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Abstract

Enterprises and Content Delivery Networks (CDNs) contract with multiple Internet Service
Providers (ISPs) to ensure fault-tolerant access to the Internet. The total bandwidth cost
incurred across the multiple network contracts is a sizable portion of the variable costs incurred
by an enterprise or CDN for delivering internet services in a reliable fashion. This paper initiates
a new area of research in internet traffic management that promises to be both algorithmically
rich and practically important. We consider routing internet traffic via ISPs, where each ISP
charges on the basis of the average, the maximum, or the 95" percentile of the traffic routed
through its uplink during the billing period. First, we devise an optimal offline algorithm that
routes traffic to achieve the minimum total cost, when the network contracts charge either on
a maximum or an average basis. Further, we devise a deterministic (resp., randomized) online
algorithm that achieves cost that is within a factor of 2 (resp., -%5) of the optimal offline
cost. The competitive ratios achieved are the best possible for both the deterministic and the
randomized case. Finally, we show that including network contracts that charge based on the
the 95" percentile of the traffic renders finding the optimal solution NP-hard, even in the offline
case.

1 Introduction

Over the past years, the internet has emerged as the business-critical medium for communication.
Enterprises today rely partially or even entirely on the internet to communicate with their vendors
and clients. A media company such as CNN or an e-commerce portal such as Amazon reach their
world-wide clients over the public internet. And, increasingly even traditional brick-and-mortar
enterprises transact with their vendors and clients using extranet B2B portals. For many enterprises
today, even a 10-minute downtime or poor performance of its internet services during a peak period
could mean millions of dollars of lost revenue! As billions of dollars are transacted on the internet
every day, there is a sharp focus on technology that can deliver a better performing and more
available internet at the least cost.

The internet is a network of networks, where each network is managed by an Internet Service
Provider (ISP) who builds and manages the routers, links, and other networking infrastructure. As



such, there are tens of thousands of ISPs that constitute the internet today, ranging from large Tier-1
providers with a global presence (such as Level 3, AT'T, Sprint, WorldCom), national providers (such
as China Telecom, VSNL in India, SingTel in Singapore), regional providers (such as Earthnet),
and local ISPs. Entities that wish to access the internet buy internet connectivity from one or
more [SPs. Network connectivity is bought and sold in the common currency of bandwidth, usually
measured in Megabit-per-second (Mbps), under agreements that are known as network contracts.

An enterprise requiring high-levels of availability and performance for their internet services face
a fundamental challenge. The internet itself was designed as a best-effort delivery network with no
guarantees on uptime, quality of service, or performance. And, an enterprise that relies on just one
ISP for connectivity to the internet runs the risk of that ISP becoming the single point of failure
causing an outage. Therefore, it has recently become commonplace for large enterprises to employ
a technique called multihoming [2], where the enterprise contracts with multiple ISPs to provide
redundant internet access for its origin infrastructure, including its web servers, application servers,
and back-end databases. The enterprise would then route traffic to and from its origin via the
multiple uplinks, so as to minimize bandwidth costs and maximize availability and performance.
Recently, commercial offerings from RouteScience [3] and Internap [4] offer products that help the
enterprise optimize traffic across the different ISPs that provide network connectivity.

A complimentary and a more comprehensive approach for achieving a reliable internet service
is for the enterprise to contract with a Content Delivery Network (CDN) to host their web site.
Examples of such CDNs include Akamai [1, 6] and Speedera [5]. A CDN is a large-scale distributed
system with servers hosted in potentially thousands of ISPs. A CDN negotiates network contracts
to buy bandwidth from each of those ISPs. An end-user accessing content hosted on the CDN
is directed to an appropriate server at one of the contracted ISPs that can serve the content.
Specifically, traffic from end-users accessing content in a CDN is directed to servers in the different
ISPs, so as to optimize availability and performance for the end-user and minimize bandwidth costs
for the CDN.

The primary focus of this paper is building an algorithmic framework for the all-too-important
problem of routing traffic to minimize overall bandwidth costs across multiple network contracts.
The model and algorithms proposed here find application in the multihoming context, where an
enterprise would like to minimize the total cost incurred in its contracts with ISPs. But, this work
is even more applicable in the context of a CDN that wishes to optimize the overall total cost
incurred across its numerous network contracts. As such, bandwidth costs incurred in the network
contracts with the ISPs account for a significant portion of the variable costs (i.e., Cost of Goods
Sold) for operating the CDN. Therefore, managing the traffic to reduce bandwidth costs is critically
important.

1.1 Network Contracts

A first important step in our study is accurately modeling a network contract with an ISP. While a
network contract is a complex legal document, there are three important parameters that provide
a simple yet realistic model for designing applicable optimization algorithms.

Type The contract type dictates how the ISP will bill for the traffic that is sent over its link.
The billing period (typically a month) is divided into M 5-minute time buckets (typically,



M = 8640), and the total traffic sent on the link is averaged within each 5-minute bucket.
The three types of contracts we study are AVG, MAX, and 95th contracts where the billable
traffic is computed as the average, maximum or the 95th percentile respectively of the 5-
minute-bucket-averages in the billing period. The AVG and 95" contracts are the industry
standards accounting for most network contracts in existence today. Routing traffic demand
on the internet is imprecise, since the offered load is often hard to estimate and the controls
are imprecise (for instance, when web traffic is moved from one ISP to another ISP, it may take
several minutes for the move to take effect depending on DNS TTLs and browser behavior).
Due to the imprecision in both traffic estimation and control, 95" contracts are handled as
though they were M AX contracts in practice. Hence, the great importance of studying M AX
contracts. Further, as we will see MAX contracts are more tractable and provide good insights
into the underlying optimization.

Unit Cost Unit cost is the cost per Mbps of billable traffic. Let 1 > xo > --- > xs be the average
traffic within each of the M 5-minute buckets during the billing period, placed in descending
order. For an AVG contract, the bill for the month is Cay g * (3_; z;)/M, where Cayg is the
unit cost. For a MAX contract, the bill for the month is Cps4x * 21, where Cpr4x is the unit
cost. Likewise, for a 95" contract, the bill for the month is Cogp, * A

Capacity. The capacity P is the maximum bandwidth (in Mbps) that one can send through the
uplink of the ISP.

In addition to these three parameters, an additional parameter called the Committed Information
Rate (CIR) is important to model. CIR represents the committed amount of billable traffic that
must be sent through an ISP. The CIR is paid for in advance, whether or not it is used. While the
results presented in this paper do not consider CIR, accounting for CIRs is an important direction
for future work.

1.2 Prior Work

There is no work that the authors are aware of that model network contracts and study the problem
of minimizing bandwidth costs incurred in these contracts. However, considering the practical
importance of the problem in recent years, heuristic implementations exist for similar problems
in a real-world setting. The techniques used here are rooted in the extensive literature on online
algorithms [13, 14]. Specifically, the decision of whether to use a MAX versus an AVG contract
is similar to a generalization of the buy-versus-rent decision in the classical Ski Rental Problem
[12, 11].

1.3 Owur Contributions

The first contribution of the paper is the modeling and formulation of an area of great practical
importance with a rich potential for algorithmic investigation. In Section 2, we derive an optimal
offline algorithm that routes traffic to a set of ISPs with AVG and MAX contracts such that the
total cost is minimized. The offline algorithm assumes that the traffic that needs to be routed for the



entire billing period is known in advance. While this is not an assumption that holds in practice,
the offline optimal algorithm places a lower bound on the cost that is achievable by any online
algorithm that is used in practice. Among other things, this is valuable in bounding the amount of
cost reduction possible by investing in better online algorithms for traffic management. In Section 3,
we turn to online algorithms that know only the current and the past traffic levels, and is unaware
of any events in the future. Specifically, we devise a deterministic online algorithm that is at most
a factor of 2 in cost from the optimal offline solution. Further, in Section 4, we devise a randomized
online algorithm that has an expected cost that is a factor of ;%5 from optimal. In both cases, we
show that the competitive ratios are the best possible. Finally, we show that optimizing costs for
95th percentile contracts is NP-hard, which differentiates it from the MAX and AVG contracts.

1.4 Problem Description

The internet traffic management problem is modeled as follows. The billing period (typically one
month) is divided into M 5-minute time buckets. We model the incoming traffic as a sequence
by, 1 <t < M, where b, is the average traffic (Mbps) in the time bucket ¢. Each b; represents
the average traffic demand from end-users that must served from the contracted ISPs at that time
bucket. At any time ¢, a traffic routing algorithm partitions the incoming traffic b; and assigns y]
Mbps to ISP; such that ) j y! = b;. Further, it ensures that capacity constraints are met at each

ISP; and at each time 1 <t < M, i.e., y{ < Pj, where P; is the capacity of ISP;.

An offline algorithm knows the entire time-ordered input sequence of traffic demands, I = (b;),
1 <t < M, for the entire billing period. And, it makes traffic routing decisions based on this
complete knowledge. An online algorithm on the other hand makes routing decisions at time ¢
knowing only b, 1 < j <, i.e., knowing only the past and current values.

In this paper, we study both offline and online algorithms for traffic management that optimize
the total cost incurred in the network contracts for the billing period. We use the notion of compet-
itive ratio to bound the cost C'4(I) of an online algorithm A in terms of the optimal offline cost of
Copr(I). In particular, a deterministic online algorithm A is said to be c-competitive if there exists
a constant « such that for all input sequences I, C4(I) < ¢- Copr(I) + a. A similar competitive
notion applies to randomized online algorithms where the expected value of the cost is used instead.

2 The Offline Algorithm

In this section, we derive an optimal offline algorithm that routes traffic to ISPs with AVG or
MAX contracts with minimum cost. Assume that we are given contracts from m MAX ISPs Max;,
1 < ¢ < m, such that Cprez, < Crraz, < -+ < Cirag,,. Further, assume that we are given contracts
from n AVG ISPs Avg;, 1 < i < n, such that Cayg, < Cavg, < -+ < Capg,. Note that without
loss of generality we may assume that the costs of two MAX (resp., AVG) ISPs are not equal, since
one can merge two contracts of the same cost and type to form one contract with the sum of the
capacities. We start by proving a series of lemmas that characterize an optimal solution. We will
then use this characterization to efficiently compute the optimal solution.
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Figure 1: The structure of an optimal solution

Lemma 1 In any optimal solution, ISP Avg; is not used in a time bucket unless each ISP Avg;,
J <1, is used to its full capacity.

Proof: Assume there is an optimal solution contrary to this lemma. Moving traffic from Awvg; to
a cheaper ISP Avg; that has residual capacity left reduces the cost. Contradiction. [J

Define the threshold tpsq4; of an ISP Max; to be the maximum traffic routed during the billing
period through that ISP.

Lemma 2 In any optimal solution, threshold tyrez; > 0 only if tMaz; = PMaxj for all j < i, where
Ppraz; is the capacity of the ISP Max;.

Proof: Assume there exists an optimal solution contrary to this lemma. Let Maxj, j < ¢, be
an ISP such that tprez; < PuMaxz;- We can now move traffic of up to Ppaz; — tamaz; in every time
bucket from ISP Max; to the cheaper ISP Max;. This results in a reduction of the threshold of
Max;, and hence a reduction in total cost. Contradiction. [J

Lemma 3 There exists an optimal solution in which Max; is not used in a time bucket until each
ISP Mazxj, j <1, has been used to its full capacity of Pnyaz, -

Proof: Suppose that the lemma does not hold for an optimal solution in some time bucket t. We
show how to reroute the traffic in that time bucket to create a new optimal solution with same cost
that obeys the lemma in that time bucket. Let ¢ be the largest value such that Maxz; is used in time
bucket ¢. Using Lemma 2 and the fact that ¢ta7qq, > 0, it follows that ¢ Maz; = PMMJ., for all j < 1.
Therefore, one can reroute the traffic in time bucket ¢ by filling the ISPs to capacity in sequential



order starting from Maz;. This does not increase any of the thresholds and hence does not affect
the overall cost. Thus, the new solution after the rerouting is also optimal. [J

Lemma 4 In the optimal solution, in any time bucket an AVG ISP is used only if all MAX ISPs
are used to their respective thresholds for the billing period.

Proof: Assume to the contrary. If there exists an optimal solution where ISP Avg; receives z > 0
units of traffic in a time bucket, but some ISP Maz; is used less than its threshold ¢psqz; by y >0
units. By moving min{x,y} > 0 units of traffic from Avg; to Max;, the total cost of ISP Avg;
decreases while the cost of Max; remains the same. Thus, the overall cost decreases, which leads
to a contradiction. [

As a consequence of the above lemmas, we have shown that there exists an optimal solution
that is structured as in Figure 1. The sequence of vertical bars in the figure represent traffic a; in
time bucket i sorted in non-increasing order, i.e., a1 > a2 > --- > aps. As shown in the figure mazx
threshold h is the sum of the thresholds of all the MAX contracts. Define max threshold hopr to
be equal to the value of h in the optimal solution. Note that in each bucket, MAX ISPs are filled to
capacity in the decreasing order of cost until that height hopr is reached or there is no more traffic
to be served. After height hopr is reached, AVG ISPs are filled to capacity in the decreasing order
of cost until there is no remaining traffic to be served.

To compute the optimal it suffices to compute the optimal value of Max Threshold h that
minimizes total cost.

Lemma 5 Let Dec(h) (resp., Inc(h)) represent the decrease (resp., increase) in the total cost of
the AVG (resp. MAX) contracts when the Maz Threshold is increased from h to h + 1. Dec(h)
(resp., Inc(h)), is a non-increasing (resp., non-decreasing) function of h.

Proof: Let L;(h) be the number of buckets in which traffic is sent through the AVG ISP Avg;
when the Max Threshold is h. Dec(h) to be the decrease in the total cost incurred in AVG ISPs if
the Max Threshold is changed h to h 4+ 1. Now Dec(h) = Cavg, (L1(h) — La(h)) + Cavg,(L2(h) —
L3(h)) + -+ + Cavg, 1 (Ln—1(h) — Lyp(h)) + Cavg, Ln(h). Li(h) is a monotonically non-increasing
function of h as we are sending more through the MAX ISPs. In the following equations as the

coefficients of L;(h) are positive constants we can say that Dec(h) is also a non-increasing function
of h.

Dec(h) = Cuavg,(L1(h) — La(h)) + -+ + Cavgy_y (Ln-1(h) = Ln(h)) + Cavg, Ln(h)
= Ll(h)(CAv.(h) + L2(h)(CAvgz - CAvg1) +o Ln(h)(CAvgn - CAvgn—l)

Note that Inc(h) is the cost of the MAX ISP that is used for routing the unit of traffic at height
h 4+ 1. Since the MAX ISPs are used in the increasing order of cost, Inc(h) is a non-decreasing
function of h. [.

Theorem 6 The offline optimal solution can be computed in O((n +m)M log(nmM)) time, where
m is the number of MAX ISPs, n is the number of AVG ISPs and M is the total number of buckets
in the billing period.



Proof: Note that a value of h is permissible if and only if it is feasible to route all traffic at or
below height A using MAX contracts, and all traffic above h using AVG contracts. Note that as
long as Dec(h) > Inc(h), we can decrease the total cost by incrementing h. From Lemma 5, it
follows that the optimal value of h = hopr is either the lowest permissible value of h such that
Dec(h) < Inc(h) or if no such h exists then it is the largest permissible value of h.

By the definition of hopr, Dec(h) > Inc(h) for all permissible h < hopr and by Lemma 5 for
all permissible h > hopr we have Dec(h) < Dec(hopr) < Inc(hopr) < Inc(h). Thus one can
find out an optimal value, hopr, by doing binary search on just those values of h where the values
where Dec(h) or Inc(h) differ from Dec(h — 1) and Inc(h — 1) respectively.

Inc(h) differs from Inc(h — 1) whenever h = Zf;ll Pyraz; for some k as now a new MAX ISP
is used. A sorted array of size m containing such values of h can be calculated in O(m) time.
The value of Dec(h) changes only if for some i the value of L;(h) changes on increasing the Max
Threshold from h — 1 to h. L;(h) changes only if h + Z;_:ll Ppyg; = by for some k. For each i
a sorted array of size at most M such values of such h can be calculated in O(M) time using a
pre-calculated array of 23;11 Payg; for i = 1,2,...,n. This array can be calculated in O(n) time
beforehand. The n sorted arrays of size at most M, where Dec(h) can change, and the sorted array
of size at most m, where Inc(h) can change, can be merged into a single sorted array of size at most
nM + m in O(nM + m) time.

The binary search on this restricted set takes log(nM + m) iterations. In each iteration we
calculate on the fly the values of Inc(h) and Dec(h) for the new value of h. Inc(h) = Cuyrae,; if
23;11 Prfaz; < h < 23'21 Prraz; Thus Inc(h) can be calculated in O(logm) time searching for h
using binary search on a pre-calculated array of size m where the i" element is the sum of the
capacities of the ¢ cheapest MAX ISPs. Lg(h) can be found in O(log M) time by searching for
h + Zf;ll Ppyg; in the array b1, bz, ..., by using binary search and returning the index ¢ such that
b < h+ Zf;ll Ppyg; < bi—1. The array containing Zf;ll Pgyg; is calculated only once and used
repeatedly. Thus Dec(h) can be calculated in O(n log M) time. Thus the time required per iteration
is O(nlog M +logm). Thus the total time required for finding the optimal value of h is O((nlog M +
logm)log(nM +m)+nM+m+n+mlogm+nlogn+ Mlog M) = O((nlog M +log m)log(nM +
m) +nM + mlogm + M log M). The additional time of O(mlogm + nlogn + M log M) is used is
for the initial sorting of the traffic buckets and costs. Once hpopr has been found the optimal traffic
assignment for each bucket can be output in O(M(n + m)) time.O

3 A Deterministic Online Algorithm

In this section, we present a 2-competitive deterministic online algorithm A that routes traffic to
AVG and MAX ISPs. The algorithm is given a time-ordered sequence of traffic demands, I =
(b1,b2,- -+ ,bar—1,ba). At a given time bucket ¢, algorithm A does the following:

1. Run the offline algorithm OPT described in Section 2 on the input (b1, ba, - ,b,0,0,--- ,0).
That is, run the offline on a prefix of the input assuming all future time buckets have zero
traffic.

2. Route the current traffic b; in same manner as OPT.



First, we show that the Max Threshold, i.e., the sum of the thresholds incurred in the MAX
contracts, can only increase with time as we progress through the month.

Lemma 7 Let h; be the Maxz Threshold of OPT on input (by,ba,--- ,b;,0,0,---0). Then, for all
1<t<M-1, hy < hyya-

Proof: Let Inc;(h) and Dec;(h) be defined as in Section 2 for input (by,be, - ,b;,0,0,---0). By
definition, h; is either the lowest permissible value of h such that Deci(h) < Inci(h) or if no such h
exists then it is the largest permissible value of h for input sequence (b1, ba,--- ,b,0,0,---0). Note
that

I’l’LCt+1(ht) = I?’LCt(ht) (].)
Further, note that
Dect+1 (ht) Z Dect(ht), (2)

since the two are equal if b;1; < h; and the LHS is greater than the RHS otherwise. Observing that
h is also a permissible value for the input sequence (by,bo, - , b, bi11,0,0, - - 0), equations 1 and
2 imply that hyy; either equals h; or is larger than it. [J

Theorem 8 The competitive ratio of the deterministic online algorithm A is 2.

Proof: The total cost C'4 of algorithm A equals the sum of the cost C'4 4,4 incurred in the AVG
contracts and the cost Cg arq, incurred in the MAX contracts. Note that the final threshold hps of
A equals the threshold hppr computed by the offline optimal algorithm OPT. Therefore,

Ca,Maz = CopT,Maz < CopPT (3)

Let Cﬁx, Avg D€ the cost incurred in AVG ISPs by algorithm A during the first ¢ time buckets.
Similarly, let C’to pr be the total cost incurred by the optimal offline algorithm OPT when provided
an input of (by,be,--- ,b:,0,0,--- ,0). We prove by induction on ¢, that Cﬁl,Avg < Chpr-

Base Case When t = 1, algorithm A runs OPT on the first input and behaves identical to it.
Therefore,

1 _ 1 1
CA 409 = CopPT, 409 < CoOPT

Inductive Case: Assume that the hypothesis is true till ¢. So Cfél,Avg < Chpp. As Chpp is the
optimal offline solution for the input (by,bs,--- ,b:,0,0,---,0), Cfél,Avg < Chpy < the cost of the
optimal offline solution with Max Threshold as h;y; for the same input. The contribution in the
cost of C’f;}w g and CtOJSDlT of sending part of the data in the ¢ + 1** interval through the AVG ISPs
is the same. This is because in both cases only the data more than hsi1 is sent through the AVG
ISPs. Adding this cost to the extremities of the inequality given above we get C’f;}w g S C’tOJ}lT. This
completes the induction. Therefore,

CA,AUQ = C%Avg < CglPT = Copr (4)

Thus, combining equations 3 and 4, C4 = C4 paz + Ca, 409 < 2Copr O



Theorem 9 The competitive ratio of 2 achieved by Algorithm A is the best possible for any deter-
ministic online algorithm.

Proof: We prove a lower bound by showing that the Ski Rental problem[11] is a special case of
the traffic routing problem. Given a ski rental problem where the cost of renting a ski is 1 and the
cost of buying a ski is p, the optimal strategy when you ski k times is to buy skis in the beginning
if & > p, and rent otherwise. Given an instance of the ski rental problem we create an instance of
the traffic routing problem with one MAX ISP of cost p and one AVG ISP of cost M, where M > k
is the number of buckets in the billing period. The input traffic b, = 1, if 1 < ¢t < k, and zero
for K <t < M. The capacity of each ISP is 1. It is easy to verify that in the original ski rental
problem the optimal solution is to buy skis if and only if the optimal solution for bandwidth cost
minimization problem is to use MAX ISP to send the entire data. Similarly renting skis is optimal
if and only if AVG ISP is used to send the entire data.

If for any € > 0 if there exists a deterministic online algorithm with competitive ratio of 2 — ¢
we can use it to get a 2 — € competitive deterministic online algorithm for the ski rental problem
using the construction given above. This contradicts the fact that ski rental problem has a lower
bound on the competitive ratio of a deterministic online algorithm of 1 + % which — 2 as
p — oo[11, 12]. O

4 A Randomized Online Algorithm

In this section we describe an e/(e — 1) competitive randomized online algorithm Apg,,g which

ez

e—1"

1. Picks z between 0 and 1 according to the probability density function p(z) =
2. Routes the traffic using the deterministic online algorithm A,.

The online algorithm A, is given a time-ordered sequence of traffic demands, I = (by,bo, -+ ,byr—1,bn).
At a given time bucket ¢, algorithm A, does the following;:

1. Run the offline algorithm OPT'(z) described in Section 2 on the input (by, b, -+ ,b,0,0,--- ,0)
but with the costs of all MAX ISPs multiplied by z.

2. Route the current traffic b; in same manner as OPT(z).

Define Copr(z) to be the cost of the optimal offline solution with the same input but with the
costs of all MAX ISPs multiplied by z. Let Copr,4vg(2)(resp., CopT,maz(2)) be the contribution
in Copr(z) due to the AVG (resp., MAX) ISPs. Similarly define Cy, ayg(resp., Ca, rqz) to be
the contribution in Cjy,, the total cost due to algorithm A, due to the AVG (resp., MAX) ISPs.
Note that Ca, and Ca, mae are charged by the actual cost of the MAX ISPs but Copr(z) and
CopT,Maz(2) have a discounting factor of z. Also A; is the deterministic online algorithm A given
in section 3.

Lemma 10



Proof: This proof is similar to the proof given for equation 4, C4 4,y < Copr, given in theorem 8.
O

Lemma 11

2Ca, Maz = Coprr,Maz(2) (6)
Proof: Again this can be proved in the same way as equation 3, Cs rmrez = CopPT,Maz, Was proved
in theorem 8. The only difference is that in Copr(z) the costs of the MAX ISPs are multiplied by

z and in A, they are not. [

Lemma 12 For 0 <z <1,

1
Copr(1) — Copr(z) > /CAw,Mawdw
z

Proof: For any v such that 0 <z <wv <1,

Copr(v) = CopPT,Maz(v) + CopPT,Avg(V)
= UCAU,Maa: + COPT,Avg(U)
d(Copr(v)) = dv-Ca,Max +v-d(Ca, Maz) + d(CopT,Aug(v)) (7)

Define h(w) to be the Max Threshold in the optimal offline solution (Copr(w)) when the cost of
all MAX ISPs are multiplied by w. h(w) is a non-increasing function of w. Also let Cprqz, be the
original cost of the MAX ISP with highest cost that was used in optimal offline solution Copr(w)
(or in Cy,, ). As the actual cost of any MAX ISP used in the gap between h(v) and h(v + dv) would
be at most Czqg,

_d(CAU,Ma:c) = CA,,,Max - CAU+dU,Maw < CMawu : (h(v) - h(v + dv)) (8)

The actual cost of any MAX ISP used in the gap between h(v) and h(v + dv) is at least Carae, . 4, -
Thus in the optimal solution when the cost of the MAX ISPs have been multiplied by v decreasing
the Max Threshold from h(v) by h(v) — h(v + dv) decreases the cost due to the MAX ISPs by at
least vCopr(v + dv) * (h(v) — h(v + dv)). The corresponding increase in the cost due to the AVG
ISPs should be at least this much otherwise we contradict that Copr(v) is optimal cost. Thus

d(Copt,Avg(v)) = CoPT,Avg(v + dv) — CopT,Avg(v) > vCMaz, 4, - (M(v) — k(v +dv)) (9)
Substituting equations 8,9 in equation 7

d(CopT(’U)) Z dv - CAU,Ma:c — - (CMawu+du — CMawu) . (h(v + dv) — h(v))
== dv ‘ CAU,Ma(v — V- d(CMawu) . d(h(v))

Integrating v from z to 1 and using the fact that Copr(v) is a continuous function and that the
integral of the product of two differentials is 0, we get Copr(1) — Copr(2) > le Ca, Mazdv. O

10



Corollary 13

1
Copr(1) > /CAw,Ma:cdw
0

Theorem 14 The competitive ratio of the randomized online algorithm Apgng is e/(e — 1)

Proof: Define P(z) = [; p(w)dw. Then

Ca, Ca, Maz + Ca,, avg
1

< Ca,,Maz + Copr(1) —/ Ciy,Mazdw

by lemma 10 and lemma 12

1
ElCap,,.] = / Ca,p(z)dz
0
1 1 1
< Corr)+ [ Cataat(hdz — [ b [ Cavoptantu)d:
0 0
1 1 : w
= Copr +/ Ca, ,Mazp(2)dz — / CAw,Ma:c(/ p(2)dz)dw
0 0 0
by changing the order of integration
1
— Corr+ [ (b(z) = P()C. prasd
0
BlCanudl . 1, Jo(@() = P(2))Ca prard2
Copr Jy Ca. Maxd>
By corollary 13. Setting p(z) = % and P(z) = eez:11 in the above result we prove the theorem. [J

Theorem 15 The competitive ratio of e/(e — 1) achieved by Algorithm Apgnq is the best possible
for any randomized online algorithm.

Proof: As in theorem 9 we use the fact that this problem is a generalization of the ski rental
problem. The ski rental problem has lower bound on the competitive ratio of a randomized online
algorithm of e;,/(e;, — 1) where e, = (1 + Iﬁ)p when p, the ratio of the cost of buying to the
cost of selling, is an integer. The algorithm which achieves this is similar to the randomized online
algorithm for the snoopy caching problem[12]. Also e;,/(e;, — 1) < e/(e — 1) but tends to e/(e — 1)
as p tends to oo.

If for any € > 0 if there exists a e/(e — 1) — € competitive randomized algorithm for this problem
then by the construction in theorem 9 we get a e/(e — 1) — € competitive randomized algorithm for
the ski rental problem. A contradiction. [

5 Hardness of the 95" Percentile Contracts

Including network contracts that charge based on the the 95" percentile of the traffic renders finding

the optimal solution NP-hard, even in the offline case. In fact the following easier problem is also
NP-Hard.
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Theorem 16 Finding whether one can route the entire traffic with zero cost in a system consisting
of n 95" percentile ISPs is NP-Complete in the strong sense.

Proof: The proof involves a straight forward reduction from the Bin Covering Problem|[7] to this
problem. Which is known NP-complete in the strong sense. Details omitted.[]
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