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1 Abstract

Multi-label classification, the task of assigning one or more class labels to a document, arises in many
domains. In the multi-label domain the categories need not be independent. As examples, a news article may
be about multiple related topics and a medical journal article may pertain to multiple medical conditions.
A common approach to multi-label classification is to train independent binary classifiers for each label,
but this approach fails to exploit dependencies between labels. This paper explores conditional random
field models for classifying documents that may have multiple labels. Single-label CRF models maintain
features for word occurrence patterns; the models that this paper describes additionally maintain features
corresponding to label co-occurrence patterns. These models outperform their independently trained single-
label counterparts using several evaluation metrics on widely used corpora having varying characteristics.
For example, even for sparsely multi-labeled corpora the models reduce subset classification error by as
much as 30%. In addition, the models exhibit comparable F1-scores to the best performing classifiers under
similar training conditions.

2 Introduction

Given a set of categories in a domain of text documents, a document may belong to multiple categories, and
the categories need not be independent. For example, a news article may be about both oil and pollution, two
topics that are related, specifically with respect to articles about the envinronment. Successful multi-label
document classification, the task of assigning a document to one or more categories, is more complicated
than the single-label classification task, since the categories may not be mutually exclusive. For instance,
a news article about the effects of an economic recession on public health might belong to the topical cat-
egories HEART FAILURE, STROKE and RECESSION. The multi-label classification task arises in domains
such as news article classification and medical diagnosis research. In such situations, text documents in dif-
ferent classes may be similar with respect to patterns in their features. In other multi-label domains, classes
are not mutually exclusive, by definition. One such domain is semantic scene analysis [Boutell et al., 2003],
which includes the task of automatically classifying images into categories according to descriptions of their
scenes. The classes MEADOW and FOLIAGE are not mutualy exclusive, since a meadow scene is likely to be
also a foliage scene (whereas STROKE and RECESSION are not inherently related).
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A common approach to automatic classification of documents belonging to more than one class is to
independently train a binary classifier for each class, and classify a document into a category if the cor-
responding binary classifier scores above some threshold. Comparative experiments using 14 classifiers
have been conducted [Yang, 1998], among which the classifier methods Widrow-Hoff, k-nearest-neighbor,
neural networks and Linear Least Squares Fit Mapping had the best performance using the micro-averaged
precision-recall breakeven point as a metric. Support vector machines are also powerful models for this
task [Joachims, 1998]. Decision tree learning methods that exploit information gain [Chen and Ho, 2000]
demonstrate comparable performance.
Another approach to multi-label document classification involves category ranking, in which each cate-

gory receives some ranking in classifying a document , and is deemed to belong to the categories that
rank above some threshold. For example [Schapire and Singer, 1999] develop a boosting algorithm that
discovers a weak real-valued hypothesis over documents and labels that gives rise to such a ranking. The
ranking model described in [Crammer and Singer, 2002] learns a prototype feature vector for each class
given training data, so that the rank of a class is the angle between its prototype and . For each category,
the model in [Gao, et al., 2004] trains independent classifiers that may share some parameters, and ranks
each classification according to a classification confidence measure. However, none of these approaches
leverages information about label co-occurrences in determining multi-labelings.
An ideal model for multi-label classification would directly capture the dependencies between labels,

where these approaches do not: knowing that with a high proability, a document belongs to the category
IRAQ and has the term increases the probability that the document belongs to the category OIL: the
topics OIL and IRAQ may co-occur relatively frequently, and one might expect that documents having the
word would be about oil, but the probability that an article having the word is about Iraq is
lower.
This paper presents two new graphical multi-label models that capture the dependencies between pairs

of labels and between labels and terms. In these models, edges correspond to features, and using the bag-
of-words approach to natural language processing, nodes correspond to class labels and to terms. A feature
is a function of a document and a class label in single-label classification. In the multi-label case a feature
can be a function of a document and a set of class labels. The multi-label models developed in this paper
maintain one feature for each term and label, capturing the co-occurence patterns between individual terms
and labels. Additionally the first model, the Collective Multi-Labels classifier (CML), maintains features
for each pair of labels, and the second model, the Collective Multi-Labels with Terms classifier (CMLT),
maintains, for each term, a feature corresponding to each pair of labels.
Three multi-label corpora are used in experiments: Reuters-21578, OHSU-Med, and a small corpus

of software usability reports. Each corpus has a different structure for its label taxonomy, different size
and different noise level. The multi-label models presented outperformed the independent binary classifier
approach using all three datasets. In particular, the models reduced error in subset classification by as much
as 27%. Furthermore, in most experiments, the multi-label models resulted in higher per-label F1 scores,
and sometimes reduced error in macro and micro averages by 9%. On benchmarked experiments with the
Reuters-21578 corpus, the models resulted in comparable F1 macro- and micro- averages to that of the best
reported results.

3 Three Models for Multi-Label Classification

Conditional models for text classification provide a rich framework for representing relationships between
classes and features of a given domain. Furthermore, conditional models often outperform their generative
counterparts in text classification.
Conditionally trained undirected graphical models, or conditional random fields, can be used to model



dependencies between terms and labels. These dependencies determine the conditional probability values on
certain output nodes given the values of other input nodes by, given some clique parameterization, constrain-
ing the uniformity of the distribution. Maximum entropy is based on the principle that the distribution over
variables corresponding to output nodes is uniform, barring these constraints. make a stronger connection
here, i.e., because the constraints are the expected values of the features, or clique parameterizations?
Therefore maximum entropy models can be interpreted as conditionally trained CRF models.
Maximum entropy solutions to natural language processing issues have shown to be competitive means

of estimating probability distributions from data. The principle is appealing since it assumes no other de-
pendencies apart from those explicitly captured by the graphical model. In fact, in several cases maximum
entropy solutions outperform competitors. Maximum entropy principles have been employed in language
modeling [Chen and Rosenfeld, 1999, Rosenfeld, 1994], and text segmentation [Beeferman, et al., 1999,
McCallum, Frietag, and Pereira 2000]. Other uses of maximum entropy in natural language processing in-
clude named entity recognition [Chieu and Ng, 2002] with binary-valued features for frequently used words
in the corpus, useful n-grams, and word suffixes, for example. Maximum entropy has also been applied to
part-of-speech tagging using contextual features [Ratnaparkhi, 1996], identifying sentence boundaries given
some features representing the context of the punctuation mark [Reynar and Ratnaparkhi, 1997], and deter-
mining the actions taken by a text parser using the context of an instance (whose features are contextual
predicates) [Ratnaparkhi, 1997]. The maximum entropy approaches to the problem of document catego-
rization presented in this paper use the bag-of-words model and employ features to capture co-occurrence
patterns. The constraints are the expected values of these features.

3.1 Single-label Model

In maximum entropy classification of single-label documents, any real-valued function of the document
and class , can be treated as a feature. The trainer seeks to estimate the distribution of the class
labels given . Given training data (having vocabulary and set
of classes), and some feature , the estimated distribution must have the following property

[Nigam, Lafferty, and McCallum, 1999]:

(1)

Thus in the case of single-label documents, the constraints are the expected values of the features computed
using the training data. Given the features , and , the parameters to be estimated, and the variable
enumerating the features, the distribution is always of the parametric exponential form

(2)

where

and is the normalizing constant with respect to the features:

(3)

The distribution is guaranteed to have this form, and furthermore the likelihood surface is convex
[Berger, et al., 1996] (having one global maximum and no local maxima). Thus a hill climbing approach
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Figure 1: Factor graphs representing the three maximum entropy models, where is a label and is a
term.

to finding the maximum, starting from any initial exponential distribution, suffices to find the maximum
entropy solution. BFGS [Byrd, et al., 1994] is a fast optimization method that can be used to find the global
maximum of the likelihood function given the gradient.
Given , the log likelihood of parameters is

(4)

where the last term is due to the Gaussian prior used to reduce overfitting. The maximum entropy learner
attempts to find a that maximizes the log likelihood iteratively. The gradient of the log likelihood function
(with respect to ) at is

(5)

Solving for the pivotal requires an optimization algorithm, since this is not a closed form solution.

3.2 Accounting for Multiple Labels

In the CRF model in which each document has only one label, computing the conditional probability
of each label involves a summation over features. If a document has multiple labels, then the condi-
tional probability distribution that the multi-label model learns is over subsets of the label set , viewed
as binary-valued functions of , which we will represent as a bit vector of length . Let

be the training data. In the most general form, given instance

(6)

where

and is the global normalizing constant.



3.3 Binary Model

The binary CRF model trains an independent binary classifier for each label , using a particular partition
of the training instances into positive and negative classes, resulting in a distribution over the set of labels

. Then is as in Equation 2, except that and

However,
(7)

where is the value of label in . As before, the binary model maintains a feature for each pair consisting
of a word and a label, but the classifiers are completely independent.

3.3.1 CMLModel

CML, like the single-label model, maintains a feature for each pair consisting of a label and a term. However,
it additionally maintains features accounting for label co-occurrences. That is, for each document feature
vector and each distinct pair of labels and , there are four features according to the co-occurrence
pattern, , between those labels in :

feature
0 neither nor labels
1 but not labels
2 but not labels
3 both and label

Therefore in classifying documents in a domain of labels, a document will have label-pair features
to consider, together with the label-term features. Experiments described represent these features with
binary values. Thus, for example, if a training document has features and label vector , then for
WHEAT GRAIN , is if the document is labeled GRAIN but not WHEAT, and otherwise. With
variables and enumerating the two types of features, the probability distribution thus becomes

(8)

where

and

The CML log likelihood of the parameters is similar to that in the singly-labeled maximum entropy model:

(9)



Likewise, the gradient of the log likelihood function at is

(10)

but at it is

(11)

CML captures the flavor of label co-occurrences in the corpus independent of the feature values of the
document. Effectively, for each label set, it adds a bias that varies proportionally to the label set frequency
in training data. Figure 1(b) represents this model.

3.3.2 CMLTModel

Label co-occurrenes in a document labeling are not independent of the word features in the document. For
instance, a document belonging to the categories RICE and SOYBEAN might have increased likelihood of
being automatically correctly classified if the document has the term , while reduces the
belief that the document belongs to the category ALTERNATIVE FUELS. Similarly, the presence of the term

increases the likelihood that the document belongs to the category ALTERNATIVE FUELS but decreases
the likelihood that the document belongs to SOYBEAN. In that spirit, as the factor graph in 1(c) reflects,
the edge potential between labels - that is, the label pair features - is not independent of the terms. The
CMLT model maintains parameters that correspond to features for each triplet, cap-
turing parameter values for RICE SOYBEAN , and ALTERNATIVE FUEL SOYBEAN ,
for example.
Then CMLT defines feature parameters over the labels and words as in CML,

but, unlike CML, also defines parameters over pairs of labels and words,

for a total of parameters for labels. The corresponding conditional probability distribution that
CMLT learns is

(12)

The gradients of the log likelihood at and at are the same as that of Equations 10 and 11, respectively,
except that enumerates different features (so is as defined in Equation 12).
Note that unlike CML, CMLT does not capture the co-occurrence relationship between each pair of

labels. In CMLT, the feature is non-zero for a given training document only if both labels label the
training document which has at least one occurrence of the term.
Factor graphs can be used to represent the three types of models (Figure 1). Factor graphs, rather than

graphical models, graphically illustrate which parameteration of cliques each model considers in learning
the conditional distributions [Bunescu and Mooney, 2004, Kschischang, 2001]. The features correspond to
factors in the factor graphs. In the factor graphs in Fig. 1(b), for example, the features involve pairs of labels
as well as term-label pairs; in Fig. 1(c), for each term, there is a feature for each label and a feature for each
pair of labels.



Learning model parameters in these models is exactly the same as in the single-label model: BFGS is used
to find the optimal parameters given the gradient of the log-likelihood functions. Note that neither multi-
label maximum entropy model assumes that the label taxonomy has any complex structure (for example,
hierarchical) – each simply accounts for label co-occurrences.

Input: set of training documents having feature vector and labels , and set
of combinations of labels

Output: classifier with learned parameters for computing of unseen
feature vector .

1. Initialize maximizable trainer:

compute constraints from feature vectors and label(s) as
expected values of features. That is,

and

where is as defined for the given multi-label classifier.

2. Initialize a maximizer function (l-BFGS)

3. Repeat for maximum iterations or until converged:

use maximizer to maximize the log likelihood of , producing :
a. with current parameters , compute the gradient of the log
likelihood: For each training document having features , use
to score all , resulting in . That is, for each
compute

and analogously compute the gradient point for each .

b. add to the gradient

c. use the result with l-BFGS to compute that maximizes log
likelihood, and set to .

4. Output resulting classifier with learned parameters .

Figure 2: The learning algorithm.



Figure 3.3.2 summarizes the learning algorithm. CMLT models maintain a parameter for each feature and
pair of labels that occur in the training data. Given a vocabulary of terms, distinct subsets of labels,
for each training document, the CMLT training algorithm has complexity in worst case, and the
model requires space . CML, which accounts for label co-occurrences irrespective of features,
has training complexity per document and requires space . In contrast the bi-
nary classifiers require time and space asymptotically the same as that of CML, but the independent binary
classifier technique is faster than the multi-label models in most experiments.

4 Inference

CML and CMLT can learn a probability distribution over select subsets of a given label set. For instance, the
models may learn a distribution over subsets of the 10 most common training labels in a corpus. For example,
this may be the distribution over all possible combinations of the 10 labels, or it may be a distribution
over only combinations of labels that occur in the training data. CML and CMLT, as inference tools for
classification, can provide a means for attributing the best subset of labels to an instance, regardless of the
presence of the combination in training data. There are three alternatives for inference.

4.1 Exact inference

Exact inference requires learning a probability distribution over all subsets of labels. This method is intu-
itively appealing because it is easy to explain and informative in that it offers a probability score for each
combination of labels, regardless of the combinations presence in the training data. There are such sub-
sets for labels, however, so the problem is tractable for 3-12 classes, but it becomes intractable when there
are more than about 12-15 classes.

4.2 Supported inference

CML and CMLT efficiently learn the distribution over only the label combinations that occur in training data
(that is, the combinations that are supported by the training data). For the top 10 classes in Reuters-21578,
of the 2545 test instances, 16 belong to combinations of categories that do not occur in training data, so
these instances must have incorrect subset classification. In general as there are more classes relative to the
corpus size, the likelihood of rare combinations increases. For the entire ModApte split, the error due to
this scheme is more significant: there are 117 of 2998 test instances with combinations of labels that do not
occur in training data. If CML and CMLT use this method of inference, then comparing techniques requires
excluding these test instances in computing the performance metrics. Thus when there are few classes and
few such outliers, or when such rare combinations are believed to only introduce noise, then supported
inference is a reasonable solution.

4.3 Binary pruning

Binary pruning is one compromise of the supported and exact inference methods. Instead of purely exhaus-
tive inference, a solution to the inference problem is to first train an independent maximum entropy binary
classifier for each label. For each document, each classifier then has a probability score for the respective
class, and exhaustive inference can be performed using the labels having probability scores above a certain
threshold. The advantage of this technique is that it is possible to correctly classify test documents whose
actual combinations do not occur in the training data, but it is more feasible than purely exact inference.
Furthermore, by offering a hierarchical solution selecting only the best scoring classes for each document,
this approach reduces overfitting of the model parameters to the training data. In general, using a threshold



value that results in competitive performance as the supported inference method with the same vocabulary,
binary pruning requires less training time than supported inference.

5 Experiments

Experiments with the multi-label classifiers were done using three multi-label corpora: Reuters-21578,
OHSU-Med, and a small corpus of usability reports, each of which Aptima, Inc.* culled from the Web and
manually classified. The corpora differed in the noise level and length of documents as well as in the label
taxonomy and distributions of the labels.

5.1 Document Reprsentation

Document term vectors can be represented several ways. With the exception of the features of CML, term
counts were used for experiments. That is, given document with label vector ,

if the document was labeled with with , and

otherwise, where for a given document, is the number of occurrences of term in . In some
experiments, terms occurring fewer than k times in all training documents were ”cut” from consideration.
Additionally, terms that are “uninformative” are excluded from the vocabulary. That is, some terms may
occur frequently in documents of a particular class but less frequently in documents of other classes. Such
terms are very informative, so they should have a higher weight than their counterparts. The“mutual infor-
mation” of each term is calculated based on the subset of classes it occurs in, similarly to the information
gain definition in [Mitchell, 1997]:

where is the entropy of set , is the set of values that term can take on, is the document
corpus, is the set of documents having value for term . Entropy signifies the impurity of a set of
instances:

where is the proportion of instances in labeled . The entropy in the set is highest when the distribution
over classes is uniform. Then terms can be ranked according to their value. In experiments described
in this paper, mutual information was used to rank terms and select the most informative ones. This resulted
in improved test set performance for all classifiers.

5.2 Label Taxonomies

Labels of text documents in a multi-label corpus may be related in systematic ways. That is, the label
taxonomy may have a specific structure. Three major types of label taxonomies are hierarchical, multi-
dimensional, and simple.



Simple The multiple labels of a given document are not constrained by any structure imposed by the tax-
onomy, such as categories and sub-categories of labels. For instance, a document might have topics
WHEAT as well as CORN.

Hierarchical A document labeling may belong to classes and subclasses. For instance, a document about
grain and wheat may be labeled GRAIN as well as WHEAT, while another document about tomatoes
and corn might be labeled CORN, TOMATO and VEGETABLES.

Multi-dimensional Each dimension of the label taxonomy consists of several possible labels. For instance,
a classification taxonomy may require all documents to have a “topic” label for which documents may
be labeled CORN, as well as a “place” label such as ILLINOIS, NORTH AMERICA.

Note that hierarchical and multi-dimensional label taxonomies can be generalized to simple taxonomies.
For instance, a document in class GRAIN and subclass WHEAT could be considered part of the single class
GRAIN-WHEAT. The multi-label models described in this paper best represent the simple taxonomy.

5.3 Corpora

5.3.1 Reuters-21578

Widely used Reuters-21578 experiments on the entire corpus typically employ the ModApte version of the
corpus, in which all labeled documents that occur before April 8, 1987 are treated as training documents,
and all labeled documents after this date are used in testing. Furthermore, it includes only classes which
have at least one training and one testing document, for a total of 90 classes and 94% of labeled documents.
There are 10,702 total documents, 7,704 of which are training documents.
The Reuters-21578 topical dataset has a simple label taxonomy. Each document belongs to one or more

topical classes. Roughly 8.7% of the Reuters-21578 documents have more than one topic label. The Reuters
experiments used subsets of the dataset which included documents that were “tightly labeled”. That is, ideal
classes, say APPLE, ORANGE, and CITRUS, have the properties that APPLE and ORANGE co-occur frequently,
and CITRUS either occurs infrequently with the former classes, or co-occurs frequently with either APPLE
or ORANGE, but not both. Table 10 depicts the distribution of documents corresponding to one such subset
of classes, hereafter known as ReutSM.
For ReutSM, each of the 15 combinations of the five labels that occurs in the training set also occurs

in the test set The label SHIP exclusively labels a document 87% of the time, while 10% of the time it co-
occurs with GRAIN, the largest category labeling 61% of instances and belonging to 10 of the 15 distinct
combinations of labels occurring in the training data. Furthermore 99% of WHEAT instances are also GRAIN
instances.
Other Reuters experiments presented in this paper used only the documents belonging to the 10 largest

classes (Reut10), which included about 84% of the documents in the ModApte split and formed 39 distinct
combinations of labels occurring in the training data. Table 1 depicts the distribution of labels in Reut10.
Notably 98% of ACQ instances belong to no other category, and similarly for EARN. Among MONEY-FX in-
stances, 84% are INTEREST instances and 16% are TRADE instances. For most classifiers, reports of ReutAll
experiments, using all 90 classes and corresponding documents of the ModApte split, having 372 distinct
combinations of labels in training, is intractable. Although the multi-label models required several days to
train, and CMLT classifiers required considerable memory, feature selection using information gain and cut-
ting features facilitated model training and improved their performance. Table 2 depicts the distribution of
multi-label cardinalities in the ReutAll test set, together with the label classification error rate of the binary
classifiers. The fact that the error rate increases as the multi-label cardinality increases suggests that the
labels are not independent and furthermore that it is advantageous to leverage the label co-occurences.



label count multi-label count
grain 582 469
wheat 283 282
corn 237 237

money-fx 717 218
acq 2369 50
crude 578 120
earn 3964 34
interest 478 188
trade 486 60
ship 286 120

Table 1: Distribution of documents in the Reuters-21578 corpus over categories of Reut10, where the first
column is the count of documents belonging to the respective category, and the second column is the number
of documents belonging to at least one other category. For example, WHEAT and CORN almost always co-
occur with some other label, but ACQ, EARN and TRADE hardly ever do.

number of labels 1 2 3 4 5 6 7-14
number of documents 2561 308 64 32 14 6 13
binary model error 0.142% 0.641% 1.46% 1.98% 1.85% 3.33% 5.83%

Table 2: Histogram of ReutAll test set combinations of labels by combination cardinality, and the binary
model label mis-classification rate (that is, the fraction of times a category was incorrectly classified for
each label cardinality). Note that as the cardinality of a multi-labeling increases, the binary models are
more likely to incorrectly attribute (or fail to attribute) a label to a document. This suggests that it is
potentially advantageous to consider label co-occurrences in classifying a document.

5.3.2 OHSU-Med

The OHSU-Med corpus [Hersh, et al., 1994], commonly used in text classification, is a collection of titles
and abstracts of medical research journal articles from 1989-1991. There are over 14,000 unique categories,
and each article belongs to an average of 13 categories. The Medline label taxonomy is hierarchical, where
labels may have multiple sub-categories (so a multi-labeling corresponding to one document need not have
only a subcategory and all of the ancestor categories). OHSU-Med experiments in this paper use the 1991
documents as training data and 1990 documents in testing. Of these, only those documents that are labeled
with some subcategory of the category ’Heart Disease’ (HD) are used, for which there are 119 subcategories.
The HD-small documents used in Heart Disease experiments are labeled by the 40 categories which label
between 15 and 74 training documents, forming 106 combinations of labels in the training data. Similarly
the HD-big experiments include documents labeled by the 16 categories which label 75 or more training
documents.
There are 126 distinct combinations of labels in the training data. Each instance is represented as a

feature vector of the terms in the title concatenated with the abstract, if any. The categories correspond to
characterizations of the relevant heart conditions, such as “Heart Aneyurism” and “Myocarditis”.
Compared to the ReutersAll corpus, HD is noisier and documents belong to more categories on average.

Moreover the heart disease collection of HD documents is more specialized than the Reuters collections of
general news documents, so HD documents that do not have all common labels are more likely to be similar
than such Reuters documents.



5.3.3 Usability

The third corpus, Usability, used in these experiments is a collection of software usability documents1.
The corpus has a two-dimensional label taxonomy with dimensions Interface Aspect and Interface Element.
Each dimension has three categories, and each document must belong to one category from each dimension.
Thus in the simple taxonomy representation, there are nine classes, and each document has exactly two
labels. The corpus consists of 750 usability documents gathered from the Web and manually classified by
experts in the usability domain. Documents average 32 words in length. Table 3 depicts the distribution of
usability reports across classes.

Interface Element
Interface Aspect Control Information Space Application Component Total
Presentation 33 54 11 98
Representation 185 30 1 216

Other 37 248 149 434
Total 255 332 161 748

Table 3: Distribution of documents in the usability report training data. Cell indicates the number of
documents labeled with both and . Observe that the class REPRESENTATION-APPLICATION COMPO-
NENT is small compared to REPRESENTATION-CONTROL, for example.

Interface Element Interface Aspect Document
Control Presentation The button for the category that I’m search doesn’t look very dif-

ferent from the other buttons.
Information Space Other I don’t know how to cancel a search.

Control Representation I don’t have any context for the search results. I don’t know what
to expect if I click the link for one of the users in the search re-
sults.

Table 4: Three exemplary usability reports and their classifications.

The former two corpora have simple label taxonomies and are large. The usability corpus has a more
intricate two-dimensional label taxonomy, and it is smaller, noisier, and has shorter documents than both
corpora. Furthermore, some categories are several factors larger than others. These characteristics make the
usability corpus an interesting corpus for use in comparing classifiers.

5.4 Results

In all experiments, both multi-label models, as well as independent maximum entropy binary classifiers, are
trained and tested using the same training and testing data. The results are compared using two metrics:
F1-score micro-average and macro-average, and subset accuracy. The F1 score for binary classifier for label
is the harmonic mean of the classifier precision and recall. A multi-label classifier’s F1-score for is

similarly defined.
Given an instance with labels , the set of binary classifiers have correct subset classification for the

instance if each binary classifier corresponding to a label gives a positive classification for if and only
if is positive for , while the multi-label classifiers must classify the document . The classifier’s subset
accuracy is the proportion of test instances with correct subset classification.

1see Web source



The macro-average of F1 scores is the mean of the F1-scores of all the labels, thus attributing equal
weights to the label F1 scores. The micro-average is the F1-score obtained from the summation of contin-
gency matrices [Yang, 1998] for all binary classifiers. Thus the micro-average metric gives equal weight
to all classifications, so that F1 scores of larger classes influence the metric more than F1 scores of smaller
classes. Where the number of classes is large, comparing micro-average and macro-average of F1 scores for
all class labels facilitates evaluation of the performance of multi-label, multi-class classifiers [Yang, 1998].

5.4.1 Reuters-21578

Parameters that influence performance of the classifiers include proportion of features selected, feature
cut size, Gaussian prior variance of the classifiers, and in the case of binary pruning, the threshold for
the binary classifiers. The binary pruning techniques are most sensitive to the threshold parameter within
a certain range. In general, the binary pruning technique resulted in 0.7% higher F1 micro-average and
29% higher macro-average than supported inference using the optimal threshold, barring feature proportion.
This suggests that binary pruning improves performance of smaller classes. Lower thresholds increase
classification time but tend to improve performance. Higher thresholds reduce the sensitivity of the classifier
to varying feature proportions.
The best published micro-average of F1 scores of classifiers on the ReutAll corpus is 0.88 using support

vector machines [Yang, 2002]. With thresholds of 0.7, CML and CMLT achieve 0.87 F1 micro-average. Ta-
ble 7 depicts these results, as well as results comparing the two inference methods on ReutAll. Performance
of supported inference experiments are more sensitive to changes in proportion of features used, but they are
more memory-intensive and require more time to run than binary pruning. Binary pruning performs slightly
better than supported inference in these experiments, but performance remained the same for 70% or more
features at most probability thresholds.
Table 9 depicts the error over multiple trials in classifying random test-train partitions of ReutAll, given

that 70% of data is used in training.
For ReutSM and Reut10 experiments, multi-label classifiers yielded higher F1 scores than the corre-

sponding binary classifier for most labels (Table 5). For ReutSM, CML reduced subset classification error
by 9% and CMLT reduced it by 19%. For the larger and more complex Reut10, CML reduced error by 28%
and CMLT reduced subset classification error by 22%. CMLT is more subject to overfitting, hence when
there are many classes that are not as richly multi-labeled, the improvement subset classification is greater
for CML than CMLT.
Compared to the binary classifiers, the multi-label models yielded 1% poorer recall for the label SHIP,

however. Note that compared to other multi-labelings, very few SHIP documents belong to another class,
and the exceptions almost always belong to GRAIN only. Hence upon misclassification, the multi-label
classifiers most often mistake SHIP instances for, exclusively, GRAIN instances. The binary classifiers do
not have this bias, since they do not consider the label co-occurrences. However, 96% of COFFEE instances
are only about COFFEE, for which the multi-label classifiers had 2% better F1 than the binary classifiers.
The label CORN occurs frequently with both WHEAT and GRAIN, which are larger classes. The multi-label
classifiers therefore tend to believe CORN instances belong exclusively to WHEAT or to GRAIN.
Note that the multi-label classifiers have higher subset accuracy than the binary classifier. This supports

the belief that the classes are not semantically independent.
Table 11 summarizes the distribution of documents with respect to GRAIN co-occurrence patterns with

other labels in CML, together with the factor values.



ReutSM
Binary CML CMLT

Supported
grain 0.953 0.973 0.976
wheat 0.853 0.861 0.868
corn 0.860 0.852 0.832
coffee 0.982 0.982 0.982
ship 0.966 0.955 0.944

macro-F1 0.923 0.925 0.920
micro-F1 0.928 0.932 0.930

subset accuracy 0.837 0.845 0.853
Binary Pruning

macro-F1 0.923 0.925 0.925
micro-F1 0.928 0.932 0.932

subset accuracy 0.837 0.849 0.849

Table 5: Performance of CML and CMLT, using supported inference and binary pruning at threshold 0.5,
on ReutSM, using the most informative 60% of features. With few classes, performance of the multi-label
models is slightly better than the performance of the binary model, but reduction in error is significant.
Performance of CML and CMLT was identical using binary pruning, and binary pruning resulted in im-
provemed performance for CMLT (compared to supported inference).

5.4.2 OHSU-Med

Subsets of the OHSU-Med corpus tend to be noisier than Reuters-21578. The intuitive reason is that OHSU-
Med data refer to specialized topics within specific disciplines so that articles are likely to have similar
word frequencies even if they do not have the same label (such as ’lymphocytes’, ’postoperative’, and
’ventricular’). The Retuers news articles, on the other hand, span a more general collection of topics, so
that documents which have different labels are likely to have fewer common features. Table 13 depicts the
performance of the three maximum entropy techniques on the heart disease subsets of OHSU-Med.
Table 13 depicts the performance of the three techniques on HD-small and HD-big using two inference

methods. Like Reuters, OHSU-Med has a simple label taxonomy, but the subset accuracy of the multi-label
classifiers is about 25% better than the subset accuracy of the binary classifiers using the supported classes.
This sigificant improvement in performance by leveraging label co-occurrence patterns supports the earlier
conjecture that the Heart Disease labels are semantically dependent even moreso than are the Reuters-21578
labels. The macro and micro F1 scores suggest that CMLT performance is more sensitive to the sizes of the
classes.

5.4.3 Usability

As with Reuters-21578 and OHSU-Med experiments, usability documents are represented as term frequency
vectors. Results are averaged over several trials, where for each trial the corpus is randomly partitioned, us-
ing 75% of documents for training and 25% for testing. Both multi-label models, as well as the independent
binary classifiers, are trained and tested using this partition.
For Usability, the binary classifier resulted in 29% subset accuracy while the multi-label classifiers

had subset accuracies 43-44% (Table 16). That the multi-label classifiers performed considerably better
than the binary classifiers suggests that the classes are not independent. Note that the factor value for



Reut10
Binary CML CMLT
Supported

macro-F1 0.867 0.871 0.865
micro-F1 0.935 0.938 0.936

subset accuracy 0.888 0.909 0.906
Binary pruning

macro-F1 0.867 0.879 0.878
micro-F1 0.935 0.941 0.941

subset accuracy 0.888 0.907 0.906

Table 6: Performance of the two techniques, supported classes and binary pruning, threshold 0.5, using the
best 60% of features. CML and CMLT achieved greater error reduction, with respect to binary classifiers,
for Reut10 than for ReutSM. Binary pruning proved advantageous.

ReutAll
Binary pruning, 40% features
macro-F1 0.438 0.458 0.458
micro-F1 0.863 0.870 0.871

subset accuracy 0.800 0.832 0.832
classification time (ms) 78 114

Supported, 40% features
macro-F1 0.438 0.448 0.384
micro-F1 0.863 0.866 0.843

subset accuracy 0.800 0.833 0.814
classsification time (ms) 48 78

Binary pruning, 70% features
macro-F1 0.439 0.457 0.457
micro-F1 0.864 0.870 0.870

subset accuracy 0.800 0.832 0.832

Table 7: Performance of the three maximum entropy techniques on ReutAll, using threshold 0.7 for binary
pruning. Using 70% of features the results of binary pruning are comparable to best reported results. Also
note that binary pruning achieves slightly better performance than the supported inference method.

ReutAll, pruned test instances
Binary pruning, 40% features
macro-F1 0.247 0.221 0.221
micro-F1 0.492 0.444 0.444
Supported, 40% features

macro-F1 0.470 0.259 0.180
micro-F1 0.899 0.512 0.427

Table 8: Performance of the three maximum entropy techniques on the ReutAll pruned instances, using
threshold 0.7 for binary pruning. In the case of binary pruning, binary classification results in better per-
formance on pruned instances (instances whose actual combinations included classes for which the binary
classifier attributed probability less than 0.7) than the CML and CMLT models.



ReutAll
Binary CML CMLT

macro-average
mean 0.4427 0.4616 0.4616
std. dev. 0.00525 0.00553 0.00553

micro-average
mean 0.8747 0.8835 0.8835
std. dev. 0.00124 0.00091 0.00090

subset accuracy
mean 0.8096 0.8439 0.8439
std. dev. 0.00125 0.00103 0.00109

Table 9: Mean micro- and macro-averages and subset accuracy of the binary pruning CML and CMLT
classifiers over several trials, using 50% of features at threshold 0.7. Each trial uses 70% of ReutAll in
training, the other 30% in testing, roughly the same proportions as the ModApte split. These results suggest
that even with random test-train splits of the corpus, CML and CMLT outperform the independent binary
classifiers.

subset count subset count
grain 83 wheat 1

grain,wheat 144 grain,corn 120
wheat,corn 2 grain,wheat,corn 54
coffee 104 grain,wheat,coffee 3
ship 166 grain,ship 19

grain,wheat,ship 5 grain,corn,ship 2
grain,wheat,corn,ship 2 coffee,ship 3

Table 10: Distribution of subsets of labels in ReutSM training data. Note that WHEAT hardly occurs alone,
and GRAIN, WHEAT and CORN together form a cluster of labels which co-occur frequently but SHIP and
COFFEE form clusters that are mostly independent of the others. COFFEE is especially independent of the
other clusters.

not grain and not x grain and not x not grain and x grain and x
wheat 273 0.0 102 0.0 3 0.000282709 209 0.052517
corn 274 0.049274 2 -0.020478 154 0.041982 179 0.171887
coffee 167 0.0 329 0.061735 107 0.0 4 0.0
ship 107 0.272986 405 -0.002133 169 0.200047 28 0.065969

Table 11: Count of documents for each label- co-occurrence pattern for each label, together with the
corresponding factor value learned by CML using ReutSM. These parameters suggest that in classifying
an instance, for example, the score of a combination of labels that does not have the label GRAIN will be
strongly influenced by the parameter corresponding to the presence or absence of SHIP, but the score of
a combination that does have the label GRAIN will hardly be affected by the parameter corresponding to
GRAIN SHIP .



smallest clique potentials largest clique potentials
labels term value labels term value

grain,ship blah -0.3840 grain,corn paris 0.1736
grain,wheat corn -0.2691 wheat,corn grain 0.1775
wheat,corn sold -0.2169 wheat,corn barley 0.1806
grain,wheat barley -0.2029 wheat,corn bushels 0.1819
wheat,corn blah -0.1805 grain,ship grain 0.2626
grain,wheat rice -0.1781 grain,wheat rejects 0.3035
wheat,corn exporters -0.1771 grain,corn maize 0.6120
wheat,corn april -0.1764 grain,corn corn 0.7340
grain,corn wheat -0.1700 grain,wheat wheat 0.9399

Table 12: The highest and lowest factor values learned by CMLT using data ReutSM. Larger clique poten-
tials influence the probabilitis for each combination more than smaller clique potentials. Thus, for instance,
a combination involving labels GRAIN and CORN will have a higher score if the document has the terms
corn or maize, but the classification scores are punished for documents having the noise term blah. The
low parameter values corresponding to WHEAT CORN april and GRAIN CORN wheat suggest that the
classification performance for smaller datasets such as these might be better if three labels and one term
represent a clique potential, as well as two labels and one term.

HD-small HD-big
Supported inference

metric Binary CML CMLT Binary CML CMLT
macro-F1 0.585 0.625 0.620 0.647 0.676 0.662
micro-F1 0.614 0.645 0.644 0.684 0.699 0.698

subset accuracy 0.410 0.553 0.571 0.491 0.589 0.601
Binary pruning

metric Binary CML CMLT Binary CML CMLT
macro-F1 0.585 0.644 0.644 0.647 0.678 0.678
micro-F1 0.614 0.662 0.662 0.684 0.702 0.702

subset accuracy 0.410 0.570 0.570 0.491 0.584 0.584

Table 13: F1 micro and macro averages and subset accuracy of the three classifiers on the OHSU-Med
Heart Disease subsets, using 50% of features and with a binary pruning threshold of 70%. The multi-label
models improve subset accuracy by as much as 53%.



OhsuMed, pruned test instances
metric Binary CML CMLT Binary CML CMLT

HD-small HD-big
Binary Pruning, 50% features

macro-F1 0.241 0.224 0.224 0.323 0.294 0.294
micro-F1 0.256 0.222 0.222 0.335 0.291 0.291

Supported, 50% features
macro-F1 0.605 0.382 0.322 0.659 0.520 0.420
micro-F1 0.633 0.485 0.456 0.696 0.467 0.467

Table 14: Performance of the three maximum entropy techniques on the heart disease pruned instances, us-
ing threshold 0.7 for binary pruning. For both supported inference and binary pruning, binary classification
results in better performance on pruned instances, as with ReutAll, than the CML and CMLT models.

HD-small HD-big
Binary CML CMLT Binary CML CMLT

macro-average
mean 0.554411 0.633321 0.633517349 0.649873 0.675575 0.677784733
stderr 0.012484 0.013435 1.18E-16 0.001522 0.002171 0

micro-average
mean 0.576348 0.637003 0.65167711 0.683152 0.69849 0.702646958
stderr 0.011804 0.011399 0 0.000895 0.001748 3.93E-17

subset accuracy
mean 0.369772 0.546834 0.567993367 0.496049 0.586004 0.584498602
stderr 0.01091 0.013007 1.18E-16 0.002158 0.003233 0

Table 15: Mean micro- and macro-averages and subset accuracy of the binary pruning CML and CMLT
classifiers over several trials using 50% of features at threshold 0.7, on HD-small and HD-big. Within error,
CML and CMLT reduce error in micro- and macro-averages by about 17%, and about 7%, on HD-small
and HD-big, respectively, and similarly improve subset accuracy by as much as 53% and 18%.



OTHER INFORMATION SPACE in CMLT is among the highest valued model parameters. This
seems intuitively clear: the appearance of the term MENU in a document may cause the binary classifiers
to believe that the document belongs to the categories PRESENTATION and CONTROL, but the belief that
the document belongs to the class INFORMATION SPACE supports the belief that it also belongs to the class
OTHER (moreso than PRESENTATION or REPRESENTATION).

label binary CML CMLT
Other 0.7702 0.7602 0.7581

Presentation 0.5359 0.4669 0.4073
Representation 0.5263 0.5153 0.5183

Control 0.5459 0.5261 0.5201
Application Component 0.3638 0.4008 0.3834
Information Space 0.5924 0.5740 0.5554
subset accuracy 0.2380 0.4172 0.3957

Table 16: F1 measure for each label and subset accuracy of the three maximum entropy techniques for the
usability data. Note that the character of the usability corpus and label taxonomy obviates binary pruning.

Moreover, the usability corpus label taxonomy requires that each document receive exactly two labelings,
one from Interface Aspect and one from Interface Element. The multi-label classifiers enforce this constraint
implicitly, assigning a classification score for each document only for each of the nine subsets of labels.
However, the binary classifiers may believe that a document belongs to any number of classes, so the binary
classification scheme is likely to have poorer subset accuracy and poorer F1 than the multi-label schemes
when the label taxonomy is structured, particularly with noisy data. However, independent (triary) maximum
entropy classifiers for each label dimension still yielded about 12% poorer subset accuracy than the multi-
label classifiers, though the triary classifiers tended to have commensurate F1 scores per label as the multi-
label counterparts.

6 Related Work

The single-label maximum entropy algorithm is similar to the single-label maximum entropy algorithm de-
scribed in [Nigam, Lafferty, and McCallum, 1999] which used improved iterative scaling to find the global
maximum.
Aside from training independent binary classifiers to use in classifying a document as well as in rank-

ing classes, as previously discussed, a less common approach to multi-label classification is to train a
model that treats each subset of labels as a separate label. This approach can be cumbersome, however,
since the number of such subsets is exponential in the number of labels. For semantic scene classification,
[Boutell et al., 2003] train a classifier for each label using all single-label documents and only the multi-
label documents labeled . Given , each classifier reports a score for its respective label, and a similar rank-
ing system is used to determine the multi-labeling. This approach indirectly leverages label co-occurrences,
since each classifier is trained using a slightly different subset and partitioning of the training data. However
it does not represent the co-occurrence patterns in one model, and does not repersent label-cooccurrences
with respect to features. Furthermore this approach is subject to giving too much weight to examples with
multiple labels, hence requires some method for reducing overfitting.
Bayesian approaches to multi-label text classification have been attempted using Expectation Maximiza-

tion to train a mixture model [McCallum, 1999] that maintains a mixture component for each class, and
learns the distribution over mixture weights as well as the distribution of words for each mixture com-
ponent. Compared to other methods, it is most similar to our approach because it employs relationships



between classes in classifying an unseen document: the terms of each document are produced by a mix-
ture of word distributions for each class. Ueda and Saito [Udea and Saito, 2004] take a similar approach in
that each word in each category is generated from a multinomial distribution over vocabulary words. Both
of these approaches are generative, and both leverage information about multiple class memberships for a
given document implicitly by learning which classes generate which words, and neither experiment uses
information gain in selecting features.

7 Conclusions

Multi-label classification is a task of growing importance in text domains as well as in other domains, and
in most cases the classes are not independent. The maximum entropy approaches presented in this paper,
in classifying a text document into a given class, leverage information about the document membership in
other classes. Previous methods accomplish this indirectly, if at all, while the models described in this paper
capture these relationships directly by maintaining factors that capture label co-occurrence patterns, and
including these factors in the optimization. On corpora of varying sizes, label taxonomies and noise levels, in
F1-scores and subset accuracy the multi-label models outperform the conventional multi-label classification
methods, for which performance depends on independence of classes, simplicity of label taxonomy and
sparsity of multi-labelings. Furthermore the multi-label models presented here outperform the conventional
methods even when only a few documents have multiple labels, and perform comparably to best reported
results on certain corpor. Experiments involving random test-train splits of various corpora suggest that the
multi-label methods presented here perform better than their binary counterparts, barring error over trials.

8 Future Directions

CML and CMLT capture label co-occurrences in document labelings by capturing factors involving pairs
of labels. A more complex corpus could conceivably maintain dependencies among triplets of labels, such
that pairwise dependencies between labels in the triplet occur as well as a factor involving the simultaneous
co-occurrence of all three labels. Space and time complexity challenge such directions, because this would
significantly increase the number of model parameters, particularly for CMLT. Another direction would be
to incorporate schemes for learning which factors to include and which factors to exclude.
Labels in Reuters-21578 tend to cluster with respect to multi-label documents. For instance, a document

belonging to GRAIN is more likely to belong to WHEAT than to CRUDE. Although CML and CMLT learn
this relationship, the models could be simplified or made less sensitive to noise by capturing the cluster more
directly.
A straightforward solution is to preprocess the training data to capture the flavor of the label distribution,

and use that information to determine how to count certain cliques. For example, CMLT could maintain
parameter values only for label pairs that co-occur more than times in the training data, for some threshold
value . This technique would improve classifier performance on large corpora such as Reuters-21578,
where labels tend to cluster in their co-occurrence patterns. As an alternative to ignoring the less common
co-occurrences, CMLT could selectively consider the potentials of the features for these label pairs. For
instance, a document membership in two classes that otherwise co-occur infrequently is likely to depend on
only a small number of words in the document.
Multi-labelings in the Reuters-21578 corpus that associate otherwise distinct clusters tend to involve

articles whose subject is indirectly about some latent new topic. Thus, rather than ignoring the document or
the newly associated cliques, the algorithm may give them special consideration.
The modals considered in this paper assume that each document belongs to at least one category. For

Reuters-21578 however 47% of documents belong to no topical category. As it would be ideal to train the



models on unlabeled documents as well, it would also be ideal to allow the classifier to declare a document
“unclassified”. A proportion of such unlabeled documents may be treated as if they belong to a large
unclassified class. If the documents truly do not belong to any of the existing categories, then training
using those documents adds extra noise. A more complex scheme that would make the model less sensitive
to noise incorporates a clustering heuristic in initializing maximum entropy constraints, allowing multiple
related unclassified classes to exist based on clusters of similar documents. The success of this approach
depends on the characterization that that the unlabeled documents among reasonably few clusters of similar
documents, which may or may not be a likely characterization. It also depends on the degree to which
unlabeled documents are not related to labeled documents.
Another improvement to the models involves more accurately representing label taxonomies which have

a more complex structure than the simple and two-dimensional taxonomies described in this report, such
as with hierarchical, multi-dimensional, or composite taxonomies, and more generally label taxonomies for
which dependencies between labels comprise a graphical model or belief network.
Rsearch related to multi-label classification involves automatically annotating biomedical documents (or

abstracts) with lists of genes that are mentioned within them. This is a difficult problem related to multi-
label classification because each gene may have several synonyms, and a synonym may refer to several
different genes. One future direction is to test the models using schemes with varying noise characteristics,
and experiment with different techniques for discerning and reducing the noise.
Ideally the maximum entropy models developed in this paper will apply to domains other than text classi-

fication, such as domains in which the features do not have uniform weight and type, as with semantic scene
classification.
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