
Efficient Verification of Halting Properties for
MPI Programs with Wildcard Receives

Stephen F. Siegel!

Laboratory for Advanced Software Engineering Research
Department of Computer Science, University of Massachusetts

Amherst MA 01003, USA
http://laser.cs.umass.edu

siegel@cs.umass.edu

Abstract. We are concerned with the verification of certain properties,
such as freedom from deadlock, for parallel programs that are written
using the Message Passing Interface (MPI). It is known that for MPI
programs containing no “wildcard receives” (and restricted to a certain
subset of MPI) freedom from deadlock can be established by considering
only synchronous executions. We generalize this by presenting a model
checking algorithm that deals with wildcard receives by moving back
and forth between a synchronous and a buffering mode as the search
of the state space progresses. This approach is similar to that taken by
partial order reduction (POR) methods, but can dramatically reduce the
number of states explored even when the standard POR techniques do
not apply.

1 Introduction

It is well-known that finite-state verification techniques, such as model checking,
suffer from the state explosion problem: the fact that the number of states of a
concurrent system may—and often does—grow exponentially with the size of the
system. Many different approaches have been studied to counteract this difficulty.
These include partial order reduction (POR) methods, data abstraction, program
slicing, and state compression techniques, to name only a few.

For the most part, these approaches have been formulated in very general
frameworks. Their generality is both a strength and a weakness: the methods
can be broadly applied, but may miss opportunities for reduction in specific situ-
ations. This observation has led to interest in more domain-specific approaches.
The idea is to leverage knowledge of the restrictions imposed by a particular
programming domain, or of common idioms used in the domain, in order to
gain greater reductions than the generic algorithms allow. An example of this
approach for concurrent Java programs is given in [2], where analysis that iden-
tifies common locking patterns, among other things, is exploited to dramatically
improve the generic POR algorithms.
! Research supported by the U.S. Army Research Laboratory and the U.S. Army

Research Office under agreement number DAAD190110564.

2

This paper is concerned with the domain of parallel programs that employ the
Message Passing Interface (MPI). The MPI Standard [6, 7] specifies the syntax
and semantics for a large library of message passing functions with bindings in
C, C++, and Fortran. For many reasons—portability, performance, the broad
scope of the library, and the wide availability of quality implementations—MPI
has become the de facto standard for high-performance parallel computing. In
addition, we focus on a particular class of properties of MPI programs, which we
call halting properties : claims on the state of a program whenever execution halts,
whether due to deadlock, or to normal termination. Freedom from deadlock is
an example of a halting property; another would be an assertion on the values
of variables when a program terminates.

Some explanation of the most essential MPI functions is required for what
follows. The basic MPI function for sending a message to another process is
MPI_SEND. To use it, one must specify the destination process and a message
tag, in addition to other information. The corresponding function for receiving a
message is MPI_RECV. In contrast to MPI_SEND, an MPI_RECV statement may
specify its source process, or it may use the wildcard value MPI_ANY_SOURCE,
indicating that this statement will accept a message from any source. Similarly,
it may specify the tag of the message it wishes to receive, or it may use the
wildcard value MPI_ANY_TAG. A receive operation that uses either or both
wildcards is called a wildcard receive. The use of wildcards and tags allows for
great flexibility in how messages are selected for reception.

Previous work has established that if a program (restricted to a certain subset
of MPI) contains no wildcard receives, then a suitable model M of that program
can be constructed with the following property: M is deadlock-free if, and only if,
no synchronous execution of M can deadlock [8, Theorem 7.4]. This is exactly
the kind of result we are after, as the need to represent all possible states of
message channels is often a significant source of state explosion. Unfortunately,
wildcard receives are common in actual MPI programs, and the theorem may
fail if the hypothesis on wildcard receives is removed [8, Sec. 7.3].

The approach of this paper generalizes the earlier result in three ways. First,
it shows that the hypothesis forbidding wildcard receives may be relaxed to allow
the use of MPI_ANY_TAG, with no ill effects. Second, the range of properties is
expanded to include all halting properties. But most importantly, it provides a
model checking algorithm that deals with MPI_ANY_SOURCE by moving back
and forth between a synchronous and a buffering mode as the search of the state
space progresses. This approach is similar to that taken by POR methods, but
can dramatically reduce the number of states explored even when the standard
POR techniques do not apply.

The discussion proceeds as follows. Section 2 establishes the precise definition
of a model of an MPI program, and of the execution semantics of such a model.
The definition of a halting property and the statement of the main theorem are
given in Sec. 3. Section 4 deals with consequences of the main theorem. These
include a bounded model checking algorithm for halting properties; the conse-
quences for programs that do not use MPI_ANY_SOURCE are also explored.

3

Section 5 discusses the relationship with the standard POR techniques. Results
of an empirical investigation are presented in Sec. 6, and conclusions are drawn
in Sec. 7. Appendix A contains proofs of the main theorem and two corollaries.
Appendix B gives a description of the program and model for each example; com-
plete MPI/C source code for the examples, as well as all the experimental results,
can be downloaded from http://laser.cs.umass.edu/~siegel/projects.

2 Models of MPI Programs

For the purposes of this paper, an MPI program consists of a fixed number
of concurrent processes, each executing its own code, with no shared variables,
that communicate only through the MPI functions. The precise notion of a model
of such a program is defined below. While there are many issues that arise in
creating models from code, these are beyond the scope of this paper, and the
reader is referred to [8] for a discussion of this subject and some examples.
It is argued there that this notion of model suffices to represent MPI_SEND,
MPI_RECV, MPI_SENDRECV (which concurrently executes one send and one
receive operation), as well as the 16 collective functions, such as MPI_BCAST,
MPI_ALLREDUCE, etc. The definition of receiving states here is slightly more
general, in order to accommodate a new way to deal with tags, explained below.

2.1 Definition of a Model of an MPI Program

An MPI context is a 7-tuple C = (Proc, Chan, sender, receiver, msg, loc, com). The
first two components are finite sets, representing the set of processes, and the set
of communication channels, respectively. The next two components are functions
from Chan to Proc; they define the sending and receiving process for each channel.
The function msg assigns, to each c ∈ Chan, a nonempty set msg(c); this is the
set of messages that can be sent over channel c. The final two components are
functions of Proc. For p ∈ Proc, loc(p) is a finite set representing the set of local
events for p, while com(p) is defined to be the set of communication events for
p, namely, the set of send and receive symbols

{c!x, d?y | c, d ∈ Chan, x ∈ msg(c), y ∈ msg(d), sender(c) = p = receiver(d)}.

Finally, for all p, q ∈ Proc, we assume loc(p) ∩ com(q) = ∅, and p $= q ⇒
loc(p) ∩ loc(q) = ∅.

An MPI state machine for p under C is a 7-tuple

M = (States, Trans, src, des, label, start, End)

where States and Trans are sets, src and des are functions from Trans to States,
label is a function from Trans to loc(p) ∪ com(p), start ∈ States, End ⊆ States,
and, for each u ∈ States, there exists t ∈ Trans with src(t) = u if, and only if,

4

u $∈ End. Finally, we require that every state u must fall into one of 5 categories,
but before describing these, we define the following:

R(u) = {(d, y) | d ∈ Chan, y ∈ msg(d), ∃t ∈ Transp : src(t) = u ∧ label(t) = d?y}
Q(u) = {d ∈ Chan | ∃y ∈ msg(d) : (d, y) ∈ R(u)}

Rd(u) = {y ∈ msg(d) | (d, y) ∈ R(u)} (d ∈ Q(u)).

Now the 5 possibilities for u are as follows:

1. u is a final state: u ∈ End,
2. u is a local-event state: the transitions departing from u are labeled by local

events for p,
3. u is a sending state: there is precisely one transition departing from u and

it is labeled by a send event for p,
4. u is a receiving state: the transitions departing from u are labeled by distinct

receive events for p, or
5. u is a send-receive state (see Fig. 1): there is a c ∈ Chan with sender(c) = p,

an x ∈ msg(c), a state u′, and states v(d, y) and v′(d, y) for all (d, y) ∈ R(u),
such that the following all hold:
(a) u, u′, and the v(d, y) and v′(d, y) are all distinct,
(b) the set of transitions departing from u consists of one transition to u′

whose label is c!x, and, for each (d, y) ∈ R(u), one transition labeled d?y
to v(d, y), and, furthermore, these are the only transitions terminating
in u′ or v(d, y),

(c) for each (d, y) ∈ R(u), there is precisely one transition departing from
v(d, y), it is labeled c!x, and it terminates in v′(d, y),

(d) for each (d, y) ∈ R(u), there is a transition from u′ to v′(d, y), it is labeled
d?y, and these make up all the transitions departing from u′, and

(e) for each (d, y) ∈ R(u), the only transitions terminating in v′(d, y) are
the one from u′ and the one from v(d, y).

Finally, a model M of an MPI program is a pair (C, M), where C is a context
and M is a function that assigns, to each p ∈ Proc, an MPI state machine Mp

for p under C, such that Statesp ∩ Statesq = ∅ = Transp ∩ Transq for p $= q.
Given an MPI program, one may construct a model using one channel cp,q,

with sender(cp,q) = p and receiver(cp,q) = q, for each (p, q) ∈ Proc × Proc. To
translate a receive statement r it suffices to specify the sets Q(u) and Rd(u) for
the receiving state u corresponding to r. If r occurs in process q and specifies its

d?1
d?2 e?α

c!1

c!1
c!1

c!1

d?1
d?2

e?α

u

v(d, 1) v(d, 2) v(e, α) u′

v′(d, 1) v′(d, 2) v′(e, α)

Fig. 1. A send-receive state u with Q(u) = {d, e}, Rd(u) = {1, 2}, Re(u) = {α}.

5

source p, then we let Q(u) = {cp,q}. If r instead uses MPI_ANY_SOURCE then
we let Q(u) = {cp,q | p ∈ Proc}. We may assume that the tags have been encoded
in the messages, so that to each message x is associated an integer tag(x). Now
if r specifies a tag t, we let

Rd(u) = {x ∈ msg(d) | tag(x) = t} (d ∈ Q(u)).

If instead r uses MPI_ANY_TAG, we take Rd(u) = msg(d). We will see below
that the execution semantics in effect allow a receive operation to choose non-
deterministically among the receiving channels Q(u), but, for a given d ∈ Q(u),
it must pick out the oldest message in d with a matching tag. This corresponds
exactly to the requirements of the MPI Standard.

2.2 Execution Semantics of a Model of an MPI Program

Let N = {0, 1,} and N+ = N∪{∞}. A sequence S = (x1, x2, . . .) of elements
of a set X may be either infinite or finite. We write |S| for the length of S. If A
is a subset of a set B, and S is a sequence of elements of B, then the projection
of S onto A is the sequence that results by deleting from S all elements that
are not in A. If S is any sequence and n ∈ N, then Sn denotes the sequence
obtained by truncating S after the nth element.

Let M be a model of an MPI program. A global state σ of M is a pair of
functions (u,α), where u assigns, to each p ∈ Proc, a state up ∈ Statesp, and α
assigns to each c ∈ Chan a finite sequence αc of elements of msg(c). The sequence
represents the pending messages for c: messages that have been sent but not yet
received. We define Pendingc(σ) = αc and statep(σ) = up. The initial state of M
is the global state for which up = startp for all p, and αc is empty for all c.

Suppose σ = (u,α) and σ′ = (u′,α′) are global states of M, p ∈ Proc,
t ∈ Transp, and that src(t) = up, des(t) = u′

p, uq = u′
q for q $= p, and one of the

following holds:

1. label(t) ∈ loc(p) and α = α′,
2. there exist c ∈ Chan and x ∈ msg(c) such that label(t) = c!x, α′

c is obtained
by appending x to the end of αc, and α′

d = αd for d $= c, or
3. there exist d ∈ Chan and y ∈ msg(d) such that label(t) = d?y, y is the first

element of the projection of αd onto Rd(up), α′
d is obtained by deleting the

first occurrence of y from αd, and α′
c = αc for c $= d.

Then we call the triple τ = (σ,σ′, t) a simple global transition of M, and we
define label(τ) = label(t).

Suppose now that σ, σ′, and σ′′ are global states, t1, t2 are transitions, c ∈
Chan, x ∈ msg(c), p = receiver(c), and that the following all hold:

1. label(t1) = c!x and label(t2) = c?x,
2. Pendingc(σ) contains no element of Rc(statep(σ)), and
3. (σ,σ′, t1) and (σ′,σ′′, t2) are simple global transitions.

6

In this case we will refer to the 4-tuple τ̃ = (σ,σ′′, t1, t2) as a synchronous global
transition, as it corresponds to a synchronous MPI communication: a message
that is transferred directly from the sender to the receiver in one atomic step.
We do not want to think of τ̃ as “passing through” the intermediate state σ′,
but rather as leading directly from σ to σ′′. In particular, since Pendingc(σ) =
Pendingc(σ′′), τ̃ leaves all of the channels unchanged. We define label(τ̃) to be
the symbol c!?x.

The state graph of M is the ordered pair G = (S, T), where S is the set of all
global states, and T is the set of all (simple and synchronous) global transitions.
Let src, des : T → S be the projections onto the first and second coordinates,
respectively. These give G the structure of a directed graph.

An event α is any element of {label(τ) | τ ∈ T }. We say that α is enabled at
the global state σ if there exists τ ∈ T with src(τ) = σ and label(τ) = α.

Given a path T = (τ1, τ2, . . .) in G, we define the atomic length of T to be
||T || =

∑
i ε(τi), where ε(τ) = 1 if τ is simple and ε(τ) = 2 if τ is synchronous.

This is sometimes a more natural measure of length than |T |. A trace of M is
any path in G originating in the initial state. Finally, If T originates in the global
state σ and c ∈ Chan, we define

maxlenc(T) = max
i

{|Pendingc(σ)|, |Pendingc(des(τi))|}.

3 The Main Theorem

The main theorem concerns halting properties so we first explain what these
are. In general, a concurrent program is considered to be in a halted state if
every process has become permanently blocked. A receive statement in an MPI
program blocks, as one would expect, as long as there is no pending message
that matches the parameters of that statement. However, the circumstances
under which a sending statement blocks are more subtle. Typically, one would
assume that each channel c has some fixed size ν(c) ∈ N, and declare that a send
on c blocks whenever the length of c equals ν(c). The MPI Standard, however,
imposes no such bounds, but instead declares that a send may block at any time,
unless the receiving process is at a state from which it can receive the message
synchronously. We thus make the following definition for a model M:

Definition 1. A global state σ of M is potentially halted if no receive, local, or
synchronous event is enabled at σ.

We use the word “potentially” because a program in such a state may or may
not halt, depending on the particular choices made by the MPI implementation.

For any predicate f on the global states of M, and any subgraph H of G that
contains the initial state σ0, let Π(H, f) denote the statement for all states σ
reachable in H from σ0, f(σ). Let phalt be the predicate defined by phalt(σ) ⇔
σ is potentially halted.

Definition 2. A halting predicate is a state predicate f of the form phalt ⇒ q,
where q is any state predicate. A halting property is a statement of the form
Π(H, f), where f is a halting predicate.

7

An example of a halting property is given by taking q = false, the predicate that
holds at no state. For this q, Π = Π(G, f) states that M never halts. One could
also take q = term, the predicate that is true when all processes are at final
states. Then Π states that whenever M halts, all processes have terminated,
i.e., M is deadlock-free. More generally, one could take q to be the predicate
termΣ that holds when all processes in a certain subset Σ are at final states.
One could also let q be the conjunction of termΣ with another predicate—for
example, a predicate that holds when variables in the processes in Σ, whose
values are encoded in the local states, have particular values. In this case Π
would say that whenever the program halts, all processes have terminated and
the variables have the specified values.

To motivate what follows, consider the model of [8, Fig. 5] (the “Chansize
Deadlocker” of Appendix B for n = 1). Suppose we try to verify freedom from
deadlock for this model by considering only synchronous executions. Then we
only explore the sequence (c!?1, e!?1, d!?1), which terminates normally, and miss
the deadlocking sequence (c!1, e!?1, d!?1). We can try to explain why we missed
the deadlock in the following way. At the initial state, process p = receiver(c) is
at a wildcard receive u with Q(u) = {c, d}. At this state, c is ready to receive
a message (synchronously) but d is not. By pursuing only synchronous commu-
nication, we never get to see the state in which p is at u and a receive on d is
enabled.

The solution is to consider all enabled events (not just synchronous ones)
whenever a process p is at a wildcard receive u, unless u has become “urgent.”
By this we mean that for each c ∈ Q(u), either a (synchronous or buffered)
receive on c is enabled or we know that a receive on c can never become enabled.
Note that once a receive on c becomes enabled, it will remain enabled until p
executes a transition, since p is the only process which may remove a message
from c. Since no receive event can be enabled at a potentially halted state σ, the
only way we can arrive at σ is if p eventually executes. Now if u is urgent, no new
events in p can become enabled, and so one of the currently enabled events in
p must occur if the system is to arrive at σ. Since those events are independent
of events in other processes, we might as well explore the paths that result
from scheduling each of those enabled events immediately. (If two events are
independent then neither can disable the other and the effect of applying one
and then the other does not depend on the order in which they are applied.)
Local event states are similar, but they are always urgent since the local events
are always enabled. The following definitions attempt to make all of this precise:

Definition 3. Let σ be a global state of M, p ∈ Proc, and u = statep(σ). We
say p is at an urgent state in σ if either u is a local event state, or all of the
following hold:

1. u is a receiving or send-receive state,
2. for all d ∈ Q(u), either

(a) there is an event of the form d?y or d!?y enabled at σ, or
(b) there is no such event enabled and statesender(d)(σ) is a final state,
and

8

3. there is at least one d ∈ Q(u) for which 2(a) holds.

We define Urgent(σ) to be the set of all p ∈ Proc such that p is at an urgent
state in σ. Finally, we say that σ is urgent if Urgent(σ) $= ∅.
Definition 4. A global transition τ is urgent for process p if τ has the form
(σ,σ′, t) or (σ,σ′, t′, t), where p ∈ Urgent(σ), t ∈ Transp, and label(t) is either a
local event or a receive.

Condition 2(b) of Definition 3 can be relaxed somewhat: all that is really required
is that sender(d) be in a state from which it can never reach a send on d. However,
the version that we have stated has the advantage that it is very easy to check.
Also, note that the third condition guarantees there is at least one enabled event
at an urgent state.

We now fix a total order on Proc. The reason for this will become clear: we
do not have to consider all urgent transitions departing from an urgent state,
but only those for a single process, and so we will just choose the least one.
Definition 5. Let τ be a global transition and σ = src(τ). We say that τ is am-
ple if either σ is not urgent, or τ is urgent for the minimal element of Urgent(σ).
We say that a path (τ1, τ2, . . .) in G is ample if τi is ample for all i.
The word “ample” comes from the notion of “ample set” in POR, where it
plays essentially the same role. We let T̃ be the set of all ample transitions and
G̃ = (S, T̃). Now we can state the main theorem:
Theorem 1. Given any path S in G from a global state σ0 to a potentially
halted global state σ, there exists a path T from σ0 to σ in G̃ such that ||T || =
||S||, |T | ≤ |S|, and maxlenc(T) ≤ maxlenc(S) for all c ∈ Chan. In particular
Π(G, f) ⇔ Π(G̃, f) for any halting predicate f .

In light of the discussion above, it should come as no surprise that the proof
of Theorem 1 (Appendix A.1) relies on many of the restrictions imposed by our
domain and property. For example, the fact that each channel has an exclusive
receiving process was used to show that once a receive event becomes enabled,
it must remain enabled until that process executes. The knowledge that the
property could be violated only if no receive were enabled was also used. The
fact that a sending state has exactly one outgoing transition also comes into play:
if the sending state had outgoing transitions on two different channels then a
synchronous event that was enabled on one channel could become disabled if the
sending process were to send on the other channel. These arguments withstand
the introduction of send-receive states only because the specific structure of
those states guarantees that the send event is independent of the receive events.
Remove any of these domain-specific restrictions, and Theorem 1 may fail.

4 Consequences of the Main Theorem

4.1 The Urgent Algorithm

In general, the number of reachable states in G or G̃ may be very large (or even
infinite). So it is common practice to place upper bounds on the channel sizes,

9

or the search depth, in order to reach a conclusive result on at least a bounded
region of the state space. For these reasons we define the following concepts. Let
ν : Chan → N+ and m ∈ N+. Let Tν,m be the set of all global transitions that
occur in traces T that satisfy (i) ||T || ≤ m, and (ii) for all global states σ through
which T passes, and all c ∈ Chan, |Pendingc(σ)| ≤ ν(c). We let Gν,m = (S, Tν,m).

Let T %
ν,m be the set of all τ ∈ Tν,m such that τ is ample and

if label(τ) = c!?x for some c, x then σ is urgent or |Pendingc(σ)| = ν(c), (1)

where σ = src(τ). Condition (1) is not strictly necessary, but it may provide
some additional reduction. The idea is that when σ is not urgent, it would be
redundant to consider synchronous transitions since we are already pursuing
all buffered sends and receives. An exception is made if a channel is full since
then a buffered send would not be enabled. Let G%

ν,m = (S, T %
ν,m). The following

consequence of Theorem 1 is proved in Appendix A.2:

Corollary 1. Given any path in Gν,m from a global state σ0 to a potentially
halted global state σ, there exists a path in G%

ν,m from σ0 to σ. In particular,
Π(Gν,m, f) ⇔ Π(G%

ν,m, f) for any halting predicate f .

If Statesp, Transp, and ν(c) are finite for all p ∈ Proc and c ∈ Chan, then
Tν,m and T %

ν,m are finite as well. It follows from Corollary 1 that we can ver-
ify a halting property in this case by performing a depth-first search of G%

ν,m.
Specifically, algorithm Urgent of Fig. 2 will find all reachable states in Gν,m for
which f does not hold. We assume Proc = {p1, . . . , pn} and p1 < · · · < pn. The
search is initiated by setting the global variable R to the empty set and calling
search(σ0, 0), where σ0 is the initial state. Function urgent transitions(σ, p) re-
turns the set of all τ ∈ T such that src(τ) = σ and τ is urgent for p. Function
standard transitions(σ,ν) returns the set of all τ ∈ T that satisfy (i) src(τ) = σ,
(ii) |Pendingc(des(τ))| ≤ ν(c) for all c, and (iii) label(τ) = c!?x ⇒ |Pendingc(σ)| =
ν(c). There is no need to specify ν for urgent transitions since an urgent transi-
tion can never increase the length of a channel.

Example. In a model of a client-server system with n clients (n ≥ 1), Proc =
{0, 1, . . . , n} with the natural order, Chan = {c1, d1, . . . , cn, dn}, msg(c) = {1}
for all c ∈ Chan, and sender(ci) = i = receiver(di), receiver(ci) = 0 = sender(di)
for 1 ≤ i ≤ n. For n = 2, the state machines for processes 0 (the server), 1, and
2, are respectively:

01 2

c1?1

d1!1

c2?1

d2!1

0 1

c1!1

d1?1

0 1

c2!1

d2?1

Let us see how the Urgent algorithm applies to this system for any ν and
m = ∞. We start with the initial state: this state is urgent for process 0, so we
explore the states resulting from the global transitions labeled ci!?1 for all i. For
any such i, the resulting state has process 0 in local state i, process i in local
state 1, and all other processes and channels unchanged. This state is urgent

10

1 function bounded ample(σ) /* returns {τ ∈ T "
ν,m | src(τ) = σ} */

2 for i = 1 to n do
3 if pi ∈ Urgent(σ) then return urgent transitions(σ, pi) end if
4 end for;
5 return standard transitions(σ,ν)
6 end function;

7 procedure search(σ, n)
8 if n > m then return end if ;
9 R := R ∪ {σ};

10 if not f(σ) then report violation() end if ;
11 for all τ ∈ bounded ample(σ) do
12 if des(τ) #∈ R then search(des(τ), n + ε(τ)) end if
13 end for all
14 end procedure

Fig. 2. The Urgent Algorithm: depth-first search of G"
ν,m.

for i, and so we explore the single transition di!?1. This returns us to the initial
state, which is already in R. Hence the algorithm explores a total of n+1 global
states, and 2n transitions. Notice also that, in this case, the search does not
explore any buffered communication, even though process 0 contains a wildcard
receive.

4.2 Source-Specific Models and Synchronous Traces

We say that M is source-specific if for every receiving and send-receive state
u in M, |Q(u)| = 1; this corresponds to an MPI program which never uses
MPI_ANY_SOURCE (though it may use MPI_ANY_TAG). We say that a path in
G is synchronous if it consists solely of local and synchronous transitions.

Let M be any model and σ a global state of M. If σ is urgent, then clearly
σ cannot be potentially halted. Now if M is source-specific, the converse is also
true. For if there is some c ∈ Chan and x ∈ msg(c) for which c?x or c!?x is
enabled at σ, then p = receiver(c) ∈ Urgent(σ), since Q(statep(σ)) = {c}.

Now suppose M is source-specific and T is a trace terminating in a potentially
halted state σ. By Theorem 1, there exists an ample trace T̃ = (τ1, . . . , τn)
terminating in σ, with n ≤ |T | and ||T̃ || = ||T ||. Let σk = des(τk) for 1 ≤ k ≤ n
and let σ0 be the initial state. Let i be the least integer for which σi is potentially
halted. For 0 ≤ j < i, σj is not potentially halted, which as we have seen means
that σj is urgent. This implies that τj+1 is a local event, synchronous, or receive
transition. But τj+1 cannot be a receive: if it were, there would have to be a
preceding send. In other words, T̃ i is synchronous. We have proved:

Corollary 2. Let M be a source-specific model of an MPI program and T a
trace terminating in a potentially halted state σ. Then there exist i ∈ N and
an ample trace T̃ terminating in σ such that |T̃ | ≤ |T |, ||T̃ || ≤ ||T ||, and T̃ i is
synchronous and terminates in a potentially halted state.

11

This leads to the following, which generalizes [8, Theorem 7.4], and is proved
in Appendix A.3. Note that 0 is used to denote the function on Chan which is
identically 0. Also, all of the examples of halting predicates given in Sec. 3 satisfy
the condition on q.

Corollary 3. Suppose M is a source-specific model of an MPI program, and
q is a state predicate satisfying q(σ) ⇒ q(σ′) for any simple global transition
(σ,σ′, t). Let f denote the predicate phalt ⇒ q, ν : Chan → N+, and m ∈ N+.
Then Π(Gν,m, f) ⇔ Π(G%

0,m, f).

5 The Relationship to Partial Order Reduction

We follow the presentation of POR techniques in [1, Chap. 10]. The goal is to
show that an arbitrary trace can be transformed into a representative form.
At each state σ in the representative trace, the transition departing from σ is
chosen from a specific “ample” subset of all transitions enabled at σ. (The word
transition in this context corresponds to a set of our global transitions.) If the
choice of ample sets satisfies certain conditions then the reduced state graph,
consisting of just the ample transitions, is guaranteed to be stutter-equivalent
to the full state graph, and hence can be used to verify any LTL−X property [1,
Cor. 2 and Thm. 12].

One of these conditions is the following: a transition that is dependent on a
transition in the ample set for a given state cannot be executed without a tran-
sition in the ample set occurring first. Unfortunately, because we have included
the synchronous transitions in our state graph, our definition of ample does not
satisfy this condition. Consider, for example, a client-server system with one
client. At the initial state, the sole ample transition is the one labeled c!?1. But
the path c!1, c?1 is also possible and both c!1 and c?1 are dependent on c!?1.

It could be argued that we would avoid this problem if we never introduced
the synchronous transitions in the first place. A process at a receiving state
would then be urgent when all the receiving channels have a pending message.
This would in fact lead to a correct algorithm, and is similar to the algorithm
suggested for message passing systems in [1, Sec. 10.5.2] and the one used by
Spin [5] (though other differences, discussed below, still arise). However, this
algorithm would miss many of the opportunities for reduction. Consider a client
server system with n clients. The system would not be in an urgent state until
every client had sent at least one request; in particular we would explore all
possible states of the n request channels for which at least one channel is empty.

Another condition concerns invisibility. A transition is invisible if it never
changes the value of a predicate referred to by the property (e.g., phalt). The
issue arises in the following context. Suppose we have a transition α that is
independent of transitions βi:

· · ·

· · ·

s = s0 s1 s2 sn

r0 r1 r2 rn = r

β0 β1 β2 βn−1

β0 β1 β2 βn−1
α α α α

12

If the current state of the depth-first search is s, then instead of investigating
both sequences of states σ = (s0, . . . , sn, r) and ρ = (s, r0, . . . , rn), we would like
to ignore σ and pursue only ρ. If α is invisible, then ρ and σ are stuttering equiv-
alent, so σ may be safely ignored. In our case, α would be an urgent transition,
which might be any local event, receive, or synchronous transition. Since all of
these may change phalt from false to true, α is not necessarily invisible. Why is
this not a problem for our method? Because an urgent transition can only be
enabled at a state that is not potentially halted, which is to say that phalt must
be false at all the si. Since our goal is to find all potentially halted states, we are
justified in ignoring the si. Notice that a send transition can change phalt from
true to false, and so it really would be a mistake to allow sends to be urgent.

A third condition states that the reduced graph cannot contain a cycle in
which some transition in the full graph remains enabled throughout but is not
included in the reduced graph. The point is to avoid the situation where a vis-
ible transition is delayed forever due to the insertion of an infinite number of
invisible ample transitions. Enforcing the condition typically requires a modifi-
cation to the depth-first search algorithm that involves checking whether a new
state is currently on the search stack. The whole issue does not arise in our case:
our method of transforming an arbitrary violating trace to an ample one never
involves inserting new transitions; it only permutes those that are already there.

6 Experimental Results

The eight scalable C/MPI programs used for our empirical investigation are
described in Appendix B. They range from standard toy concurrency examples
to more complex programs from a well-known book on MPI [3]. For each, we
constructed by hand an abstract model appropriate for verifying freedom from
deadlock. These models were encoded as certain Java classes that can be read
by the MPI-Optimized Verifier (Mover), a Java tool developed for this project.
Given the model and an object describing a halting property, Mover can either
(A1) execute a generic depth-first search of the state space to verify the property
or report any violations, (A2) execute the Urgent algorithm to do the same, or
(A3) produce a Promela model that can be used by Spin [4] to do the same.

The processes and channels in the Promela model correspond exactly to
those in the MPI model. There are no variables in the Promela, other than the
channels. The local states of a process are encoded by labeled positions in the
code. States with multiple departing transitions are encoded using the Promela
selection construct (if. . . fi). A never claim is inserted corresponding to the LTL
formula <>!(univenabled || terminated), where univenabled is defined to
hold whenever a synchronous, local, or receive event is enabled (the definition
refers to the lengths of the channels and the positions of the local processes),
and terminated is defined to hold when all terminating processes are at final
states. It might seem appropriate to use Spin’s xr and xs declarations, which
declare a process to have exclusive read or write access to a channel and provide
information to help the POR algorithm. However, this is not allowed, as the

13

never claim makes reference to all the channels, and in fact an attempt to use
those declarations causes Spin to flag the error. This is Spin’s way of recognizing
that the communication events may not be invisible with respect to the property.

(A different way to use Spin to verify freedom from deadlock for MPI pro-
grams is described in [9]. In that approach, every send is immediately followed
by a non-deterministic choice between blocking until the channel becomes empty
and proceeding without blocking. Freedom from deadlock can then be checked in
the usual way with Spin, i.e., without a never claim. While we have not carried
out an extensive comparison, it appears that the state-explosion is much worse
for that approach than for the approach presented here, due to all the new states
introduced by the non-deterministic choices.)

We applied all three approaches to each of the examples, increasing system
size n until n = 200 or we ran out of memory. In each case we recorded the
numbers of states and transitions explored, and the time and memory used. We
used the Java2 SDK 1.4.2 with options -Xmx1900M and Spin 4.2.0, with options
-DCOLLAPSE -DMEMLIM=2800 -DSAFETY; the maximum search depth also had to
be increased in some cases. The experiments were run on a Linux box with a
2.2 GHz Xeon processor and 4 GB of memory. In the one case where a deadlock
was found, the searches were stopped after finding the first counterexample.

Figures 3 and 4 show the number of states explored. We first observe that
the numbers for A1 and A3 are exactly equal in all cases where both searches
completed. Since A1 explores all reachable states, this means that Spin’s POR
algorithm (on, by default) made no difference in the number of states explored.
This is not surprising, since there are no invisible events for the algorithm to
exploit. For the one case where a violation exists, Spin did find the violation
much sooner than either Mover algorithm (Fig. 3(d)). This appears to be just
a fluke related to process ordering: we ran the same problem but reversed the
order in which the processes were declared (for both tools), and the results were
almost exactly reversed.

For the Client-Server, Producer-Consumer, and the two exchange examples,
the performance of A2 was the most impressive, reducing the complexity class
from one that is apparently exponential to one that is linear. For Monte Carlo
and Master-Slave, both functions appear to be exponential, but the exponent for
the A2 function is lower (significantly so for Master-Slave), allowing it to scale
further. In one case (Fig. 3(c)), the use of A2 makes almost no difference, but
there the number of reachable states was quadratic to begin with so there was
not much room for improvement. The Master Producer-Consumer proved the
most difficult: there seemed to be a small constant reduction but no approach
could scale beyond n = 4.

For Producer-Consumer, we give on one graph (Fig. 4, left) the results for
various values of ν. This graph demonstrates the impact of channel size on state
explosion for systems that can buffer many messages. For ν = 0, however, the
number of reachable states for the system of size n is just n+1, and A2 searches
that number of states for any value of ν, since the system contains no wildcard

14

0

1

2

3

4

5

6

7

8

 0 20 40 60 80 100 120 140 160 180 200

Generic
SPIN

Urgent
0

1

2

3

4

5

6

7

8

 1 2 3 4

Generic
SPIN

Urgent

(a) Client-Server, ν = 2 (b) Master Producer-Consumer, ν = 1

0

1

2

3

4

5

6

7

8

 0 20 40 60 80 100 120 140 160 180 200

Generic
SPIN

Urgent
0

1

2

3

4

5

6

7

8

 0 20 40 60 80 100 120 140 160 180 200

Generic
SPIN

Urgent

(c) Chansize Deadlocker, ν = n − 1 (d) Chansize Deadlocker, ν = n (violation)

0

1

2

3

4

5

6

7

8

 0 20 40 60 80 100 120 140 160 180 200

Generic
SPIN

Urgent
0

1

2

3

4

5

6

7

8

 0 20 40 60 80 100 120 140 160 180 200

Generic
SPIN

Urgent

(e) Exchange-Alternate, ν = 2 (f) Exchange-Sendrecv, ν = 2

0

1

2

3

4

5

6

7

8

 0 2 4 6 8 10 12 14 16 18 20

Generic
SPIN

Urgent
0

1

2

3

4

5

6

7

8

 1 2 3 4 5 6 7 8 9 10

Generic
SPIN

Urgent

(g) Master-Slave, ν = 2 (h) Monte Carlo, ν = 2

Fig. 3. Graphs of y = log10(f(n)), where f(n) is the number of states explored for the
system of size n, with channel size bound ν.

15

0

1

2

3

4

5

6

7

8

 0 5 10 15 20

SPIN/0
SPIN/1
SPIN/2
SPIN/3
SPIN/4
Urgent

-1

0

1

2

3

4

 0 2 4 6 8 10 12 14 16 18 20

Generic
SPIN

Urgent

Fig. 4. Producer-Consumer states for ν ∈ {0, 1, . . . , 4} (log10 of number of states, left),
and Master-Slave time (log10 of number of seconds, right).

receives. We also give the time for the Master-Slave example; typical of these
examples, the pattern is similar to that for the number of states.

In summary, the Urgent algorithm often dramatically reduced the number
of states explored. It can never increase that number, as long as the search is
carried to completion, nor did it appear to have a significant impact on the time
required to complete the search. In contrast, the POR algorithm implemented
in Spin had no effect on the number of states explored.

7 Conclusions and Future Work

We have presented a POR-like optimization to the standard model checking
algorithm for verifying halting properties of MPI programs. The algorithm seeks
to control state explosion by limiting the number of transitions explored that
involve buffering messages. We have demonstrated its effectiveness on several
scalable examples, including some with wildcard receives.

A better validation of effectiveness would utilize more “realistic” examples.
There is no guarantee that scaling our simple examples presents the same kind
of challenge to the Urgent algorithm that an actual production-level MPI code
would. Due to the difficulty of creating models by hand, this task would benefit
from an automated MPI model extractor. We intend to develop such a tool, and
use it to verify not only freedom from deadlock, but also other halting properties.
For example, we would like to model the arithmetic computations performed by
an MPI program symbolically, and check that at termination the program has
arrived at the correct arithmetic result.

Finally, the study of domain-specific approaches may also shed light on the
general framework. The standard POR definition of independence, for example,
was shown to be inadequate for Java programs, and so the authors of [2] pre-
sented a generalization of the POR framework that introduced the concept of
conditional independence. It would be interesting to see if the standard POR
framework could be extended to incorporate the idea of switching between a
synchronous and a buffering mode, generalizing our MPI-specific approach.

16

References

1. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

2. Dwyer, M.B., Hatcliff, J., Robby, Ranganath, V.P.: Exploiting object escape and
locking information in partial-order reductions for concurrent object-oriented pro-
grams. Formal Methods in System Design 25 (2004) 199–240

3. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with
the Message-Passing Interface. MIT Press, Cambridge, MA (1999)

4. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)
5. Holzmann, G.J., Peled, D.: An improvement in formal verification. In Hogrefe,

D., Leue, S., eds.: Formal Description Techniques VII, Proceedings of the 7th IFIP
WG6.1 International Conference on Formal Description Techniques, Berne, Switzer-
land, 1994. Volume 6 of IFIP Conference Proceedings. Chapman & Hall (1995)
197–211

6. Message Passing Interface Forum: MPI: A Message-Passing Interface standard,
version 1.1. http://www.mpi-forum.org/docs/ (1995)

7. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Inter-
face. http://www.mpi-forum.org/docs/ (1997)

8. Siegel, S.F., Avrunin, G.S.: Modeling MPI programs for verification. Techni-
cal Report UM-CS-2004-75, Department of Computer Science, University of Mas-
sachusetts (2004)

9. Siegel, S.F., Avrunin, G.S.: Verification of MPI-based software for scientific compu-
tation. In Graf, S., Mounier, L., eds.: Model Checking Software: 11th International
SPIN Workshop, Barcelona, Spain, April 1–3, 2004, Proceedings. Volume 2989 of
Lecture Notes in Computer Science. Springer-Verlag (2004) 286–303

A Proofs

A.1 Proof of Theorem 1

The following assert the independence of certain transitions in a model M of an
MPI program. They are easily established from the definitions:

Lemma 1. Suppose M has global states σ0, σ1, and σ2, and local transitions
t1 and t2 that lie in distinct processes, such that (σ0,σ1, t1) and (σ1,σ2, t2) are
global transitions. Assume furthermore that if label(t2) = c?x for some c ∈ Chan
and x ∈ msg(c), then x occurs in Pendingc(σ0). Then M has a global state σ′

1

for which (σ0,σ′
1, t2) and (σ′

1,σ2, t1) are global transitions.

Lemma 2. Suppose p ∈ Proc, u is a send-receive state in Statesp, t1, t2 ∈
Transp, c, d ∈ Chan, x ∈ msg(c), y ∈ msg(d), and σ0,σ1,σ2 are global states
such that all of the following hold:

1. {label(t1), label(t2)} = {c!x, d?y},
2. statep(σ0) = u,
3. (σ0,σ1, t1) and (σ1,σ2, t2) are global transitions for M, and
4. if c = d then y occurs in Pendingc(σ0).

17

Then there exists a global state σ′
1, and transitions t′1, t

′
2 ∈ Transp such that

label(t′i) = label(ti) and (σ0,σ′
1, t

′
2) and (σ′

1,σ2, t′1) are global transitions for M.

We now turn to the proof of Theorem 1.
Let S be the given path, and N = |S|. We will show by induction on m that

for 0 ≤ m ≤ N , there exists a path T from σ0 to σ such that |T | ≤ N , T m is
ample, ||T || = ||S||, and maxlenc(T) ≤ maxlenc(S) for all c ∈ Chan. For m = 0,
we may take T = S. The case m = N is the desired conclusion.

Suppose 0 ≤ m < N and the inductive hypothesis holds for m. Write T =
(τ1, . . . , τn) and σi = des(τi). We must construct a trace T̃ for which the inductive
hypothesis holds for m+1. If m ≥ n then we may take T̃ = T , so assume m < n.

If σm is not urgent we may take T̃ = T , so assume σm is urgent. Let p be
the minimal element of Urgent(σm) and u = statep(σm). By definition, either (i)
u is a local event state, or (ii) u is a receiving or send-receive state.

Suppose u is a local event state. Then there exists k with m < k ≤ n such
that label(τk) is a local event in process p and, for m < i < k, τi does not
involve p. For if this were not the case, a local event would be enabled at σ,
and σ would not be potentially halted. Now we may use Lemma 1 to move this
local event to the left until it is in position m + 1. (If a synchronous transition
is encountered along the way, it may be replaced by its two simple parts, each
of which commutes with the local event, and then the two parts can be merged
back to the synchronous transition.) Hence there exists a trace

T̃ = (τ1, . . . , τm, τ ′k, τ ′m+1, . . . , τ
′
k−1, τ

′
k+1, . . . , τ

′
n) (2)

that terminates in σ and for which label(τ ′i) = label(τi) for m < i ≤ n. As
label(τ ′k) is a local event in process p, T̃ m+1 is ample, as required. Clearly ||T̃ || =
||T ||, |T̃ | = |T |, and the maxlenc are also unchanged, so the inductive step is
established for this case.

Suppose instead u is a receiving or send-receive state. Again, we know that
one of the channels d in Q(u) must eventually receive a message in T , else
a receive or synchronous event would be enabled at σ, and σ would not be
potentially halted. However, if u is a send-receive state, it is possible that the
send event for that state takes place before the receive on d. Hence there exist
an integer k, d ∈ Q(u), and y ∈ msg(d) such that m < k ≤ n, label(τk) ∈
{d?y, d!?y}, and there is at most one i, m < i < k, for which τi involves process
p, and if there is such an i then u is a send-receive state and label(τi) ∈ {c!x, c!?x},
where c!x is the label of the send transition departing from u.

If the projection of Pendingd(σm) onto Rd(u) is nonempty then that projec-
tion must begin with y. In this case, we must have label(τk) = d?y, since the
synchronous event can only take place if there are no pending messages. Now
we may use Lemma 1 and Lemma 2 to move the d?y in position k leftward to
position m + 1 and produce the desired trace T̃ , just as in the case of the local
event state. We again have ||T̃ || = ||T ||, |T̃ | = |T |, and T̃ m+1 is ample. More-
over, since this transformation has only caused a receive to take place earlier
in the sequence, the maxlenc cannot have increased. Hence the inductive step is
established in this case as well.

18

So suppose Pendingd(σm) does not contain an element of Rd(u). It then
follows from the definition of urgent that v = stateq(σm) is a sending or send-
receive state with outgoing send transition labeled d!y, where q = sender(d).
Hence for some j, m < j ≤ k, label(τj) ∈ {d!y, d!?y}. Furthermore, there is at
most one i, m < i < j, for which τi involves process q, and if there is such an i
then v is a send-receive state and label(τi) ∈ {e?z, e!?z}, where e?z is the label
of the receive transition departing from v.

If j = k then label(τj) = label(τk) = d!?y, while if j < k then label(τj) = d!y
and label(τk) = d?y.

Assuming j < k, the two Lemmas allow us to move the d!y in position j
leftward to position m+1, and then we may move the d?y in position k leftward
to position m + 2. Now the transitions in positions m + 1 and m + 2 can be
combined into a single synchronous transition labeled d!?y.

If j = k, the synchronous transition τj may be replaced by its two simple
parts and the argument in the paragraph above may be applied.

In any case, the resulting trace T̃ has an ample prefix of length m + 1,
||T̃ || = ||T ||, and |T̃ | is either |T | or |T |− 1. To see that we have never increased
maxlend, we argue as follows. The same transformation on the sequence of events
is accomplished if we first move the receive d?y leftward to meet the send d!y,
then combine these two into a synchronous transition, then move the entire
synchronous transition leftward to position m+1. Since moving a receive to the
left cannot increase channel length, and a synchronous transition has no effect
on any channel, the result cannot increase maxlend. 12

A.2 Proof of Corollary 1

Let S be the given path. We will show by induction on i that there exists a path
T = (τ1, τ2, . . .) from σ0 to σ in Gν,m for which ||T || = ||S|| and τj ∈ T %

ν,m for
1 ≤ j ≤ i. For i = 0, we can take T = S, while the case i = 2||S|| is the desired
result, since |T | ≤ 2||T || = 2||S||.

So suppose the inductive hypothesis holds for i and we wish to construct a
path T̃ demonstrating that it holds for i + 1. If i ≥ |T | we can take T̃ = T , so
assume i < |T |. By applying Theorem 1 to the path (τi+1, . . .), we may assume
that T is ample. Now if τ = τi+1 satisfies (1) we may take T̃ = T , so assume
label(τ) = c!?x, σ′ = src(τ) is not urgent, and |Pendingc(σ′)| < ν(c). In this case,
we form T̃ by replacing τ with the two simple transitions α,β labeled c!x, c?x,
respectively. Now α is ample, since σ′ is not urgent, it satisfies (1), and at des(α),
the number of pending messages in c is at most ν(c). Moreover, ||T̃ || = ||T ||. 12

A.3 Proof of Corollary 3

Clearly Π(Gν,m, f) ⇒ Π(G%
0,m, f), so suppose Π(Gν,m, f) does not hold. Then

there is a trace of atomic length at most m terminating in a state σ which is
potentially halted but for which q(σ) does not hold. By Corollary 2, there is an
ample trace T = (τ1, . . .) terminating in σ with ||T || ≤ m, and an integer i such

19

that T i is synchronous and terminates in a potentially halted state σ′. Since
src(τj) is urgent for j ≤ i, condition (1) holds for T i, so T i is a path in G%

0,m. If
q(σ′), then by our assumption on q, we would have q(σ), a contradiction. Hence
f(σ′) does not hold, and so Π(G%

0,m, f) does not hold. 12

B The Examples

Client-Server. See Sec. 4.1.

Producer-Consumer. A system of 1 producer and n consumers. The producer
repeatedly chooses a consumer and sends to it. The consumers repeatedly receive.
State machines for n = 2 (unlabeled edges are local event transitions):

c1!1 c2!1

c1?1 c2?1

Master Producer-Consumer. A producer-consumer system with 1 “master pro-
ducer,” n producers, and 1 consumer. The master chooses a producer randomly
and sends it a message, and then repeats. Each producer, after receiving a mes-
sage from the master, passes the message on to the consumer. The consumer
receives the messages using a wildcard receive. State machines for n = 2:

c1!1 c2!1

c1?1

d1!1

c2?1

d2!1 d2?1d1?1

Chansize Deadlocker. For any n ≥ 1, this provides an example of an MPI pro-
gram that may deadlock if channel size ν ≥ n, but is deadlock-free if ν < n.
This generalizes the example given in [8, Fig. 5]. For all n, the system consists
of three processes; but the number of consecutive c!1 transitions equals n:

. . .c?1

d?1

c?1 c?1

d?1
d?1

. . .c!1 c!1 c!1 e!1 e?1 d!1

Exchange-Alternate. Suppose n processes are arranged cyclically and each has
a single value. We wish for each process to obtain the values of its left and right
neighbors. This can be accomplished in two “exchanges.” In the first exchange,
each process must send its value to its right neighbor, and receive the value
from its left neighbor. In the second exchange, the role of right and left are
reversed. An issue arises in coding the exchanges. If each process first sends, and
then receives, the program may deadlock if the MPI infrastructure chooses to
synchronize all the sends. There are several well-known solutions to this problem.
In this solution, based on the code of [3, Fig. 4.12], the deadlock is avoided by
having the processes of odd rank first receive and then send, while the processes
of even rank first send and then receive. The pair of exchanges is repeated 3
times. For n = 4, the state machines for processes 0 and 1 are as follows:

20

c0!0 c3?0 d0!1 d1?1 c0!0 c3?0 d0!1 d1?1 c0!0 c3?0 d0!1 d1?1

c0?0 c1!0 d2?1 d1!1 c0?0 c1!0 d2?1 d1!1 c0?0 c1!0 d2?1 d1!1

Exchange-Sendrecv. Another solution to the exchange problem, in which the
deadlock is avoided by coding each exchange using MPI_SENDRECV(cf. [3, Fig.
4.14]). For n = 4, the state machine for process 0 (the others are similar):

c0
!0

c
3 ?0

c
3 ?0

c0
!0

d0
!1

d
1 ?1

d
1 ?1

d0
!1

c0
!0

c
3 ?0

c
3 ?0

c0
!0

d0
!1

d
1 ?1

d
1 ?1

d0
!1

c0
!0

c
3 ?0

c
3 ?0

c0
!0

d0
!1

d
1 ?1

d
1 ?1

d0
!1

Master-Slave. Based on the program of [3, Sec. 3.7], which employs a master-
slave architecture to parallelize matrix multiplication. The system consists of
one master process, and n slave processes. We assume there are 3n tasks to be
performed. The master begins by sending out a task (represented in the model
by “1”) to each slave. It then waits at a wildcard receive for results to come in.
After receiving a result from (say) slave i, it then sends out the next task to
slave i, and waits for the next result. The master continues in this way until all
tasks have been handed out. It then receives the outstanding results and as each
comes in, the master sends a termination message (represented by “0”) to the
slave, and finally, the server terminates. State machines for n = 2:

c1!1 c2!1
d1

?1

d
2 ?1

c
1 !1

c2
!1

d1
?1

d
2 ?1

c
1 !1

c2
!1

d1
?1

d
2 ?1

c
1 !1

c2
!1

d1
?1

d
2 ?1

c
1 !1

c2
!1

d1
?1

d
2 ?1

c
1 !0

c2
!0

d1
?1

d
2 ?1

c
1 !0

c2
!0

c1?1
c1?0

d1!1

c2?1
c2?0

d2!1

Monte Carlo. Based on the program of [3, Figs. 3.15–3.18], which uses a Monte
Carlo algorithm to estimate π. The system consists of n worker processes, and
a random number server process. A worker begins by sending a request to the
server for a random number. After receiving the random number, it performs
a local computation. Next, all the workers engage in a collective call to MPI_-
ALLREDUCE. Another local computation is performed and then a second call
to MPI_ALLREDUCE takes place. At this point each worker compares the result
returned by the second reduction call to a constant δ > 0. If the result is less
than δ, the worker terminates, although the first worker first sends a termination
message to the server. Otherwise, the worker sends another request to the server
and loops back to receive the response. In the model, the two calls to MPI_-
ALLREDUCE are handled by two coordinator processes. The second of these two

21

chooses non-deterministically between returning a “0” or a “1” to all the workers;
the value returned represents the boolean value of the predicate that the sum
computed is less than δ. For n = 2, the state machines for the two workers, the
server, and the two coordinators are, respectively, as follows:

c0!1

d0?1

ε0!1

ξ0?1

ε′0!1ξ′
0?0

ξ′
0?1

c0!0

c0!1

c1!1

d1?1

ε1!1

ξ1?1

ε′1!1ξ′
1?0

ξ′
1?1

c1!1

c0?1 d0!1

c1?1 d1!1

c0?0

ε0?1

ε1?1

ξ0!1

ξ1!1

ε′0?1

ε′1?1

ξ′
0!1

ξ′
1!1

ξ′
0!0

ξ′
1!0

