
be relatively few resources that it will be interested in. This is the case
when the tasks are highly specialized and only a certain class of resources is
useful for each task or when the tasks and resources have a physical location
and only nearby resources can be used for a task. Many distributed sensor
networks, including the CASA array, have this last characteristic.

So, the main problem of this approach is clearly the bid-combination
problem. We address this problem using recent innovations in combinato-

5

rial auction technology. A combinatorial auction is a silent auction in which
bidders can bid on sets of items instead of single items. Each bidder pro-
vides sets of items and corresponding prices for each set, and the auctioneer
chooses the set of bids that maximizes the payment. In the last few years
great deal of progress has been made at efficiently solving these auctions
(i.e. finding the optimal allocation). These algorithms can be modified to
handle the bid combination aspect of our setting-based resource allocation
problem, by considering the resources items and the tasks bidders (the role
of the settings will be discussed in Section 4.4). The particular solution we
are using is Tuomas Sandholm’s BOB algorithm, which can solve auctions
involving hundreds of items and thousands of bids in under ten seconds
[5, 6]. The modifications we made to the BOB algorithm are discussed in
Section 4.4.

3 Related Work

A great deal of research has been devoted to the classic resource allocation
problem and variants thereof. However, to our knowledge, no work has been
done on the setting-based resource allocation problem. The classic problem
can be viewed as a simplified setting-based problem in which each resource
setting represents allocation to a single task. More precisely, the simplifi-
cations of the classic problem are 1) that every resource has the same set
of possible settings, 2) that the number of settings in this set is the same
as the number of tasks, 3) that the value offered by each task’s task utility
function depends only upon which resources are in one specific setting (the
setting corresponding to being allocated to that task), and 4) that the set-
ting that is relevant to each task is relevant to no other task. This section
will examine several well-known papers that deal with the classic resource
allocation problem and examine how they differ from our work beyond their
addressing of the classic problem.

In [7], the resource allocation aspect of the problem they are addressing
is simplified by the fact that their task utility functions fall into two types.
Tasks of the first type are interested only in sets of size one, which means
that if there are n resources, the domain size of any task utility function is
n, whereas if they were allowed to refer to any set of resources it would be
2n. The other type of task utility function they have has only two values in
it’s range: zero and another (implicit) number. This means that they don’t

6

need to take into consideration a task’s preferences among sets of resources
that will satisfy it.

In [2] the resource allocation problem is phrased as a list coloring prob-
lem, which is like the map coloring problem except that each node can take
on only certain colors. This means that the task utility functions all refer to
sets of size one, which as before decreases the size of the task utility function
domains to the number of resources. Further, since a solution must satisfy
every task, there is no concept of different sets having different values to a
task, or of different tasks being worth more than others, which means that
there are only two values that any task utility function can take on. Note
that this is an even stronger restriction than the second in the last para-
graph, since in that paper it could be worth more to satisfy one task than
another.

[4], is addressing the problem of network congestion, and as such there is
only one resource (the network) and the question is simply how many units
of it each task (user) gets. This means that the task utility functions must
have the same value for any set of resources of a given size.

[8] presents the results of a competition in which agents compete to
purchase commodities. This means that their problem differs from our ver-
sion of the resource allocation problem in that they are not trying to find
a globally optimal solution. While this adds various strategic elements to
the problem, it eliminates the need to find an optimal solution. They also
limit their task evaluation functions in various ways in different portions of
the competition. In the hotel booking portion of the competition, resources
were allocated in a single-unit auction, which means that as before, the size
of the task utility function domains is the number of items. In the enter-
tainment booking portion of the competition, the task utility functions were
either directly proportional in value to the number of resources (imposing
the same restrictions to the task utility functions as in [4]), or proportional
to the number of nights that the entertainment tickets covered (restricting
the ranges of the task utility functions to five values).

7

4 Implementation

We have implemented the task-based approach for the domain of sensor
scheduling in the CASA radar array. Here, the resource allocation problem
is deciding what setting each sensor should be in, taking into account all
the various tasks that are present at the timestep. Tasks, in this domain,
consist of a request for a scanning of a certain type to occur in a particular
area, along with data about the utility of the task. We estimate the value
of various configurations of sensors to tasks and send these evaluations as
bids to the combinatorial auction solver and get our final answer.

We will now address details of the implementation. In section 4.1, we
will examine the exact format of the bids which are sent to the auction
program; in section 4.2 we will examine how we evaluate configurations to
form these bids, i.e. the exact nature of the task utility functions for our
domain; in section 4.3 we will examine how we decide what settings to
consider for each task, i.e. how we choose the explicit domains of our task
utility functions; and in section 4.4 we briefly introduce the BOB algorithm
and discuss modifications to the auction solver.

4.1 Bid Format

A bid for a specific task consists of some number of clauses, each clause
representing the settings of some number of sensors. The settings consist of
a start angle, an end angle, and a set of values for the rest of the parameters,
corresponding to the kind of task they are optimized for (so the setting {S1:
0-30, R} would mean sensor 1 sweeping from 0 to 30 degrees, with the rest of
the parameters optimized in the manner that is best for measuring rainfall).

For example, we could have a rainfall task whose bid was the following

R1:
{S1: 0-18, R; S2 200-217, R} -> 15 utils
XOR
{S1: 0-18, R; S2 180-217, RH} -> 6 utils
XOR
.
.
.

8

where RH is a set of parameters which does a decent job for both rainfall
and hail. The meaning of this is that if, for example, the global configuration
includes {S1: 0-18, R; S2 200-217, R}, then task R1 will yield 15 utils.

To present an example: recall the sensor layout shown in Figure 1 where
S1 and S2 are sensors, and H1 and R1 are the areas of interest of a hail
and a rainfall task respectively. The bids that the system generates for this
configuration are listed in appendix A. The first three clauses of R1’s bid
are as follows:

R1:
{1: 0-36, R }: 11.46
XOR
{2: 180-200, H 1: 0-36, R }: 11.46
XOR
{2: 180-217, RH 1: 0-36, R }: 11.46
XOR
.
.
.

4.2 Bid Clause Evaluation

In this section we will examine how we evaluate a configuration’s value to a
task, that is how we calculate task utility functions. We use an information-
theoretic approach similar to [1]. The key idea is that the entire sensor-net
system, of which the resource allocator we have built is one small compo-
nent, is being asked to make a decision about some aspect of the state of
the world, such as what the rainfall is in a particular region. Our task util-
ity functions attempt to model the quality of the decision that the larger
system is likely to make given a particular configuration. We make the as-
sumption that we have a distribution over the state the environment could
be in with respect to the decision to which the task relates. (e.g., this distri-
bution would be over the possible amounts of rainfall in the area if the task
were a rainfall task.) This distribution used for the examples in this paper
is uniform, but could later take into account the system’s knowledge. For
each decision the system might make in each possible state of the environ-
ment, there is an associated utility. See figure 2 for a table of these values
for rainfall. Our system estimates what decision would be made given each

9

sensor configuration in each state of the environment and then decides the
bid clause value based on the improvement in decision that configuration
would yield. In other words, to decide how much a configuration is worth
to a task, we consider the states the environment could be in and look at
how good a decision the meteorological algorithms would make in each state.

To make things more concrete: the value of a specific configuration to a
task is:

∑

E

[
∑

M

P (E)P (M |E)V al(E,D(M)) − V al(E, defaultdecision)

]
(1)

Where E is the current state of the environment, M is the set of measure-
ments the sensors could make, P (E) is the probability of the environment
being in a state, P (M |E) is the probability of taking measurements M in
state E, V al(E, d) is the utility of making decision d in state E, D(M) is the
decision resulting from measurements M and defaultdecision is the systems
current best guess at the state of the environment.

P (E) is currently assumed to be 1 divided by the number of possi-
ble states but it could be based on knowledge from previous timesteps.
defaultdecision is currently hardcoded to be the middle value, but could
also be based on information from previous timesteps, and V al(E, d) is
looked up in utility tables like the one shown in Figure 2. P (M |E) and
D(M) are estimated using Bayesian networks, as is discussed in the next
paragraph.

To calculate P (M |E), we need to model the relationship between the
state of the environment and the sensor readings. To calculate D(M), we
need to model the relationship between the sensor measurements and the
decisions that the meteorological algorithms will make. We use Bayesian net-
works to model both of these (see Figure 3). In fact, since the meteorological
algorithms are themselves attempting to model the relationship between the
sensors and the environment, we use the same Bayes net to model both the
sensor readings and the decision making, inferring first down the tree, then
up. Thus, for each state of the environment, we infer a distribution over
possible sensor readings, and then for each set of readings, we run the infer-
ence back up the tree to find our decision.

10

v ← 0
template ← retrieve bayes template(task, configuration)
update(template)
for e ∈ E do

for m ∈ M do
v ← v + P (e) × template.getP (m) × V al(e, template.decide(m))

end
v ← v − V al(e, d)

end
return v

Algorithm 2: Value of a Specific Configuration to a Task

Figure 2: Utility Table for Rainfall

For an example, let us look at how the clauses of R1 in the example from
Figure 1 were constructed. When the task arrives, the system retrieves a
template for each number of sensors that could be used to satisfy the task
(in this case 1, 2 or 3). Figure 3 is the template for rainfall using two sensors.
The bottom level of the net refers to sensor measurements, and the top is
the probability of the aspect of the environment we are supposed to be de-
ciding about, in this case the amount of rainfall in the area of interest. It is
important to note that these Bayes nets will never be used to actually draw
inferences from the sensor readings—a sophisticated meteorological system
will do the actual data analysis. Once the template has been retrieved, we
update its conditional probability tables to reflect the current local signal to
noise ratio. Then we do the calculation described in Expression 1 for each
setting of sensors.

11

Figure 3: Bayes Net for Rainfall with 2 Sensors

We will go through this calculation for the first clause of R1: {1: 0-36,
R}: 11.46155205. Both the rainfall (E in Expression 1) and the sensor read-
ing nodes (M in Expression 1) take on the values LOW, MED, and HIGH.
For each value of E, there are 3 values for M ({M1=LOW} , {M1=MED} ,
and {M1=HIGH}), where M1 denotes the reflectivity measurement for M1.
So the full equation is:

P (R=LOW)
[
P (M1=LOW |R=LOW)V al(R=LOW,D(M1=LOW))

+ P (M1=MED|R=LOW)V al(R=LOW,D(M1=MED))
+ P (M1=HIGH|R=LOW)V al(R=LOW,D(M1=HIGH))
− V al(R=LOW, dec=MED)

]
+

P (R=MED)
[
P (M1=LOW |R=MED)V al(R=MED,D(M1=LOW))

+ P (M1=MED|R=MED)V al(R=MED,D(M1=MED))
+ P (M1=HIGH|R=MED)V al(R=MED,D(M1=HIGH))
− V al(R=MED, dec=MED)

]
+

P (R = HIGH)
[
P (M1 = LOW |R = HIGH)V al(R = HIGH,D(M1 =

LOW))
+ P (M1=MED|R=HIGH)V al(R=HIGH,D(M1=MED))
+ P (M1=HIGH|R=HIGH)V al(R=HIGH,D(M1=HIGH))

12

− V al(R=HIGH, dec=MED)
]

=

.33
[
.82 · V al(R=LOW, dec=LOW)

+ .09 · V al(R=LOW, dec=MED)
+ .09 · V al(R=LOW, dec=HIGH)
− V al(R=LOW, dec=MED)

]
+

.33
[
.09 · V al(R=MED, dec=LOW)

+ .82 · V al(R=MED, dec=MED)
+ .09 · V al(R=MED, dec=HIGH)
− V al(R=MED, dec=MED)

]
+

.33
[
.09 · V al(R=HIGH, dec=LOW)

+ .09 · V al(R=HIGH, dec=MED)
+ .82 · V al(R=HIGH, dec=HIGH)
− V al(R=HIGH, dec=MED)

]

=

.33
[
.82 · 20

+ .09 · 1
+ .09 · 0
− 1

]
+

.33
[
.09 ·−10

+ .82 · 20
+ .09 · 1
− 20

]
+

.33
[
.09 ·−20

+ .09 ·−10
+ .82 · 20
− (−10)

]

=

11

13

Where R is the amount of actual rainfall.

4.3 Configuration Selection

Since our configurations include both a start angle and an end angle, the
size of our task utility functions’ explicit domains could be very large. Even
if we limit ourselves to nearby sensors and only consider configurations that
sweep over the task, the combinatorics of the possible start and end angles
is prohibitive. We thus introduce a preprocessing step which lists all the
reasonable angles for each sensor to be sweeping and the reasonable setting
sets (R, H, etc) for each of those angles. Then when we are evaluating
configurations for a task, we only need to consider the combinations of set-
tings that were decided on in the preprocessing step. What we mean by
a reasonable angle is best explained in the context of an example. Recall
the map shown in Figure 1. Our approach is, for each sensor, to consider
only the angles that are needed to look at some set of tasks, and only the
setting sets that make sense for those tasks. So, for sensor one, the only
configurations we are interested in are {0-16, R}, {16-36, H}, {0-36, R},
{0-36, H}, and {0-36, RH}. Similarly, for sensor two, we are only interested
in {200-217, R}, {180-200, H}, {180-217, R}, {180-217, H}, and {180-217,
RH}. So when it comes time to generate the bids, we only need to consider
pairs and singletons of these, reducing the number of bid clauses, for this
toy example, from about 3 ∗ 1011 (for a discretization of one) to 70.

4.4 Combinatorial Auction and Modifications

The BOB algorithm represents the bids as a graph, wherein each node is a
bid clause and each edge represents mutual exclusivity between two clauses.
The algorithm is then a depth first search through the space of bid combina-
tions. It heuristically selects a clause to consider, removes that clause from
the graph, and then finds the best solution with and without the clause.
Much of the speed of the algorithm comes from the fact that removing
clauses that have been considered will often decompose the graph into sev-
eral smaller graphs, thus speeding up the calculation (since the algorithm is
at the worst case exponential in the number of nodes). See [5] for a thorough
presentation of this algorithm.

As was mentioned in section 2, we had to modify the combinatorial auc-
tion program to accommodate the multi-setting aspect of the problem. The

14

modification we made was to change the conditions under which two clauses
are mutually exclusive. In a normal combinatorial auction, two bid clauses
are mutually exclusive if they are of the same bid or if they refer to some of
the same items (resources). In our implementation, two clauses are mutually
exclusive if they are in the same bid or if they refer to some of the same
items AND their requested settings for those items differ. That is to say, if
a large number of bids want S1 in the same configuration, then they can all
be satisfied as far as S1 is concerned.

5 Results

First let us look at some examples of bid clauses to confirm that the task
utility computation matches our intuitions. Consider a single rainfall task:
for one sensor in rainfall setting, it will compute a utility of 11.46 if the
sensor is sweeping across 30 degrees, 9.22 for 60 degrees, and 6.98 for 90
degrees. This is the behavior we want, since a larger the sweep angle means
the radar spends less time looking at any given point. Also, if we look at
multiple sensors for the same task, the utility computed will be 14.38 for
three sensors sweeping 30 degrees in rainfall setting as opposed to the 11.46
for one. If we increase the amount of noise in the environment, the gap
widens, with the task utility being 5.42 for one sensor and 8.02 for 3 (an
increase of 47% as compared to 25% for the low noise case).

For the example we have been discussing, the total runtime is 18.5 sec-
onds on a 1794.602 MHz Pentium 4 processor with 512MB of ram. 13.2 of
these seconds are spent on Bayesian inference: a total of 1152 inferences are
drawn in the calculation of 48 bid clauses. 42 of these clauses are sent to
the auction algorithm (clauses with low values are pruned), which takes .047
seconds to solve them.

For comparison, if we add in a third task, the total runtime is 105 sec-
onds. 86 of these seconds are spent on bayesian inference: a total 7464
inferences are drawn in the calculation of 280 bid clauses. 209 of these
clauses are sent to the auction algorithm, which takes 1.3 seconds to solve
them.

The results so far are encouraging in that they suggest that the combi-
natorial auction itself, the most daunting part of the problem from a com-

15

binatorial standpoint, appears to run fast enough (especially with additions
that will be discussed in Section 6). This result alone shows that the ap-
proach is promising. Most of the computation in our implementation occurs
during the evaluation of the task utility functions which could in principal
be evaluated by any means we like. We will discuss ways to speed up both
the task utility function evaluation and the rest of the system in Section 6

6 Summary and Future Work

In addressing the problems set forth by the CASA domain, we have for-
mulated a new variant on the classic resource allocation problem, which we
call the setting-based resource allocation problem. This problem reflects the
challenges posed in the allocation of specialized sensor resources in the type
of distributed sensor network in which sensors have multiple settings, each
of which could be useful to multiple tasks. Further, we have proposed a
solution to this problem that takes advantage of the locality of resources
and tasks that is common to such domains.

This solution involves translating tasks into bids that can be solved by
a modified combinatorial auction, thus allowing us to take advantage of
recent developments in the solution of such auctions. We developed an
information-theoretic procedure for accomplishing this translation which al-
lows us to model the use of the sensors to a high degree of accuracy. Further,
since this modeling is done with Bayesian networks, it is relatively simple
to enter domain knowledge provided by experts.

We then implemented this approach for the CASA domain, allowing
us to test the soundness of the approach and to confirm that the answers
provided by our model make sense. Our implementation also gives us pre-
liminary runtime data which helps us understand both the applicability of
the approach to the domain and what features might be useful in speeding
up the approach. We will discuss these features in the following paragraphs.

We are discussing a number of modifications to our system, designed to
speed up both the auction and the task utility function evaluation. In fact,
follow on work by a colleague has resulted in allowing us to solve the auction
for three tasks and two sensors in under a millisecond. His change involves
merging the bid clauses of multiple tasks for the same configuration into

16

one clause-like structure. We are also considering taking advantage of the
anytime nature of the BOB algorithm, so that, in an online setting, there is
no risk of us not having any allocation when one is needed.

We are also discussing speeding up the task utility function evaluations
in several ways. The least drastic change we are considering is using an ap-
proximate inference algorithm for Bayesian inference in place of the junction
tree algorithm we are currently using. Another modification we are consid-
ering is compiling the Bayes nets to remove the middle-layer nodes (such as
the reflectivity nodes in Figure 3). This can be done by accounting for the
effects of the removed nodes in the conditional probability tables of the re-
maining nodes. A more significant enhancement we are considering is adding
a case-base that would keep track frequently evaluated configurations and
then interpolate based on the closest known configuration. Perhaps the most
promising idea is to replace our Bayes nets with a neural network trained
to mimic their output. If successful, either of these last two enhancements
would give us similar evaluations to those provided by our current models,
but in a fraction of the on-line time.

One final idea to speed up the system differs from those we have just dis-
cussed in that it promises to reduce the total number of task utility function
evaluations that will have to be performed: We are considering the possi-
bility of using a bid-eliciting auction such as the one described in [3]. This
algorithm, instead of taking a set of bids as input, requests individual bid
clauses (or relationships between the bids) as they are needed in the search.
This could potentially reduce the number of task utility function evaluations
performed.

17

APPENDIX A: Example Bids for R1 and H1

R1:
{1: 0-36, R }: 11.46155205
XOR
{2: 180-200, H 1: 0-36, R }: 11.461552049999998
XOR
{2: 180-217, RH 1: 0-36, R }: 11.461552049999998
XOR
{2: 180-217, R 1: 0-36, RH }: 11.461552050000002
XOR
{2: 200-217, R 1: 20-36, H }: 11.461552050000005
XOR
{2: 180-217, R 1: 0-36, R }: 10.677776554500001
XOR
{2: 180-217, R 1: 20-36, H }: 11.461552050000005
XOR
{1: 0-36, RH }: 9.447072195000002
XOR
{2: 180-217, H 1: 0-18, R }: 11.461552049999998
XOR
{2: 180-200, H 1: 0-36, RH }: 9.447072195000004
XOR
{2: 180-200, H 1: 0-18, R }: 11.461552049999998
XOR
{2: 180-217, RH 1: 20-36, H }: 9.447072195
XOR
{2: 180-217, H 1: 0-36, RH }: 9.447072195000004
XOR
{2: 200-217, R }: 11.46155205
XOR
{2: 180-217, RH 1: 0-36, H }: 9.447072195
XOR
{2: 180-217, R 1: 0-18, R }: 10.677776554500001
XOR
{2: 180-217, RH 1: 0-36, RH }: 8.565913173344997
XOR
{2: 200-217, R 1: 0-36, RH }: 11.461552050000002
XOR
{1: 0-18, R }: 11.46155205

18

XOR
{2: 180-217, R 1: 0-36, H }: 11.461552050000005
XOR
{2: 180-217, RH 1: 0-18, R }: 11.461552049999998
XOR
{2: 200-217, R 1: 0-36, R }: 10.677776554500001
XOR
{2: 180-217, R }: 11.46155205
XOR
{2: 200-217, R 1: 0-18, R }: 10.677776554500001
XOR
{2: 180-217, RH }: 9.447072195000002
XOR
{2: 200-217, R 1: 0-36, H }: 11.461552050000005
XOR
{2: 180-217, H 1: 0-36, R }: 11.461552049999998

H1:
{2: 200-217, R 1: 0-36, H }: 11.461552049999998
XOR
{2: 180-217, RH 1: 0-36, H }: 11.461552049999998
XOR
{2: 180-217, RH 1: 20-36, H }: 11.461552049999998
XOR
{2: 200-217, R 1: 20-36, H }: 11.461552049999998
XOR
{2: 180-217, RH 1: 0-18, R }: 9.447072195
XOR
{2: 180-217, H }: 11.46155205
XOR
{2: 180-217, H 1: 0-36, R }: 11.461552050000005
XOR
{2: 180-217, H 1: 20-36, H }: 10.677776554500001
XOR
{1: 0-36, RH }: 9.447072195000002
XOR
{1: 20-36, H }: 11.46155205
XOR
{2: 180-200, H 1: 20-36, H }: 10.677776554500001
XOR

19

{2: 180-217, H 1: 0-18, R }: 11.461552050000005
XOR
{2: 180-200, H 1: 0-36, R }: 11.461552050000005
XOR
{2: 200-217, R 1: 0-36, RH }: 9.447072195000004
XOR
{2: 180-217, RH 1: 0-36, RH }: 8.565913173344997
XOR
{2: 180-217, RH 1: 0-36, R }: 9.447072195
XOR
{2: 180-200, H 1: 0-36, H }: 10.677776554500001
XOR
{2: 180-217, R 1: 20-36, H }: 11.461552049999998
XOR
{2: 180-200, H 1: 0-36, RH }: 11.461552050000002
XOR
{2: 180-217, R 1: 0-36, RH }: 9.447072195000004
XOR
{2: 180-217, H 1: 0-36, H }: 10.677776554500001
XOR
{2: 180-200, H 1: 0-18, R }: 11.461552050000005
XOR
{2: 180-200, H }: 11.46155205
XOR
{2: 180-217, H 1: 0-36, RH }: 11.461552050000002
XOR
{2: 180-217, R 1: 0-36, H }: 11.461552049999998
XOR
{2: 180-217, RH }: 9.447072195000002
XOR
{1: 0-36, H }: 11.46155205

References

[1] A. Arnt and S. Zilberstein. Attribute measurement policies for cost-
effective classification., 2004.

[2] Berthe Y. Choueiry, Boi Faltings, and Guevara Noubir. Abstraction
Methods for Resource Allocation. In Proceedings of the Workshop on

20

Theory Reformulation and Abstraction, pages 2–71/2–90, Jackson Hole,
Wyoming, 1994.

[3] W. Conen and T. Sandholm. Minimal preference elicitation in combina-
torial auctions. In IJCAI-2001 Workshop on Economic Agents, Models,
and Mechanisms, pages 71–80, 2001.

[4] S. Gorinsky and H. Vin. Additive increase appears inferior, 2000.

[5] Tuomas Sandholm and Subhash Suri. BOB: Improved winner determi-
nation in combinatorial auctions and generalizations.

[6] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine.
CABOB: A fast optimal algorithm for combinatorial auctions. In IJCAI,
pages 1102–1108, 2001.

[7] William E. Walsh and Michael P. Wellman. Efficiency and equilibrium
in task allocation economies with hierarchical dependencies. In IJCAI,
pages 520–526, 1999.

[8] M. Wellman, P. Wurman, K. O’Malley, R. Bangera, S. Lin, D. Reeves,
and W. Walsh. A trading agent competition, 2000.

21

