
PRIEST: A Private Subscription Scheme in
Publish-Subscribe Systems ∗

Weifeng Chen and Don Towsley

Department of Computer Science
University of Massachusetts, Amherst
{chenwf, towsley}@cs.umass.edu

Technical Report 2004-81

Abstract

In a publish/subscribe (pub/sub) system, messages are sent to the network and !ltered by the net-
work according to subscribers’ interests. When the pub/sub infrastructure is untrusted, it is desirable
to keep both the sensitive messages and the interests secret from the pub/sub network. In this paper,
we formulate this goal as the private subscription problem, which is then shown to be at least as hard
as the single-database private information retrieval problem introduced in [7]. We then describe cryp-
tographic schemes to keep both published messages and subscribers’ interests secret from the network.
Our schemes are computationally secure and support both channel-based !ltering and content-based
!ltering, the latter supporting both primitive-event detections and composite-event detections. The al-
gorithms we present are ef!cient in that they are based on symmetric encryptions requiring O(n) cipher
operations for a message of length n.

Key words: Private subscription, Security

∗This research has been supported in part by the NSF under grant awards UF-EIES-0205003-UMA and EIA-0080119. Any
opinions, !ndings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
re"ect the views of the National Science Foundation.

1

1 Introduction

In a publish/subscribe (pub/sub) system, publishers, the entities providing events, advertise information

about events and subsequently publish events to the network. Subscribers, entities interested in receiving

events, subscribe interests and, consequently, receive matched events. The network, typically composed of

brokers, provides the functionalities of advertisement/subscription processing, and event storing, matching

and delivering.

Wang et. al. discussed in [24] several security issues and requirements for Internet-scale pub/sub sys-

tems. Information confidentiality enables a publisher to keep sensitive events secret from a not necessar-

ily trusted pub/sub network. Information con!dentiality is attractive in “an application that allows users

(publishers) to post their resumes and sells resume information to interested human resource of!ces (sub-

scribers) [24].” Subscription confidentiality allows a subscriber to obtain interested data without revealing its

interests, which may disclose sensitive information about the subscriber, to the publishers and the network.

The authors consequently recommended the combination of information and subscription con!dentiality

against the network to achieve a strong level of user privacy, although they did not provide a solution for

this problem.

Such con!dentiality assurance is desirable in the Transnational Digital Government (TDG) project [10].

The goal of the TDG project is to construct a pub/sub system based on active databases [17] to facilitate

information sharing among the Organization of American States (OAS), Belize and the Dominican Republic.

Consider the following scenario in the TDG project. Subscribers in Belize are interested in being noti!ed

about particular events generated by publishers from the Dominican Republic, via brokers controlled by the

OAS. Additionally, the publishers want to keep events secret from the brokers, and the subscribers wish to

keep their interests secret from both the brokers and the publishers. One approach for providing information

security is the following. A publisher from the Dominican Republic can encrypt all generated events using

a key known only to the subscribers and sends all encrypted events to the network. Evidently, this approach

keeps all events secret from the brokers. However, it is not ef!cient at all since a subscriber has to receive

all events, no matter whether an event matches its interests or not. Alternatively, subscribers’ interests may

be sent to the publishers and, consequently, only matched events are encrypted and sent by the publishers.

The second approach is quite ef!cient, but violates the subscription con!dentiality since the publishers will

know the interests of the subscribers.

In this paper, we refer to the problem of ensuring information con!dentiality and subscription con!den-

2

tiality as the private subscription problem. We then propose a PRIvatE SubscripTion (PRIEST) scheme that

solves this problem. More speci!cally, publishers and subscribers share a set of secret keys and all events

generated by the publishers are encrypted by these keys and sent to the network. Subscribers also encrypt

their interests and send their interests to the network. An intermediate node in the network that does not

know any key, is still able to detect events matching the interests. Our scheme supports both channel-based

systems and content-based systems, the latter supporting both primitive-event detections and composite-

event detections. The proposed scheme is ef!cient in the sense that it is based on symmetric encryptions

and a subscriber only receives matched events. For a message of length n, the scheme requires O(n) cipher

operations and hence is practical to use.

The rest of the paper is organized as follows. In Section 2 we provide some necessary de!nitions,

describe the system model, and formulate the private subscription problem. Section 3 presents our scheme

to solve the private subscription problem. Section 4 discusses several additional issues. We brie"y review

the related work in Section 5 and !nally conclude in Section 6.

2 Preliminaries

In this section, we !rst introduce the notations and the computationally-secure assumptions that are used

in this paper. We then describe the considered pub/sub model, followed by the formulation of the private

subscription problem.

2.1 Notations

Throughout this paper, we will use the following notation unless otherwise stated. Letters in lower case

are used to represent plaintext and keys, e.g., x = {0, 1}nx and k = {0, 1}nk . Corresponding ciphertext

is denoted by letters in upper case. Encryption, decryption and hash functions are represented by letters in

boldface (S, P, etc.). Letters in calligraphic case (e.g., C) are used to represent sets. We write 〈x, y〉 for the

concatenation of x and y, and x ⊕ y for the bitwise XOR of x and y1.
1For convenience, if the binary representations of x and y have different lengths, a certain number of 0s are padded at the most signi!cant bits

of the smaller one, e.g., 101 ⊕ 10110 = 00101 ⊕ 10110.

3

2.2 Intractability assumptions

2.2.1 One-way collision-resistant hash functions

Let H : {0, 1}∗ %→ {0, 1}nh be a one-way collision-resistant hash function that maps an input of arbitrary

length to an output of length nh. We assume that H has the following properties [1], based on which we

will construct a computationally-secure PRIEST scheme:

• preimage resistance — for an output y = H(x), it is computationally infeasible to !nd any preimage

x′ such that H(x′) = y. Formally, for every constant c, and every family of polynomial-size circuits

Cm(·), there exists an integer m0 such that for all m > m0, Pr[Cm(y) = x] < 1/2 + 1/mc;

• collision resistance — it is computationally infeasible to !nd any two distinct inputs x and x′ such

that H(x) = H(x′).

2.2.2 Factorization assumptions

The integer factorization problem (FACTORING) is the following [1]: “given a positive integer N , !nd its

prime factorization; that is, write N = pe1
1 pe2

2 . . . pek
k where the pi are pairwise distinct primes and each

ei ≥ 1.” It is known that the FACTORING problem is an intractable problem.

2.3 Models

After advertising information about events, a publisher publishes events to the network. If a subscriber is

interested in receiving particular events, it sends its interests to the network. Different proposed schemes in

the literature [4, 11, 23] can be applied to set up routes for event distribution from a publisher to subscribers.

For simplicity, we model the network as a black box that detects events matching subscribers’ interests and

delivers matched events. Without loss of generality, we only consider a single publisher connecting a single

subscriber via the modelled network shown in Figure 1.

Publisher SubscriberNetwork

Figure 1: A simple model for pub/sub systems.

We can classify pub/sub systems into channel-based (or subject-based) systems and content-based sys-

tems [4].

4

2.3.1 Channel-based systems

In a channel-based system, publishers publish messages, each of which belongs to one of a !xed set of

channels (alternatively referred to as groups or topics); subscribers subscribe to messages by targeting a

channel and, consequently, receive all messages that are associated with that channel. Let D be the set of

IDs of prede!ned channels. A message m is modelled as a pair m = (d, x) ∈ D × {0, 1}∗, where d ∈ D

and x is the content of this message. In this case, a subscriber’s interest is speci!ed as a set of channel IDs,

denoted as I ⊆ D.

Definition 2.1. Given a publisher, a network and a subscriber shown in Figure 1, a PRIvatE Subscrip-

Tion (PRIEST) scheme in a channel-based system consists of

(1) A service, S : I %→ {0, 1}∗, for the subscriber to encrypt each ID d ∈ I in its interest as S(d) = Dd;

(2) A service, P : D × {0, 1}∗ %→ {0, 1}∗, for the publisher to encrypt a message m as P(m) = M ;

(3) A service,R : {0, 1}∗ %→ D×{0, 1}∗, for the subscriber to recover the ciphertext, i.e.,R(P(m)) =

m.

These services should satisfy

Correctness: For any messagem = (d, x),m is received by the subscriber if and only if d ∈ I. Namely,

a subscriber receives all messages associated with the channels that the subscriber’s interest targets.

Privacy: (1) Given an encrypted channel IDD = S(d) in the subscriber’s interest, it is computationally

infeasible for the network to infer d. More formally, for all constants c and for all polynomial-size families

of circuitsCm(·), there exists an integerm0 such that for allm > m0, Pr[Cm(D) = d] < 1/2+1/mc; (2)

Given an encrypted messageM = P(m) wherem = (d, x), it is computationally infeasible for the network

to infer d or x.

Since channel-based systems lack scalability and expressiveness [4] (e.g., limited number of prede!ned

channels), recent research in pub/sub systems focuses on content-based systems [4, 23].

2.3.2 Content-based systems

Intuitively, PRIEST schemes for channel-based systems are simpler than schemes for content-based systems.

Both the pub/sub architectures SIENA [4] and Gryphon [23] support content-based subscriptions. In this

paper, an event notification (or simply an event) is modelled as a set of typed attributes, following the

notations in SIENA. Each individual attribute has a type, a name and a value. An attribute type is chosen

5

from “a prede!ned set T of primitive types commonly found in programming languages and database query

languages [4],” e.g., string, "oat, integer. We denote an attribute as α = (type, name, value) and an event

as e = {α1, . . . , αn}. A subscriber’s interest is speci!ed as an event filter (or simply a filter) consisting of

a set of constraints. A constraint is a tuple consisting of a type, a name, a binary predicate operator chosen

from a prede!ned set O, and a value for an attribute. An attribute α = (typeα, nameα, valueα) matches an

attribute constraint φ = (typeφ, nameφ, operatorφ, valueφ) if and only if (typeα = typeφ) ∧ (nameα =

nameφ) ∧ operatorφ(valueα, valueφ), which is denoted as α ≺ φ. An event e matches a constraint φ,

denoted as e ≺N
S φ in [4], if and only if ∃αi ∈ e : αi ≺ φ.

Currently, we restrict our attention to !lters that are composed of a single constraint, i.e., f = φ. We

leave the discussion of !lters consisting of multiple constraints and !lters corresponding to composite events

to Section 4.

Definition 2.2. Given a publisher, a network and a subscriber shown in Figure 1, a PRIEST scheme in

a content-based system consists of

(1) A service, S : T × {0, 1}∗ × O × {0, 1}∗ %→ {0, 1}∗, for the subscriber to encrypt filter f as

S(f) = F ;

(2) A service,P : T ×{0, 1}∗×{0, 1}∗ %→ {0, 1}∗, for the publisher to encrypt an event e asP(e) = E;

(3) A service, R : {0, 1}∗ %→ T × {0, 1}∗ × {0, 1}∗, for the subscriber to recover the ciphertext, i.e.,

R(P(e)) = e.

These functions should satisfy

Correctness: Event e is received by the subscriber if and only ifR(P(e)) ≺N
S f . Namely, a subscriber

receives all events that match the filter f .

Privacy: (1) Given an encrypted attribute, it is computationally infeasible for the network to infer the

attribute type, attribute name and attribute value; (2) Given an encrypted constraint, it is computationally

infeasible for the network to infer the constraint type, constraint name, constraint value and operator.

Ideally, it is required that all components of a constraint are kept secret from the network. However, as

will be shown later in Section 3.3, it is impossible to hide all information in a !lter from the network. More

speci!cally, the operator in a constraint is exposed to the network.

6

3 PRIEST schemes

In this section, we !rst show that the PRIEST problem is at least as hard as the single-database private

information retrieval problem introduced in [7]. We then describe a PRIEST scheme for a channel-based

pub/sub system based on simple XOR operations and one-way collision-resistant hash functions. For a

content-based system, we explain why it is impossible to keep all four components of a constraint secret

from the network, followed by a PRIEST scheme that discloses the operator in a constraint to the network.

3.1 PRIEST schemes and PIR schemes

The Private Information Retrieval (PIR) problem was introduced in [7] and subsequently received extensive

study [3, 5, 6, 9, 15, 16, 25]. In a PIR scheme, a database B is modelled as an n-bit sequence, namely

{0, 1}n. The PIR scheme enables a user to retrieve the i-th (1 ≤ i ≤ n) bit from B without revealing i. Chor

et. al. proved in [7] that, to achieve a single-database PIR scheme that is unconditionally secure, the most

ef!cient approach has the same communication complexity as the trivial one in which the entire database

is sent to the user, i.e., the communication complexity is O(n). However, to achieve a single-database PIR

scheme that is computationally secure, there exists a scheme in [5] with O(nε) communication complexity

for any ε > 0.

Theorem 3.1. PIR≤PPRIEST, i.e., the single-database PIR problem polytime reduces to the PRIEST

problem. Proof sketch: Our proof is to construct a single-database PIR scheme based on a PRIEST scheme

in a channel-based system. Assume that there are a total of n channels, indexed as 1, . . . , n. The publisher

generates either a 1 or a 0 in each channel. The subscriber is interested in the i-th channel. Consider the case

when the publisher sent n messages to the network, each for a unique channel. These n messages can be

viewed as a database B composed of an n-bit sequence, i.e., B = {0, 1}n, where the j-th bit is the content

(either 0 or 1) of the message for the j-th channel. Now a PRIEST scheme enables the network to correctly

deliver the message in the i-th channel to the subscriber, namely the i-th bit of B. As a consequence, the

subscriber correctly retrieves the i-th bit of B while keeping i secret from the network because of the !rst

privacy requirement in De!nition 2.1. That is, we construct a single-database PIR scheme.

The theorem implies that achieving a PRIEST scheme is at least as hard as achieving a single-database

PIR scheme. This means that, to achieve an unconditionally-secure PRIEST scheme, the most ef!cient

approach has the same communication complexity as the trivial one in which the entire database is sent to

the subscriber, i.e., the subscriber receives all events generated by the publisher. However, we can construct

7

a computationally-secure PRIEST scheme that is more ef!cient, based on the intractability assumptions

described in Section 2.

It is also worth noting that a PRIEST scheme differs from a single-database PIR scheme. In a PIR

scheme, for each user’s query, the database has to send responses to the user, based on which the user

constructs the queried bit. However, in a PRIEST scheme, the network sends an event to the subscriber only

when the event matches the !lter. Another difference exists; In a PIR scheme, a user is assumed to know the

physical address of the sought item in the database [6], whereas, most of the interests in PRIEST schemes

are speci!ed through content matching, e.g., keywords, values.

3.2 A channel-based PRIEST scheme

A PRIEST scheme, Pc, for a channel-based system consists of the following six steps.

Step 1: The publisher distributes secret keys k and k′ to the subscriber. This can be achieved by encrypt-

ing k and k′ using the subscriber’s public key.

Step 2: The publisher secretly delivers all available channel IDs to the subscriber. This can be achieved

using Luby-Rackoff’s algorithm [20] that is based on three different one-way hash functions and key k′;

Step 3: The subscriber chooses a set of IDs to subscribe to, encrypting each chosen ID d as H(d ⊕ k).

The encrypted IDs are sent as the subscriber’s interest to the network;

Step 4: The publisher encrypts a message m = (d, x) as M = (H(d⊕ k),Ek′(x)), where Ek′(x) is the

result of applying Luby-Rackoff’s algorithm on x using k′;

Step 5: When the network receives M , it checks whether M matches subscriber’s interest by XORing

H(d ⊕ k) to each encrypted ID received from the subscriber. M matches the interest if and only if the

XOR-result of H(d⊕ k) to one of the encrypted IDs is the all-0 sequence, i.e., H(d⊕ k) is identical to one

of the encrypted IDs. Matched messages are further delivered to the subscriber;

Step 6: After the subscriber receives M from the network, it decrypts the message content using k′.

3.2.1 Analysis

Correctness It is reasonable to assume that the number of prede!ned channels is less than 2nh , i.e., there

is no collision of H(d ⊕ k). As a consequence, the XORed result of the H(d ⊕ k) in M to one of the

encrypted IDs in the subscriber’s interest is the all-0 sequence if and only if d matches a channel targeted

8

by the subscriber. That is, the subscriber correctly receives all messages associated with the channels it has

targeted. Once the subscriber receives an encrypted message, it recovers the plaintext of the content using

k′.

Privacy The computational security of H directly provides the computational privacy of Pc. Note that, to

thwart brute-force attacks, a plaintext is XORed with a key before it is hashed.

Length of k and k′ The length of k and k′ can be arbitrary. But for suf!cient security, both k and k′

should be long enough, e.g., 128 bits.

3.3 A content-based PRIEST scheme

In content-based systems, a subscriber speci!es a single constraint φ = (typeφ, nameφ, operatorφ, valueφ)

in a !lter f . Such a !lter is encrypted and sent to the network. Every event e generated by the publisher is

also encrypted and sent to the network. A PRIEST scheme needs to ensure that the network learns nothing

about typeφ, nameφ and valueφ while correctly detecting an event e if e ≺N
S f . It is impossible to keep

operatorφ secret from the network because of the following proposition.

Proposition 3.2. Given a value constraint φ = (typeφ, nameφ, operatorφ, valueφ), it is impossible to

keep both operatorφ and valueφ secret from the network in a PRIEST scheme defined in Definition 2.2.

Proof sketch: Assume that the network receives an encrypted event E = P(e). For an attribute

α = (typeα, nameα, valueα) of e and the constraint φ = (typeφ, nameφ, operatorφ, valueφ), keep-

ing both operatorφ and valueφ secret from the network means that Pr[operatorφ(valueα, valueφ)] equals

Pr[¬operatorφ(valueα, valueφ)]. Namely, operatorφ(valueα, valueφ) and ¬operatorφ (valueα, valueφ)

are equally likely to be true. However, to achieve the correctness requirement, the network must have

Pr[opera torφ (valueα, valueφ)] ≥ 1 − c−d or Pr[¬operatorφ(valueα, valueφ)] ≥ 1 − c−d, for all con-

stants d and all suf!ciently large c. That is a contradiction.

The operators in a subscription !lter provided by SIENA [4] include all the common equality and ordering

relations (=, 0=, <, >, etc.) for all of its types; substring (∗), pre!x (> ∗), and suf!x (∗ <) operators for

strings; and an operator any that matches any value. In this subsection, we describe a PRIEST scheme

that supports equality and ordering relations for values. A PRIEST scheme supporting string operators is

presented in Section 3.4. Note that a content-based !lter with the any operator is similar to an interest in

9

a channel-based system, in which case, the subscriber receives all events that have an attribute whose type

and name match the !lter.

3.3.1 A PRIEST scheme supporting value filters

Observe that if u, v and r are random numbers, for any equality and ordering operator g, we have g(u +

r, v + r) = g(u, v), e.g., (u + r) ≥ (v + r) ⇔ u ≥ v. In other words, the ordering relation between

u + r and v + r is the same as the one between u and v. This means we can “mask” two numbers, u and

v, by adding a secret number, r, while allowing the third party to tell the ordering relation between the two

numbers and keeping the two numbers secret from the third party. This observation results in a PRIEST

scheme, Pv, consisting of the following six steps.

Step 1: The publisher distributes a secret key k and a random number r to the subscriber. This step is

similar to the !rst step of Pc described in Section 3.2;

Step 2: The publisher secretly announces all possible attribute types and names to the subscriber. The

publisher de!nes the range2 of each attribute value. Each range is masked by adding r and announced to the

subscriber.

Step 3: The subscriber speci!es a constraint as φ = (typeφ, nameφ, operatorφ, valueφ). φ is encrypted

as Φ = (H(typeφ ⊕ k), H(nameφ ⊕ k), operatorφ, valueφ + r) and sent to the network;

Step 4: The publisher encrypts any attributeα = (typeα, nameα, valueα) of an event e into A=(H(typeα⊕

k), H(nameα ⊕ k), valueα + r). Event e = {α1, . . . , αn} consequently turns to be the cipher form

E = {A1, . . . , An};

Step 5: When the network receives an encrypted event E, it XORs the H(typeα⊕k) and H(nameα⊕k)

of each A in E with the H(typeφ⊕k) and H(nameφ⊕k) in Φ, respectively. If both produce all-0 sequences,

attribute A matches the constraint in type and name. In this case, the network further checks the order

relation of the valueα+r of that attribute and the valueφ+r of Φ by performing (valueα+r)−(valueφ+r).

The difference is compared to the operatorφ of Φ. All matched events are then delivered to the subscriber;

Step 6: After the subscriber receives an event E from the network, it decrypts the event using k and r.
2If a range is not speci!ed, the range can be arbitrary large.

10

3.3.2 Analysis

Correctness Similar to the correctness of Pc, the network is able to correctly detect an encrypted attribute

A matching the encrypted constraint Φ in both attribute types and names. Further, based on operatorφ and

the subtraction of valueα+r and valueφ+r, the network is able to check whether operatorφ(valueα, valueφ)

is true. As a consequence, the subscriber indeed receives all events matching the !lter.

Privacy We show here that encrypting attribute values by adding a random number suf!ces to ensure

computational privacy. Let v and r be a value and the random number respectively and let u = v + r.

Consider the binary addition of v and r. Let ui, vi and ri be the i-th bit of the binary representation of

u, v and r respectively, with the !rst bit being the least signi!cant bit. Let ci be the carry bit that is to be

added with vi and ri (e.g., Pr[c1 = 0]=1). Since r is a random number, we have Pr[ri = 1]=Pr[ri = 0]=1/2.

Consequently, we have

Pr[ui = 1] = Pr[vi = 1]Pr[ri = 1]Pr[ci = 1] + Pr[vi = 0]Pr[ri = 0]Pr[ci = 1]

+Pr[vi = 0]Pr[ri = 1]Pr[ci = 0] + Pr[vi = 1]Pr[ri = 0]Pr[ci = 0]

=
1
2

Pr[ci = 1](Pr[vi = 1] + Pr[vi = 0]) +
1
2

Pr[ci = 0](Pr[vi = 1] + Pr[vi = 0])

=
1
2

Pr[ci = 1] +
1
2

Pr[ci = 0] =
1
2

Similarly, we have Pr[ui = 0]=1/2. That is, given u = v + r, the network can do nothing signi!cantly better

than “guessing” v and r.

Length of r The length of an attribute value is de!ned as the number of bits required to represent the

upper range of the value. If there is no range for an attribute value, its length is in!nite. The length lr of

r can be chosen as the maximum length of all attribute values that have !nite lengths. For a value that has

a length longer than lr, we divide the binary representation of the value into blocks of length lr. r is then

added to each block with the most signi!cant carry bit of a block being considered in the next block.

3.4 A PRIEST scheme supporting string filters

In this subsection, we describe a PRIEST scheme for the three string operators provided in SIENA [4]:

substring (∗), pre!x (> ∗), and suf!x (∗ <). Note that a pre!x is a substring in the !rst position and a suf!x

11

is a substring in the last position.

We assume that all strings are composed of the characters with ASCII representations. The three string

operators above are all character-unit operators, which means that checking whether two strings are identical

corresponds to comparing those two strings character-by-character. As a consequence, a PRIEST scheme

supporting string operators should enable the network to perform character-by-character comparison while

keeping characters secret from the network. However, a character-by-character comparison is vulnerable

to frequency-based attacks. Let S = C1C2 . . . Cb and S′ = C ′
1C

′
2 . . . C ′

b′ be the encrypted string sent

by the publisher and the encrypted substring sent by the subscriber, respectively, where Ci (resp. C ′
i) is

the ciphertext of character ci (resp. c′i). By performing character-by-character comparison, the network

is able to detect whether Ci matches C ′
j for all 1 ≤ i ≤ b and 1 ≤ j ≤ b′. Consequently, the network

can classify all encrypted characters into groups such that all characters in a group match each other. For

example, all encrypted characters matching C ′
1 are classi!ed in the same group. The numbers of characters

in different groups re"ect the character frequency, based on which the network can infer a plaintext character

even though it learns nothing about the encryption. Note that such a frequency-based attack works for any

character-unit encryption.

To thwart such attacks, we construct the following scheme. We begin by assuming that all substrings

consist of at least two characters. At the end of this subsection, we will describe a PRIEST scheme for single

character substrings. The distance between two characters is de!ned as the difference of their corresponding

ASCII codes. Namely, the distance dij between two characters ci and cj is di,j = ai − aj mod 128, where

ai and aj are the ASCII codes of ci and cj , respectively. In the rest of this section, we write di,j = ci − cj

for notational simplicity. The distance representation of a string s : c1c2 · · · cb is denoted as s, i.e., s =

c1d2,1d3,2 · · · db,b−1. Clearly, string s : c1d2,1d3,2 · · · db,b−1 equals string s′ : c′1d
′
2,1d

′
3,2 · · · d′b,b−1 if and

only if c1 = c′1 and di,i−1 = d′i,i−1 for all 2 ≤ i ≤ b.

Assume that s : c1d2,1d3,2 · · · db,b−1 is encrypted as S : C1D2,1D3,2 · · ·Db,b−1, and s′ : c′1d
′
2,1d

′
3,2

· · · d′b′,b′−1 is encrypted as S′ : C ′
1D

′
2,1D

′
3,2 · · ·D′

b′,b′−1. Since the !rst character c′1 of s′ can be the i0-th

character of s for 1 ≤ i0 ≤ b−b′+1, s includes s′ as a substring if and only if there exists an i0 such that C ′
1

equals Ci0 , the ciphertext of character ci0 , and D′
i+2,i+1 = Di0+i+1,i0+i for all 0 ≤ i ≤ b′ − 2. Given only

S and S′, it is impossible for the network to determine whether s′ is a substring of s since Ci (2 ≤ i ≤ b)

is not available to the network. Thus the ciphertext S = C1C2 · · ·Cb of s must be provided for the network

to determine whether s includes s′. However, if the same character in s is encrypted as the same ciphertext,

the network can learn the character frequency by grouping the ciphertext characters of S, i.e., two ciphertext

12

characters in S are classi!ed in a group if their ciphertext is identical. This problem can be solved using

probabilistic encryption [13]. More speci!cally, a character in s is encrypted as different ciphertext using

different keys. Let K = {k1, . . . , km} be the set of keys to encrypt characters. For each character c of s,

the publisher randomly chooses a key ki ∈ K and encrypts c using ki. Thus a character can be encrypted as

m possible distinct ciphertext, which conceals the character frequency from the network. With probabilistic

encryption, the !rst character c′1 of s′ can be encrypted by the publisher as a total of m possible ciphertext.

Correspondingly, the subscriber needs to send the m ciphertext of c′1, denoted as C ′
1,1, . . . , C

′
1,m, to ensure

that the network is able to recognize all ciphertext of c′1 in S. This approach is shown in Figure 2(a).

Publisher

Network

Subscriber

C2 C3 Cb!1 Cb

C1 D2,1 D3,2 Db!1,b!2 Db,b!1

C’1 D’2,1 D’3,2 D’b’,b’!1

C’1,1 C’1,2 C’1,m

...

...

...

...

(a)

Publisher

c bc 3c 2c 1 c b!1

W1 W2 W3

D3,2 Db!1,b!2 Db,b!1

D’3,2 D’4,3 D’b’,b’!1

W’1,1 W’1,2 W’1,m

Network

Subscriber

...

... Wb!1

...

...

...

(b)

Figure 2: Two approaches concealing character frequency.

The approach in Figure 2(a) still reveals the character frequency of the !rst character c′1 of s′, namely,

the ciphertext characters in S matching an element in {C ′
1,1, C

′
1,2, . . ., C ′

1,m} are classi!ed into a group. A

further improvement completely prevents the network from learning the frequency of any single character.

Figure 2(b) shows the improved approach. Two adjacent characters in string s are encrypted as a ciphertext

word, i.e., cici+1 is encrypted as Wi (1 ≤ i ≤ b − 1) using a key randomly chosen from K. The publisher

deletes the !rst character c1 and the !rst distance d2,1 from s and encrypts the rest as D3,2D4,3 · · ·Db,b−1.

Correspondingly, the subscriber encrypts d′3,2d
′
4,3 · · · d′b′,b′−1 as D′

3,2D
′
4,3 · · ·D′

b′,b′−1. It also encrypts the

!rst two characters c′1c
′
2 of s′ as a total of m ciphertext, denoted as W ′

1,1, . . . , W
′
1,m, using m keys in K.

Based on the approach in Figure 2(b), we construct a PRIEST scheme, Ps, consisting of the following

six steps.

Step 1: The publisher distributes to the subscriber a key k, a set R = {r1, r2, . . . , rm} of random

numbers, and a key set K = {k1, k2, . . . , km}, where k /∈ K is used to encrypt attribute types and names, R

is used to encrypt character distances, and K is used to encrypt characters. Note that in practice, R and K

13

may have different sizes;

Step 2: The publisher secretly distributes all possible attribute types and names to the subscriber;

Step 3: The subscriber speci!es a constraint φ = (typeφ, nameφ, operatorφ, sφ : c′1c
′
2 · · · c′b′). When

operatorφ is “ ∗ ” (resp. “ > ∗” and “∗ < ”), the subscriber is interested in strings that include (resp.

begin with and end with) sφ. Let c′1d
′
2,1 · · · d′b′,b′−1 be the distance representation of sφ. φ is encrypted

as Φ = (H(typeφ ⊕ k), H(nameφ ⊕ k), operatorφ, ER(d′3,2d
′
4,3 · · · d′b′,b′−1),Fk1(c′1c′2), Fk2(c′1c′2),

. . . ,Fkm(c′1c′2)) and sent to the network, where Fki(c′1c′2) outputs 〈H(ki), H(c′1c′2⊕ki)〉 of length 2nh, and

ER(d′3,2d
′
4,3 · · · d′b′,b′−1) is the result of adding a random number in R to each distance individually. More

speci!cally, rvi−1 is added to d′i,i−1 where vi−1 ≡ c′i−1 mod m; namely, rvi−1 is determined by character

c′i−1. The ciphertext of sφ sent by the subscriber is shown in Figure 3;

!H(k1), H(c1c2!k1)" !H(km), H(c1c2!km)"…

E (d3,2d4,3… db’,b’-1):’ ’ ’

’ ’ ’ ’Fki
(c1c2):’’

vi " ci mod m’…’d3,2+rv2 db’,b’-1+rvb’-1
’d4,3+rv3 ’

Figure 3: Ciphertext of sφ = c′1c
′
2 · · · c′b′ sent by the subscriber.

Step 4: The publisher encrypts a string attribute α = (typeα, nameα, sα : c1c2 · · · cb) as A=(H(typeα⊕

k), H(nameα⊕k), ER(d3,2d4,3 · · · db,b−1), Fki1
(c1c2), Fki2

(c2c3), . . ., Fkib−1
(cb−1cb), 〈H(kj),Dkj (c1c2)〉),

where i1, . . . , ib−1 and j are randomly chosen from set {1, . . . , m}, and Dk(x) is a secure symmetric en-

cryption (e.g., DES) using key k. Note that 〈H(kj),Dkj (c1c2)〉 is used for the subscriber to recover c1c2

and consequently recover sα (see Step 6). Event e = {α1, . . . , αn} consequently turns to be the cipher form

E = {A1, . . . , An}. The ciphertext of sα : c1c2 · · · cb sent by the publisher is shown in Figure 4;

!H(kj), Dkj
(c1c2) "

ui" ci mod mE (d3,2d4,3… db,b-1):

!H(ki1), H(c1c2!ki1)" …!H(ki2), H(c2c3!ki1)" !H(kib-1
), H(cbcb-1!kib-1)"

…d3,2+ru2
db,b-1+rub-1

d4,3+ru3

Figure 4: Ciphertext of sα = c1c2 · · · cb sent by the publisher.

Step 5: Given an attribute A=(H(typeα ⊕ k), H(nameα ⊕ k), ER(d3,2d4,3 · · · db,b−1), Fki1
(c1c2),

14

Fki2
(c2c3), . . ., Fkib−1

(cb−1cb), 〈H(kj),Dkj (c1c2)〉) and a constraint Φ = (H(typeφ⊕k), H(nameφ⊕k),

operatorφ, ER(d′3,2d
′
4,3 · · · d′b′,b′−1), Fk1(c′1c′2), Fk2(c′1c′2), . . ., Fkm(c′1c′2)) such that H(typeα ⊕ k) =

H(typeφ ⊕ k) and H(nameα ⊕ k) = H(nameφ ⊕ k), the network performs the following operations

depending on operatorφ:

(i). operatorφ=“ ∗ ”:

For each l = 1, . . . , b − b′ + 1
If there exists a 1 ≤ j ≤ m such that Fkj (c′1c′2) = Fkil

(clcl+1)
Compare d′t,t−1 + rvt−1 with dt+l−1,t+l−2 + rut+l−2 for t = 3, 4, . . . , b′.
If all these b′ − 2 encrypted distances are identical, a “ ∗ ” matching is detected.

Figure 5: Operations to detect a “ ∗ ” matching

(ii). operatorφ=“ > ∗”: The operation for a suf!x operator is a special case of the operation for a

substring operator when l = 1. Namely:

If there exists a 1 ≤ j ≤ m such that Fkj (c′1c′2) = Fki1
(c1c2)

Compare d′t,t−1 + rvt−1 with dt,t−1 + rut−1 for t = 3, 4, . . . , b′.
If all these b′ − 2 encrypted distances are identical, a “ > ∗” matching is detected.

Figure 6: Operations to detect a “ > ∗” matching

(iii). operatorφ=“∗ < ”: The operation for a suf!x operator is a special case of the operation for a

substring operator when l = b − b′ + 1. Namely:

If there exists a 1 ≤ j ≤ m such that Fkj (c′1c′2) = Fkib−b′+1
(cb−b′+1cb−b′+2)

Compare d′t,t−1 + rvt−1 with dt+b−b′,t+b−b′−1 + rut+b−b′−1
for t = 3, 4, . . . , b′.

If all these b′ − 2 encrypted distances are identical, a “ > ∗” matching is detected.

Figure 7: Operations to detect a “∗ < ” matching

All matched events are then delivered to the subscriber;

Step 6: After the subscriber receives a matched attribute from the network, it performs the following

operations to recover string sα. Given 〈H(kj),Dkj (c1c2)〉, the subscriber is able to separate H(kj) from

Dkj (c1c2) since the hashed value of H is of length nh. The network determines kj by computing H(ki) for

each ki ∈ K. If H(ki) and H(kj) are identical, ki equals kj and consequently, the subscriber recovers c1c2

by decrypting Dkj (c1c2) using ki. Based on c2, the subscriber calculates u2 ≡ c2 mod m and obtains d3,2

15

by subtracting ru2 from d3,2 + ru2 , which further reveals c3. Similarly, the rest of the characters in sα are

recovered.

3.4.1 Analysis

Correctness The correctness of Ps can be veri!ed through the following statements.

• c′1c
′
2 = clcl+1 ⇔ ∃j : Fkj (c′1c′2) = Fkil

(clcl+1). Recall that Fkil
(clcl+1) = 〈H(kil), H(clcl+1 ⊕

kil)〉. The collision resistance property of H guarantees that if kj 0= kil , the !rst nh bits of Fkj (c′1c′2)

and Fkil
(clcl+1) are different3. So Fkj (c′1c′2) = Fkil

(clcl+1) ⇒ ∃j : kj = kil . Since there are total

128×128 different combinations of two characters, it is easy to ensure that, for key kil , H(clcl+1⊕kil)

is distinct for different clcl+1. Consequently, when kj equals kil , the last nh bits of Fkj (c′1c′2) and

Fkil
(clcl+1) are identical if and only if c′1c

′
2 ⊕ kj = clcl+1 ⊕ kil , i.e., c′1c

′
2 = clcl+1.

• (c′1c′2 = clcl+1) ∧ (∀t ∈ [3, b′] : d′t,t−1 + rvt−1 = dt+l−1,t+l−2 + rut+l−2) ⇔ sα includes sφ. Since

c′2 = cl+1, we have v2 = ul+1 ⇔ rv2 = rul+1 ⇔ d′3,2 = dl+2,l+1 ⇔ c′3 = cl+2. Similarly, we have

c′i = cl+i−1 for i = 4, . . . , b′. As a result, sφ is a substring of sα.

• sα is recovered correctly by the subscriber. This can be easily veri!ed, as described in Step 6.

Privacy Most of the information that the network receives are hashed values of the one-way function H.

The privacy of these information is achieved based on the security of H. The privacy of ER(d3,2d4,3 · · · db,b−1)

can be shown through a similar proof to the privacy of the encrypted values in PRIEST scheme Pv described

in Section 3.3.1.

It should be emphasized that Ps is reasonably secure against a frequency-based attack since the fre-

quency of no single character is revealed. This is achieved by using probabilistic encryption with a total of

m different encryption keys.

We remark that, similar to Pv, operators in Ps have to be made known to the network.

3.4.2 Single-character substrings

We brie"y describe a scheme P ′
s that handles the case where a subscriber’s constraint consists of a single

character. P ′
s is constructed based on the intractability assumption of the FACTORING problem. P ′

s works
3In practice, m = 10 is enough to conceal the character frequency and it is easy to !nd ten keys that have distinct hashed values.

16

as follows. All characters are mapped to pairwise distinct primes by a mapping agreed to by the publisher

and subscriber. Let pc be the prime corresponding to character c. Let C be the set of characters appearing in

string s : c1c2 · · · cn. The publisher generates N = (apc1)2(bpcn)2
∏

ci∈C\{c1,cn} pci , where a and b satisfy

the following three conditions4: (1) a 0= b; (2) gcd(a, b)=1; and (3) a, b 0= pc for all c ∈ C. Let c be the

character that the subscriber is interested in; c is encrypted in different forms depending on operatorφ. If

operatorφ = “ > ∗”, c is encrypted as C = (apc)2. If operatorφ = “ ∗ ”, c is encrypted as C = p2
c . If

operatorφ = “∗ < ”, c is encrypted as C = (bpc)2. When the network receives N and C, it performs dif-

ferent operations depending on operatorφ. If operatorφ = “ > ∗”, the network determines whether s has a

pre!x of c by checking whether C divides N , since C | N ⇔ (apc)2 | (apc1)2(bpcn)2
∏

ci∈C\{c1,cn} pci ⇔

pc = pc1 . Similarly, if operatorφ = “∗ < ”, the network checks whether C divides N since C | N ⇔

(bpc)2 | (apc1)2(bpcn)2
∏

ci∈C\{c1,cn} pci ⇔ pc = pcn . If operatorφ = “ ∗ ”, the network checks whether

C divides N2 since C | N2 ⇔ (pc)2 | (apc1)4(bpcb)
4 ∏

ci∈C\{c1,cn} p2
ci
⇔ ∃ci ∈ C : pc = pci . In this case,

the network only learns C and N . Given C, it is intractable to infer pc. Similarly, given N , it is intractable

to infer any pci for ci ∈ C. In P ′
s, the network does not need to perform a sequence scan on the ciphertext

of s. Consequently, we do not need to encrypt s character-by-character. For example, s can be encrypted

using Luby-Rackoff’s algorithm, which is used in PRIEST scheme Pc to encrypt message contents in a

channel-based system. Note that, since the network cannot learn any pci and the length n of s, P ′
s is secure

against frequency-based attacks.

This section closes with a word on the order operators (e.g., =, 0=, <, >) on strings. When a character

is mapped to a value of its ASCII code, these operators on strings can be supported in the Pv described in

Section 3.3.

4 Discussions

In this section, we discuss several additional issues related to the PRIEST problem.

4.1 Multiple-constraint filters

In Section 3, we only considered !lters consisting of a single constraint. Since the network is able to

detect events matching a single encrypted constraint, the PRIEST scheme described above can be easily

extended to detect events matching multiple constraints. However, the relationship among the constraints
4In practice, we can choose a = 2 and b = 3.

17

(i.e., conjunction or disjunction) needs to be exposed to the network.

4.2 Composite-event filters

Composite events have been introduced in [8, 12, 14, 19, 21] in order to allow subscribers to receive events

that satisfy complex patterns. Typically, a composite event is speci!ed in terms of conditions or constraints

on attribute values (e.g., timestamp) of a set of primitive events [18]. When the set of primitive events

satisfying the appropriate conditions, we say that the composite event has occurred. We assume in this

paper that the network (rather than the publisher) will generate a notice to the subscriber at the occurrence

of a composite event. The network is required to be able to detect the occurrence of a composite event

without learning anything about primitive events.

In the following, we describe how the PRIEST scheme can support composite event !lters for the !ve

composition schemes discussed in [8].

Disjunction: The event type E characterizing the disjunction of two events e1 and e2 is of the form

E1 ‖ E2. An instance e of E occurs iff e1 or e2 (or both) occurs.

Conjunction: The event type E characterizing the conjunction of two events e1 and e2 is of the form

E1&&E2. An instance e of E occurs iff e1 and e2 occur regardless of their order of occurrence.

Sequence: The event type E characterizing the sequence of two events e1 and e2 is of the form: E1, E2.

An instance of E occurs iff e1 occurs before e2.

Iteration: The event type E characterizing the iteration of n events of type E1 is of the form: n(E1). An

instance of this type occurs iff n events of type E1 occur in sequence, n is a positive integer.

Negation: The event type E characterizing the negation of an event e1 is of the form: !(E1). An instance

of this type occurs iff e1 does not occur within a time interval of interest.

Disjunction, conjunction and iteration compositions It is clear that the PRIEST scheme described above

supports the disjunction, conjunction, and iteration compositions. Either e1 or e2 can be privately detected

by the network in the PRIEST scheme. The network only needs to maintain states for occurrences of e1

and e2 to detect an event of E1 ‖ E2 or E1&&E2. Additionally, the network can introduce a counter for the

occurrence of a primitive event to detect an event of n(E1).

18

Sequence composition As described in Section 3, the network is able to detect the order relationship

between two values without learning anything about the values themselves. Assume that the subscriber’s

!lter is a sequence composition requiring e1 to occur before e2. The subscriber !rst encrypts the constraints

of e1 and e2 to be Φ1 and Φ2, respectively. The subscriber consequently encrypts the sequence composition

!lter as FS = (Φ1, Φ2,H(attribute time ⊕ k), Φ1 < Φ2). To detect whether two events E1 (matching

Φ1) and E2 (matching Φ2) satisfy FS , the network !rst !nds the attribute in E1 and E2 by XORing the

encrypted attribute name with H(attribute time ⊕ k) and then compares the order relationship of the

associated values in E1 and E2.

Negation composition We describe two different compositions that depend on how the time interval,

henceforth called validity interval, is de!ned.

• If the subscriber wants to receive a notice when an event e does not occur in an interval v starting from

time t, the subscriber will send the network the ciphertext of the !lter F¬ = (Φ,H(attribute time⊕

k), t+ v + r, “negation”), where Φ is the encrypted constraint of e5. When the network receives F¬,

it maintains a state for the occurrence of e. F¬ is satis!ed if the network receives an encrypted event

E whose timestamp is greater than t + v while there is no occurrence of e6.

• If the subscriber wants to receive a notice when an event e does not occur in an interval v start-

ing from the occurrence of another event e′, the subscriber will send the encrypted !lter F ′
¬ =

(Φ, Φ′,H(attribute time ⊕ k), v, “negation”), where Φ and Φ′ are the encrypted constraints of

e and e′, respectively. When the network detects the occurrence of e′, it records the secret timestamp

t′+r of e′ and maintains a state for the occurrence of e. F ′
¬ will be satis!ed if the network receives an

encrypted event E with a timestamp t+r such that (t+r)− (t′ +r) > v while there is no occurrence

of e.

Similar to the fact that operatorφ in each encrypted constraint is exposed to the network, composite

event !lters expose part of information to the network, e.g., Φ1 < Φ2 in FS and v in F ′
¬.

4.3 Collusion

The !rst requirement of the PRIEST scheme, that the subscriber hide its interest from the network, prevents

any collusion between the subscriber and the network. Similarly, the second requirement, that the publisher
5Here we assume that the time is synchronized between the publisher and the subscriber.
6Here we also assume that events are sent to the network in the order they are generated.

19

keep events secret from the network, prevents any collusion between the publisher and the network.

Let us relax the second requirement and only consider the !rst one. In this case, if the publisher colludes

with the network, a PRIEST scheme becomes a PrivatE Retrieval scheme by KeYwords (PERKY) [6],

except that a PRIEST scheme requires order relations and string operators.

We should also note that the publisher and the network may exchange any information other than the

subscriber’s interests, although they cannot collude. For example, the network can report the number of

matched events to the publisher so that the publisher can charge the subscriber cost of receiving matched

events.

5 Related work

The most related work to this paper is the scheme proposed by Song et al. [22], where a customer stores

encrypted data on a remote database and wants to search the database by a keyword while keeping the

keyword secret to the database. It is clear, however, that the PRIEST problem is more complicated than

the problem considered in [22], e.g., the PRIEST problem requires not only keyword matching, but also

value ordering detection and string operations. Particularly, the problem considered in [22] corresponds to

the channel-based PRIEST scheme Pc, where the channel IDs are the keywords that the subscriber wants to

search. From a communication complexity point of view, the number of encrypted channel IDs sent from the

publisher to the network in Pc is the same as the number of the words sent from the customer to the remote

database in [22]. Whereas, the number of encrypted !lters sent from the subscriber to the network in Pc is

less than the number of encrypted queries sent from the customer to the database in [22]. More speci!cally,

an encrypted query in the latter case is composed of an encrypted keyword and additional information of the

key to be used for the database to conduct the search. On the other hand, an encrypted !lter in the former

case does not include the key information.

Recently, Boneh et al. proposed a scheme of Public key Encryption with Keyword Search (PEKS) [2].

A sender encrypts an email with several keywords using a receiver’s public key and sends the ciphertext to

a mail server. A PEKS scheme enables the mail server, by requiring the receiver to send a trapdoor to the

server, to test whether an email consists of a keyword w without learning anything else about the email. A

PRIEST scheme is quite similar to a PEKS scheme. Two differences are worth noting though. First, a PEKS

scheme only provides word-by-word search whereas a PRIEST scheme supports character-by-character

matching. Second, a PRIEST scheme is based on symmetric encryptions whereas a PEKS scheme is based

20

on public-key encryptions. In a pub/sub system, the publisher may generate a large amount of data. In this

case, a PEKS scheme is not appropriate for the high encryption overhead of public-key systems.

6 Conclusions

In this paper, we formally introduced the private subscription problem in pub/sub systems, which is shown

to be at least as hard as the single-database Private Information Retrieval (PIR) problem introduced in [7].

Since the most ef!cient approach of the unconditionally-secure PIR problem has the same communication

complexity as the trivial one in which the entire database is sent to the user, we described a computationally-

secure PRIEST scheme based on the one-wayness assumption of the hash functions and the intractability

assumption of the integer factorization problem. The proposed PRIEST scheme combines information con-

!dentiality and subscription con!dentiality against the network to achieve a strong level of user privacy.

Our scheme is "exible that it supports both channel-based and content-based pub/sub systems, the latter

which supports both primitive-event detections and composite-event detections. To that end, the PRIEST

scheme is also ef!cient and practical to use in current pub/sub systems wherein a large amount of data may

be generated.

References

[1] P. van Oorschot A. Menezes and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.

[2] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano. Public-key encryption with keyword search.

In C. Cachin, editor, Proceedings of Eurocrypt 2004, Interlaken, Switzerland, May 2004.

[3] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarith-

mic communication. Lecture Notes in Computer Science, 1592:402–414, 1999.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area event noti!ca-

tion service. ACM Transactions on Computer Systems, 19(3):332–383, August 2001.

[5] B. Chor and N. Gilboa. Computationally private information retrieval. In Twenty-ninth annual ACM

symposium on Theory of computing, pages 304–313, El Paso, Texas, May 1997.

[6] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. Technical Report TR

CS0917, Department of Computer Science, Technion, 1997.

21

[7] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In 36th IEEE

Conference on the Foundations of Computer Science (FOCS), pages 41–50, 1995.

[8] C. Collet and T. Coupaye. Primitive and composite events in NAOS. In Actes des 12e Journees Bases

de Donneees Avancees, pages 331–349, Cassis, France, September, 1996.

[9] G. Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for database private information

retrieval (extended abstract). In Symposium on Principles of Distributed Computing, pages 91–100,

1998.

[10] J. Fortes. Transnational digital government research: Building regional partnerships. Highlighted case

study presentation at the Digital Government conference, 2003.

[11] Z. Ge, P. Ji, J. Kurose, and D. Towsley. Matchmaker: Signaling for dynamic publish/subscribe appli-

cations. In Proceedings of IEEE ICNP 2003, Atlanta, GA, November 4-7, 2003.

[12] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event speci!cation in active databases:

Model & implementation. In Proceedings of the 18th International Conference on Very Large

Databases, Vancouver, British Columbia, Canada, 1992.

[13] S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker keeping secret all

partial information. In the 18th ACM Symposium on theory of computing, pages 270–299, 1982.

[14] Annika Hinze. Ef!cient !ltering of composite events. In Proceedings of the 20th British National

Database Conference, Coventry, UK, 2003.

[15] Y. Ishai and E. Kushilevitz. Improved upper bounds on information-theoretic private information

retrieval (extended abstract). In 31th Annu. ACM Symp. on the Theory of Computing (STOC), pages

79–88, 1999.

[16] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private

information retrieval. In 38th IEEE Conference on the Foundations of Computer Science (FOCS),

Miami Beach, Florida, October 1997.

[17] E. M. Lee, S. Su, and H. Lam. Event and rule services for achieving a web-based knowledge network.

In Web Intelligence 2001, pages 205–216, Maebashi, Japan, October, 2001.

[18] G. Liu and A. Mok. Implementation of JEM - a java composite event package. In Proceedings of Fifth

IEEE Real-Time Technology and Applications Symposium, Vancouver, Canada, June, 1999.

22

[19] G. Liu, A. Mok, and E. Yang. Composite events for network event correlation. In Proceedings of

IFIP/IEEE International Symposium on Integrated Network Management, Boston, MA, May, 1999.

[20] M. Luby and C. Rackoff. How to construct pseudo-random permutations from pseudorandom func-

tions. SIAM Journal on Computing, pages 373–386, April 1988.

[21] P. R. Pietzuch, B. Shand, and J. Bacon. A framework for event composition in distributed systems.

In Proceedings of the 4th International Conference on Middleware (MW’03), Rio de Janeiro, Brazil,

June, 2003.

[22] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In IEEE

Symposium on Security and Privacy, pages 44–55, Oakland, California, May 2000.

[23] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Sturman, and M. Ward.

Gryphon: An information "ow based approach to message brokering. In International Symposium on

Software Reliability Engineering ’98 Fast Abstract, 1998.

[24] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security issues and requirements for internet-scale

publish- subscribe systems. In 35th Hawaii International Conference on System Science (HICSS-35),

Hawaii, 2002.

[25] A. Yamamura and T. Saito. Private information retrieval based on the subgroup membership problem.

Lecture Notes in Computer Science, 2119:206–220, 2001.

23

