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Abstract—In this paper we present a distributed
routing algorithm that minimizes total power spent
by all the nodes in the network in routing packets
from source to destination over wireless hops. Power
spent by each node is a function of the data rate
at that node and the interference experienced by
the node. Nodes are capable of tuning their trans-
mission power to support the incoming data rate
in the presence of interference. The key idea of the
algorithm is to route flows so that links with lower
interference and hence lower power requirements are
better utilized.
The algorithm incrementally adjusts its routing

of flows by iteratively transferring flow from the
links with high marginal cost to links with low
marginal costs. Every node does so locally in a
distributed manner, when determining flow rates. The
flow rates themselves are constrained by a link level
schedulability requirement that ensures all packets
received within a time frame can be scheduled for
forwarding within one time frame. The algorithm
converges to a theoretical minimal power for the
network. Simulation results show that the minimal
power is achievable in a relativelly small number of
iterations.

I. INTRODUCTION
Power is a precious resource in wireless ad-

hoc nodes because of constrained battery lifetime.
Power control has been the focus of much research
in the wireless community. In most wireless nodes,
the communication device, such as the wireless
card operates at a fixed power level. Research on
power control emphasizes the ability of nodes to
tune their transmission power level as a function of
the incoming data rate. Typically a wireless node

spends a certain fixed amount of power to support
an incoming data rate. Frequently, the amount of
power required to support the data rate is less than
the actual amount of power spent, which leads to
power wastage. The data rate may also require more
power than the node’s fixed power level that is used,
leading to data loss.
The problem that we address is primarily a

routing problem - how to route data in such a way
that the total power spent in the network in routing
packets from sources to destinations over wireless
hops is minimized. Power spent by every node is
a function of the data rate and interference experi-
enced by the node. Nodes experience interference
from nearby nodes as well as external noise present
in the environment. Every node is capable of tuning
its transmission power level to support the data
rate. The key idea is to route more data over nodes
that experience minimal interference. We present a
distributed algorithm that iteratively minimizes the
total amount of power spent in the network. We
quantify the power spent in the network by all the
nodes by a global objective function which is the
sum of all link powers. The algorithm to minimize
power iteratively balances the marginal derivative
of the global objective function with respect to the
routing fractions at each of a node’s outgoing links.
Our work combines physical layer channel char-

acteristics of network traffic flows with a distributed
hill-climbing approach to power optimization and
scheduling. The distinctiveness of the work arises
from the fact that to the best of our knowledge it
is the first attempt to reach a theoretical optimal
power while considering routing and schedulability
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of flows. We distinguish our work from related
work in section II.
We simulate our power-aware routing algorithm

in a wireless ad-hoc network with 50 nodes with
omni-directional antennas. The network setting that
we consider is a multipath network in which a node
may have multiple paths to every destination. In our
evaluation, we consider two different scenarios. In
the first case there is a single source and a single
destination. In the second case there are 3 sources
and 3 destinations, with each source sending data
to all destinations.
The primary contribution of our work is that we

develop a fully distributed algorithm that finds the
minimum power routing configuration. Our solution
follows from a distributed optimization framework
for minimizing total delay in a wired network [1].
Although the objective function in [1] is delay, a
similar approach can be taken for minimizing any
convex global objective function including our case.
We verify the quality of the solution for different
network settings. In all cases the algorithm con-
verges to a minima. In the case of a single source
and single destination the algorithm converges very
quickly and the minima is reached in less than 10
iterations of the algorithm. In case of 3 sources
and 3 destinations, reaching the absolute minima
takes many more iterations; however the total power
decreases very quickly and the algorithm reaches
within 4 % of the minima in 200 iterations.
Schedulability is also a concern when consid-

ering flow routing in wireless networks. This is
because a node can be transmitting to, or receiving
from, only one of its neighbors during a particular
time slot. We thus incorporate schedulability con-
siderations in the objective function, adapting the
ideas from [3]. The minima achieved is affected by
schedulability. However, when comparing the the
actual minimum to an ideal case where there are
no scheduling considerations, we find that the effect
of scheduling on the minimum power achieved is
minimal.
We would like to point that our work is an

elegant synthesis of three different areas. The rout-
ing flow optimization which determines the routing
fractions at every node is handled at the network

layer. Schedulability is a link layer consideration; as
mentioned above we handle schedulability of flows
by incorporating it in the objective function. Note
the relevance of the combination of schedulability
with the optimization, this validates that the algo-
rithm is implementable in a real wireless ad-hoc
network. Finally, we would like to point that the
objective function depicts the physical layer chan-
nel characteristics without any approximation. In
power control literature, it is seen that the channel
characteristics are often an approximation of the
actual values. This greatly reduces the accuracy and
validity of the solution, which is not the case in our
work.
The rest of the paper is organized as follows. We

present related work in section II. We derive the
condition for schedulability of flows in III. In IV,
we develop the objective function to be minimized.
In V, we develop the mathematical conditions on
the routing fractions that form the basis of the
distributed routing algorithm. In VI we present the
distributed routing algorithm itself. We simulate the
algorithm for a variety of scenarios and present the
results in VII. We finally conclude the paper in
VIII.

II. RELATED WORK

Our work is conceptually similar to [1], where
the authors present a distributed optimization ap-
proach towards minimizing delay routing in a wired
network. The theoretical basis for the minimization
of a convex function that we apply is quite similar
to that in [1]. However, we consider a different net-
work setting and objective function. The objective
function in our case is the amount of transmission
power expended (network-wide) in a wireless ad-
hoc network in order to route a given set of flows
with given rates. A number of challenges arise in
adapting the conditions in [1] to our case, primarily
because link level schedulability must be taken in
consideration in a wireless setting.
In [6] the authors consider the joint scheduling

and power control problem. They do not con-
sider routing and do not tackle the problem of
finding valid routes. Also the combined algorithm
is computationally complex since it must find a
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valid schedulable set at the begining of each slot.
On the other hand, since we have schedulability
constraints as part of the objective function itself,
the scheduling algorithm is run only once, after the
optimal flow rates have been obtained.
One problem considered in the power control

literature is to determine the optimal transmission
radius at each node in a distributed manner. One
example of that is [4], in which the authors de-
velop a minimum energy topology from the original
topology by only using those links that are within
the optimal transmission radius of each node. An-
other approach to achieve a minimum energy graph
is to have link weights reflect link transmission
power and then run shortest path routing between
sources and destinations to find the lowest power
path. Neither of these approaches take either the
input flow rates or the problem of routing such input
flows into account.
In [9] the authors find energy-efficient routes in

a wireless ad-hoc network. They form relay regions
from sources to destinations to find minimum power
paths between them. They do not consider the issue
of scheduling, and make simplifying assumptions
about link transmission parameters, such as a con-
stant channel fading parameter. We consider a more
dynamic scenario here.
The problem of finding an optimal schedule

of transmissions has been considered in [2] and
[3]. Both formulate the problem as the max flow
problem with optimal scheduling constraints. In [2]
Jain et. al prove that the max flow problem is NP
complete for a TDMA network. In our case we
solve the scheduling issues in a TDMA network
by absorbing the interference constraints in the link
layer power equation, a different approach towards
tackling scheduling constraints.
In [3] the authors look at the combined problem

of achieving maximum flow and providing an op-
timal transmission schedule in a CDMA network,
which has more relaxed interference constraints
than a TDMA network in that the only constraint
is that a node cannot be receiving and transmitting
simultaneously. Under these conditions they present
a centralized algorithm to calculate the optimal
schedule and also give scheduling constraints for

this optimal schedule.

III. SCHEDULING CONSIDERATIONS
We consider a time-slotted system, where time

is divided into equal length frames. In each frame
there are T time slots, which are numbered as
1, 2, ..., T . Every time slot is of τ seconds. We take
τ to be fixed.
Consider a node i. Let Ni be the set of neighbors

of node i and Mi be the set of nodes for which i
is a neighbor. Then ℵi = Ni ∪ Mi gives the set of
incoming and outgoing links on i.
In [3] the authors develop a centralized optimal

schedule for a time-slotted system. The constraints
on the nodes are that every node can either be
transmitting to or receiving from at most one other
node during a particular time slot.
From [3], if the link flow vector f does not

satisfy the following inequality at every node i, then
the flow vector is not schedulable.

∑

l∈ℵi

fl

cl
≤ 1 ∀i (1)

where cl is the capacity of that particular link.
Equation(1) gives the necessary condition for

schedulability at every node. Note that this con-
dition can be locally verified by each node individ-
ually. While this condition is necessary, it is not
sufficient for achieving an optimal schedule for a
link flow vector f because it is derived by averaging
over time slots. In [3], the authors develop a similar
per-node sufficient condition for schedulability for
variable τ . Following [3] we develop below a suf-
ficient condition for fixed τ , since we are assuming
that each timeslot has a network-wide fixed value.
First some necessary definitions are introduced.
Definition 1: A multigraph is defined as a graph

where there may be multiple edges between the
same pair of nodes. An alternate representation of a
multigraph is to have an integral weight wl on each
link l in the network graph such that wl represents
the number of edges in the multigraph between the
same pair of nodes.
A scheduling multigraph is defined on the net-

work graph and used to determine an optimal
schedule. If τ is the length of a time slot, and cl is
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the capacity of link l, then in one time slot τcl bits
can be sent on that link. Thus in order to support
a flow of fl bits/sec the link must be scheduled
for fl/(%τcl&) slots. The weight of the scheduling
multigraph wl is the number of slots needed to
support the flow of fl bits/sec and is defined as,

wl = % fl

τcl
& (2)

Definition 2: If ∆ is defined as the degree of the
scheduling multigraph, then

∆ = max∀i

∑

l∈ℵi

wl (3)

Definition 3: The chromatic index L of the
scheduling multigraph is defined as the minimum
number of colors required to color the edges of
the scheduling multigraph, such that no two edges
incident on the same node have the same color.
From [3] the chromatic index must satisfy L ≥ ∆,
and L ≤ 3∆/2.
The notion of an optimal schedule now follows

from [3]. It is clear that the length of the feasible
schedule must be at least L, where the time slots are
1, 2, ..., L, and each time slot is of length τ seconds.
So in each time slot, all the edges corresponding to
a particular color are activated. We introduce the
following theorem from [3].
Theorem 1: For a flow vector f , and the timeslot

τ which is fixed, f is schedulable iff. Lτ ≤ 1.
We now introduce the sufficient condition for

schedulability at every node expressed in terms of
the link flow vector f if τ is fixed.
Theorem 2: The flow vector f is schedulable if,

∑

l∈ℵi

% fl

clτ
& ≤ 2

3τ
∀i (4)

Proof: Let us begin by assuming that
∑

l∈ℵi

% fl

clτ
& ≤ 2

3τ

and then show that the flow vector is schedulable.
From (2)

∑

l∈ℵi

wl ≤ 2
3τ

From (3)

∆ ≤ 2
3τ

L ≤ 3∆
2

≤ 1
τ

Lτ ≤ 1

So by Theorem 1 the flow vector f is schedulable
if this condition is met at every node.

IV. OBJECTIVE FUNCTION

Our objective function will be total power spent
by all the nodes in the network to forward a given
set of flows at a given rate through the network.
Our control variables will be routing fractions (vari-
ables) at each node. The power level at each node
will be chosen such that it will be possible to
forward a flow at a given rate to a neighbor at a
given signal to interference ratio. The total power is
equal to the sum of all the link powers. We assume
a time slotted communication model where in every
slot a node is either sending or receiving. Examples
of such a slotted MAC layer communication model
are TDMA and CDMA. We derive expressions for
link power for CDMA and TDMA.

A. CDMA

In CDMA, nodes use joint signature sequences,
which allows different nodes to be transmitting into
the channel simultaneously. The receivers receive
the transmission and decode the code sequence
using the code of a particular sender. In this case,
neither the sender nor the receiver is affected by in-
terference from nearby nodes. However the sender
can be sending transmissions for only one receiver
at a time and similarly the receiver can only be
receiving transmissions from only one sender at a
time. Specifically, in one time slot, a node can be
either transmitting to or receiving from only one
other node.
Let us next consider the relationship between link

power, link flow, and the channel characteristics on
the link. The link flow on link (i, k), fik is related
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to the channel characteristics by the following equa-
tion,

fik = log(1 + SIRik)

= log(1 +
pikd

−α
ik

N0
2 + σ2

ik

)

pik = (2fik − 1)(
N0

2
+ σ2

ik)d
α
ik (5)

where,
1) SIRik is the signal-to-interference ratio at the
receiver k.

2) pik is the power expended by node i to send
a flow of fik to node k.

3) dik is the transmission distance from node i to
node k. We assume that there is a mechanism
for calculating the transmission distance from
i to k.

4) α is a constant, normally taken as 2 or 4. We
take α as 2.

5) N0 is the white noise experienced by the
receiving node k. We assume that this can
be estimated by k, and is propagated from k
to all its neighbors including i.

6) σ2
ik is the noise variance experienced by node

k on the link (i, k). We assume that this too
can be estimated by the receiving node k.

The derivative of the first order of pik is given
below. Both p′ik(fik) and p′′ik(fik) are continuous in
fik.

p′ik(fik) = 2fik(ln 2)(
N0

2
+ σ2

ik)d
α
ik (6)

B. TDMA
In TDMA, nodes again have time-slotted ac-

cess to the channel as in CDMA. However since
nodes do not use code sequences, interference
from nearby nodes will affect communication at
a node. In the most restrictive model of such
interference, a link can be used only when no other
link whose communication can possibly interfere
with that link L is used. More realistically, however
from a physical layer perspective a transmission
from a nearby link need not completely interfere
with communication on link L. Specifically, the
transmitted power of neighboring nodes affect the
signal to interference ratio (SIR) at the receiver. We

generate our communication model for TDMA with
this condition in mind.
We assume that the links that affect a link are

only the links that belong to the neighbor set, ℵk

of the receiver k. In this case we include a term Ijk

that models the interference from these other links,
at receiver k. Thus, the link flow on link (i, k),
fik is related to the channel characteristics by the
following equation,

fik = log(1 + SIRik)

= log(1 +
pikd

−α
ik

Ijk + N0
2 + σik2

)

pik = (2fik − 1)(Ijk +
N0

2
+ σ2

ik)d
α
ik (7)

All the terms are similar to CDMA except Ijk,
which models the interference from neighboring
nodes in the definition of SIR. ℵk is the set of all
incoming and outgoing links on k.

Ijk =
∑

j∈ℵk,j '=i

pjmd−α
jk (8)

where m is the node with which j is communicat-
ing.
We note that in our definition of TDMA, even

though the SIR at the receiver is affected by com-
munication on nearby links, the only scheduling
constraint is that a node can be either transmitting
to, or receiving from, only one other node.
The first order derivative p′ik(fik) is continuous

and is given by,

p′ik(fik) = 2fik(ln 2)(Ijk +
N0

2
+ σ2

ik)d
α
ik (9)

C. Objective Function
Now that we have defined link power, we define

the global objective function PT as the total power
expended over the whole network:

PT =
∑

(i,k)

pik(fik) +
∑

i

1
2
3τ −

∑
l∈ℵi

% fl

clτ
&

=
∑

(i,k)

pik(fik) +

∑

i

1
2
3τ −

∑
k∈Ni

% fik

cikτ & −
∑

j∈Mi
% fji

cjiτ
&
(10)
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The first term in the summation is the sum of all the
link powers. The second term is a penalty function
derived from Theorem 2 that restricts the space of
optimization of the objective function. This term
ensures that the objective function is valid only if∑

l∈ℵi
%fl/(clτ)& < 2/(3τ) at every node, that is

flows on all the links incident on the node satisfy
Theorem 2.

V. CONDITIONS ON ROUTING FRACTIONS

In the following section we consider the con-
straints under which (10) is to be minimized. Our
focus will be on the flow rate fil, and their de-
pendence on routing. We develop the mathematical
conditions on routing fractions for minimizing total
power expended in the network. The conditions fol-
low to a great extent from [1] which minimizes total
delay in a wired network. The objective function
in [1] is delay. In our case the objective function
PT given by equation (10) is power. We develop
the framework for minimization of power, with
our objective function and certain variations to the
conditions in [1]. The main variation is that in wired
networks link flows can approach the capacity of
the link, that is fl ≤ cl. In our case because of
schedulability considerations, the links flows must
satisfy equation (4). The objective function in our
case is given by equation (10) and is the sum of
two convex functions, while it is a single function
in [1]. So the objective function and the feasible
space of optimization is different from [1].

A. Definitions

• Let Ls = (i, k) denote the set of links, ∀i, k ∈
N , where N is the set of nodes in the network.

• ri(j) is the traffic first entering the network at
node i and destined to node j.

• ti(j) is the total traffic at node i for node j.
ti(j) also includes traffic to node j from other
nodes passing through node i.

• Let the routing fraction, φik(j), denote the
fraction of ti(j) passing over the link (i, k).
φik(j) = 0 if i = j, that is the traffic has
reached the destination, or if (i, k) /∈ Ls.

B. Flow Conservation

The total flow at node i for destination j is the
sum of the input at node i for j and the flows from
neighboring nodes to j passing through i.

ti(j) = ri(j) +
∑

l∈Mi

tl(j)φli(j) ∀i, j (11)

Here,
∑

l∈Mi
tl(j)φli(j) indicates the flows from

the upstream neighbors of i, passing through i to
j.
The flow on a link (i, k) is defined as,

fik =
∑

j

ti(j)φik(j) (12)

Theorem (1) in [1] states that if the routing
variable set φ satisfies the following conditions, and
the network has an input set r, then equation (11)
has a unique solution for t. Each component ti(j)
is nonnegative and continuously differentiable as a
function of r and φ.
1) φik(j) = 0 if (i, k) /∈ Ls or i = j.
2)

∑
k φik(j) = 1.

3) For each i, j there is a routing path from
i to j, that is there is a set of nodes such
that k, l, ..., m exist and φik(j) > 0, φkl(j) >
0, ..., φmj(j) > 0.

C. Necessary and Sufficient Conditions

The necessary and sufficient conditions for min-
imizing PT follow from equations (5) to (9) in [1]
which are the necessary and sufficient conditions
for minimizing delay. In our case, the marginal
derivatives of PT with respect to r and φ are
different from [1] because (10) is the sum of two
convex functions. The marginal derivatives of PT

with respect to r and φ are:

δPT

δri(j)
=

∑

k

φik(j)[p′ik(fik) +
δPT

δrk(j)
] +

( 1
τcik

)

[ 2
3τ −

∑
k∈Ni

% fik

cikτ & −
∑

j∈Mi
% fji

cjiτ
&]2

(13)
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δPT

δφik(j)
= ti(j)[p′ik(fik) +

δPT

δrk(j)
+

( 1
τcik

)

[ 2
3τ −

∑
k∈Ni

% fik

cikτ & −
∑

j∈Mi
% fji

cjiτ
&]2

]

(14)
Necessary Condition: The necessary condition for
minimizing PT involves finding routing fractions
φik(j) subject to the constraints on φik(j),
1) φik(j) ≥ 0 ∀i, k, j
2)

∑
k φik(j) = 1 ∀i, k, j

such that,
δPT

δφik(j)
= λij φik(j) > 0

≥ λij φik(j) = 0 (15)
This indicates that at the optimal condition, the
marginal derivatives of PT with respect to the rout-
ing fractions, δPT /δφik(j) are equal for positive
routing fractions. If the routing fraction is 0 on a
link then this marginal derivative has to at least as
large.
Equation (15) is not sufficient to minimize PT .

This is due to the presence of the term ti(j) in
equation (14). If at a particular node ti(j) is 0 then
equation (15) is automatically satisfied. As a result
of this, the marginal derivatives along the outgoing
links of the node are not balanced. However, even
if ti(j) = 0 at a particular node, the marginal
derivatives at that node have to be balanced as they
affect the routing at upstream nodes. So ti(j) has
to be removed from the necessary condition.
Sufficient Condition: If pik(fik) is convex ∪

and continuously differentiable in (
∑

k∈Ni
% fik

cikτ &+∑
j∈Mi

% fji

cjiτ
&) < 2

3τ ) then the sufficient condition
for minimizing PT is given below.

( 1
τcik

)

[ 2
3τ −

∑
k∈Ni

% fik

cikτ & −
∑

j∈Mi
% fji

cjiτ
&]2

] = Aik

(16)

p′ik(fik) +
δPT

δrk(j)
+ Aik ≥ δPT

δri(j)
(17)

p′ik(fik) +
δPT

δrk(j)
+ Aik (18)

−minm:(i,m)∈L[p′im(fim) +
δPT

δrm(j)
+ Aim] ≥ 0

for all i *= j, (i, k) ∈ Ls with equality for φik(j)
greater than 0.

VI. ALGORITHM
In this section we develop the algorithm for

achieving the optimal routing fractions. The al-
gorithm for minimizing PT consists of iteratively
balancing the flows at every node, so that the
marginal derivatives along the different outgoing
links from a node are equal. We now develop the
various stages of the algorithm.

A. Neighbor Selection
Every node selects a set of nodes, which are

one hop away from it as neighbors. We present
two different heuristics that try to mitigate the
interference experienced by the nodes from their
neighbors. Neighbor selection is performed once
only before the distributed routing fraction calcu-
lation is performed.
1) Transmission Distance: Consider a node k
which is a neighbor of node i. Then the
link power pik on the link (i, k) from i to
k is defined by (5) and (7). dik in equations
(5) and (7) indicate the transmission distance
from i to k. We have a threshold distance
dthresh. The neighbor set of a node i, Ni

is the set of all the nodes such that, ∀k,
dik ≤ dthresh. The parameter dthresh can be
empirically determined.

2) Signal Strength: The second parameter that
is used for neighbor selection is the signal
strength of the nodes. In equations (5) and
(7) the term SIRik denotes the signal to
interference ratio from i to k. Similar to
above we have a term SIRthresh which can
be empirically determined. So the neighbor
set of a node i, Ni is the set of all the nodes
such that, ∀k, SIRik ≤ SIRthresh.

B. Routing Variable Iteration
The algorithm defines a set of blocked nodes

Bi(j) for which φik(j) = 0 whose flows cannot be
increased from 0 in order to avoid loop formation.
The definition of Bi(j) is the same as equation (15)
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in [1], with the link derivative in our case being
p′ik(fik). Because of lack of space we omit details
here.
The algorithm to modify φ is as follows. Let φ1

be the modified routing variable set.
If k ∈ Bi(j) φ1

ik(j) = 0.
If k /∈ Bi(j),

aik(j) = p′ik(fik) +
δPT

δrk(j)
+ Aik −

minm/∈Bi(j)[p
′
im(fim) +

δPT

δrm(j)
+ Aim]

∆ik(j) = min[φik(j),
ηaik(j)
ti(j)

] (19)

here η is the stepsize parameter that leads to con-
vergence. Let kmin(i, j) be the value of m that
achieves this minimization. Then

φ1
ik(j) = φik(j) − ∆ik(j) if k *= kmin(i, j)

= φik(j) +
∑

k '=kmin(i,j)

∆ik(j)

if k = kmin(i, j) (20)

The algorithm above reduces the fraction of traffic
on the link with the largest marginal cost and
increases traffic on the other links at i. The amount
of traffic increase on the link is proportional to the
stepsize parameter and inversely proportional to the
total traffic to that destination. The convergence of
the algorithm depends on the stepsize parameter
η. The algorithm keeps iterating till it achieves
minimum PT .
The routing variable iteration in equation (19) re-

quires δPT /δrk(j) at i from each of its downstream
neighbors. Every node i calculates its δPT /δri(j)
according to (13) and propagates it to each of its
upstream neighbors, that is ∀j, j ∈ Mi. It is clearly
seen that this procedure works if only the routes
are loop free.
Feasibility of φ1: Let f1

ik be the flow on link (i, k)
generated by φ1

ik. If pik(f1
ik) /∈ (

∑
k∈Ni

% f1
ik

cikτ & +
∑

j∈Mi
% f1

ji

cjiτ
&) < 2

3τ ), then A1
ik → ∞. Then,

φ1
ik(j) = φik(j) ∀j. This guarantees that if φ
generates a set of flows f that is feasible, then f1

generated by φ1 is also feasible.

C. Initial Route Selection
The algorithm must begin with an initial route

that is loop free. We use the DSR[8] to select
the initial route between every source and every
destination. The routing fraction φ at each node is
set to 1. At the next iteration, the routing fractions
to other members of the neighbor set are changed
according to (20).

D. Estimating Interference
In case of TDMA the signal to interference ratio

includes Ijk which is the interference experienced
by the node from neighboring nodes. The routing
algorithm above does not actually schedule the
flows but only incorporates the schedulability con-
straint so that the final flow vector is schedulable.
In the absence of the actual schedule the exact
interference from the neighboring nodes during a
particular time slot is not known. We are assuming
that Ijk is fixed over L slots.

VII. SIMULATIONS
In this section we present simulation results that

demonstrate the convergence of the algorithm in
different network settings.

A. Network Setting
We simulate a network of 50 wireless ad-hoc

nodes. We assume that the nodes are stationary
and are located on a 500 ∗ 500 square grid. We
choose the neighbors according to the first heuristic,
that is, transmission distance, with dthresh set to
95. Thus, every node chooses all nodes that are
within a distance of 95 from itself as neighbors.
We simulate the presence of noise in the environ-
ment. N0/2 at each of the nodes is set to .01.
We model the presence of σ2

ik in the environment
by an exponential distribution with a mean of
1. We simulate the number of iterations it takes
for the algorithm to converge in different network
settings. The convergence of the algorithm depends
on the stepsize parameter η. The theoretical value
of η that guarantees convergence is very small.
Let M = maxp(ik)p

′′
ik(fik), that is M is equal

to the second derivative of link power of the link
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having maximum link power. The η that guarantees
convergence is equal to 1/[MN6] [1], where N is
the total number of nodes in the network. We find
that in most cases the algorithm converges for a
much larger value of η. We typically choose the
maximum value of η that leads to convergence, but
also show the dependence of convergence on η.

B. Single Source

In this case we simulate the algorithm with a
single source and a single destination. That is,
exactly one of the 50 nodes is a source, and one of
the other 49 is the destination. The algorithm needs
to be initialized with a loop-free path. The loop-
free path between the source and the destination is
chosen using DSR[8]. In the first iteration nodes
choose only one neighbor to forward to, and the
corresponding routing fraction φ at each node is
set to 1. During subsequent iterations, nodes split
the flows to all their neighbors. This may lead to
loop formation. The algorithm has loop detection
techniques in which all the nodes that can form
a potential loop are put in a blocked set. In our
simulations, we choose only routes that are loop
free.
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Fig. 1. Topology of single source single destination,
source = 40, destination = 26.

The topology of the single source, single des-
tination case is shown in Figure 1. Here node 40
is the source and node 26 is the destination. We
simulate the algorithm for two different network
types, CDMA and TDMA.

CDMA: In case of CDMA, link power is given by
equation (5). Capacity on each link is constant. The
initial set of flows are chosen such that they satisfy
the capacity-related scheduling constraint, equation
(4).
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Fig. 2. Total power for a single source single destination
CDMA network. η = 10−5

Figure 2 shows the convergence of the algo-
rithm for a CDMA network with 1 source and 1
destination. The value of η in this case is 10−5,
much larger than the theoretical value of η that
guarantees convergence. We also plot an ideal case,
called CDMA-ideal in which there are no capacity
constraints on the flows. The y-axis plots the total
amount of power in watts expended in the network
at every iteration. From the figure it is seen that
both CDMA and CDMA-ideal fare almost equally.
The most important observation here is that the
total power in the network reduces very fast in
the number of iterations and the algorithm reaches
within 0.1% of the optimal power in just 9 itera-
tions. This is of significance since even if it may
not be possible to run the algorithm for hundreds
of iterations to achieve the theoretical minimum
power, for all practical purposes it is sufficient to
run the algorithm for just a few iterations.
TDMA: Figure 3 demonstrates the same result for

TDMA. The network setting and the value of η are
the same as CDMA. In TDMA interference from
neighboring nodes must be estimated according to
the procedure of section VI.D. Both TDMA and
TDMA-ideal (which ignores link capacities) behave
almost equally. As in the case of CDMA, con-
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Fig. 3. Total power for a single source single destination
TDMA network. η = 10−5

vergence is very fast, again the algorithm reaches
within 0.1% of the optimal power in just 9 itera-
tions.
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Fig. 4. Comparison of different ηs for a single source
single destination TDMA network.

Dependence on η: Figure 4 shows the conver-
gence of the above TDMA network for different
values of the stepsize parameter η. The convergence
of the algorithm depends to a great extent on the
value of η. A large value of η may lead to os-
cillations, while a very small value leads to slower
convergence. From the figure we see that η = 10−5

leads to very fast convergence with the algorithm
reaching within 0.1% of the optimal power in 9
iterations only. While η = 10−7 also converges,
the rate of convergence is much slower. The reason
is that a larger value of η allows more flow to be
transferred between a node’s outgoing links at each

iteration.
We verify the convergence of the single source

single destination case for a number of <source,
destination> pairs. Convergence for these <source,
destination> pairs chosen from the network topol-
ogy in Figure 6 is given in the table in Figure 5..

<s,d> within % of optimal power
in 9 iterations

input rate = 1 input rate = 2
40 - 8 1.6 2.3
40 - 24 0.1 0.8
5 - 8 3.5 3.5
5 - 24 0.7 1.1
5 - 26 1.2 3.9
27 - 8 0.9 0.9
27 - 24 0.1 0.3
27 - 26 0.1 1.3

Fig. 5. Rate of convergence of different single source,
single destination CDMA networks. within % of optimal
power in 9 iterations for different input rates. η = 10−5

From Figure 5 we see that in each case the min-
imum power for all practical purposes is achieved
in less than ten iterations for a single source, single
destination network.

C. Multiple Sources
In this subsection we present simulation results

of convergence of the algorithm for 3 sources and 3
destinations, with each source sending data to each
of the destinations. N0/2 at each of the nodes is set
to .01 and every node experiences σ2

ik according to
to an exponential distribution with a mean of 1. As
in the single source case, we only choose routes
that are loop free. We simulate both CDMA and
TDMA. The topology is shown in Figure 6.
CDMA: Figure 7 demonstrates the convergence

of the algorithm for both CDMA and CDMA-ideal.
For CDMA the capacity on each link is set to a
constant. Both cases converge in a similar manner.
Unlike the single-source, single-destination case,
with multiple sources the algorithm takes much
longer to converge. In our simulations it takes more
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Fig. 6. Topology of multiple sources and destinations,
sources = 40, 5 and 27 destinations = 8, 24 and 26.
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Fig. 7. Total power for the 3 sources 3 destinations
CDMA network. η = 10−7

than 5000 iterations of the algorithm to converge to
an absolute minima. However the algorithm reaches
within 19% of the optimal power in 25 iterations,
within 13% in 50 and within 4% in 200 iterations.
Even though convergence is not as fast as for the
single-source, single-destination case it is possible
to achieve a total power that is quite close to
minimum power in a relatively small number of
iterations.
Once again we verify the result for other sources

and destinations. The table in Figure 8 shows the
convergence of the algorithm for 5, 6 and 7 sources
and destinations chosen from the same topology as
in Figure 6. The convergence pattern is similar to
what we describe above with total power close to
the minima achieved in a relatively small number

of iterations.

no. of s,d within % of optimal
power in iterations
25 50 200

5 11.5 5.9 1.5
6 11.5 5.9 1.5
7 16.3 9.3 2.6

Fig. 8. Rate of convergence of different multiple sources,
multiple destinations CDMA networks. Within % of
optimal power in 25, 50 and 200 iterations. η = 10−7
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Fig. 9. Total power for a 3 sources 3 destinations TDMA
network. η = 10−7

TDMA: Figure 9 plots convergence of the algo-
rithm in a TDMA network for 3 sources and 3 des-
tinations. The network setting parameters are same
as CDMA. The only difference is that in TDMA
interference from neighboring nodes is taken into
account. Convergence is also same as CDMA, with
absolute minima taking more than 5000 iterations
but the algorithm reaching within 4% of the optimal
power in 200 iterations.
Figure 10 compares the convergence of CDMA

and TDMA in this network setting. From Figure
10 we see that the convergence pattern in both
settings is the same, but total power for TDMA
is slightly higher. This is because interference from
neighboring nodes is taken into account in case of
TDMA. This inherently increases the amount of
noise present in the network, and so it consumes
more power to route the same amount of data.
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Fig. 10. Comparison of TDMA and CDMA for a 3
sources 3 destinations network. η = 10−7

At 200 iterations, TDMA converges to 6.6% more
power than CDMA.
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Fig. 11. Routing fractions for destination 8 in the 3
sources 3 destinations CDMA network. η = 10−7

Routing fractions: Figures 11 and 12 show
the routing fractions for TDMA and CDMA for
destination 8 in the topology of Figure 6. Note
that the routing fractions at a particular node always
sum up to 1.
Dependence on η: Figure 13 shows the conver-

gence of the 3 sources, 3 destinations TDMA net-
work for different values of the stepsize parameter
η. It is seen that η = 10−6 converges fastest and
η = 10−7 converges at a similar rate to it. The rate
of convergence for η = 10−8 is much slower than
the other two.
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Fig. 12. Routing fractions for destination 8 in the 3
sources 3 destinations TDMA network. η = 10−7
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Fig. 13. Comparison of different ηs for a 3 sources 3
destinations TDMA network.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have addressed the joint rout-
ing and scheduling problem in a wireless ad-hoc
network. From the scheduling aspect, we derive
schedulability conditions on the flows and incorpo-
rate them in the formulation of the optimal routing
problem. We develop the optimization conditions
on routing fractions and develop a distributed rout-
ing algorithm for achieving theoritical minimum
power in the network. Our objective function also
incorporates interference. Interference is of two
types, white noise or ambient noise present in the
vicinity of the nodes and external noise that may be
introduced into the environment. We simulate the
algorithm for CDMA and TDMA networks. Our
simulation results show the convergence properties
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of the algorithm and show that nearly optimal
power can be reached in a relatively small number
of iterations.
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IX. APPENDIX

A. Marginal Derivative of PT

We derive equations (13) and (14) here.

PT =
∑

(i,k)

pik(fik) +

∑

i

1
2
3τ −

∑
k∈Ni

% fik

cikτ & −
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j∈Mi
% fji

cjiτ
&

Let
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∑
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∑
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Let us look at δB/δri(j).
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This results in equation (13). We now derive equa-
tion (14).
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This results in equation (14).

B. Necessary Condition
We now derive the necessary condition for min-

imizing PT , that is equation (15) subject to the
constraints.
1) φik(j) ≥ 0 ∀i, k, j
2)

∑
k φik(j) = 1 ∀i, k, j

We use Lagrange multipliers to do the minimiza-
tion. The lagrangian is,

L(φik(j), λ, µ) = −PT +
∑

k

λk(1 − φik(j)) +
∑

k

µkφik(j)

The minimization conditions are,

− δPT

δφik(j)
− λk

δφik(j)
δφik(j)

+ µk
δφik(j)
δφik(j)

= 0

(21)

δPT

δφik(j)
= −λk + µk

Let − λk = λij

δPT

δφik(j)
= λij + µk

µkφik(j) ≥ 0 (22)
µk ≥ 0 φik(j) = 0
µk = 0 φik(j) > 0

δPT

δφik(j)
= λij φik(j) > 0

≥ λij φik(j) = 0

This is equation (15).


