
Verification of MPI-Based Software for Scientific
Computation

Stephen F. Siegel and George S. Avrunin

Laboratory for Advanced Software Engineering Research, Dept. of Computer Science,
University of Massachusetts, Amherst MA 01003, USA

{siegel,avrunin}@cs.umass.edu
http://laser.cs.umass.edu

Abstract. We explore issues related to the application of finite-state
verification techniques to scientific computation software employing the
widely-used Message-Passing Interface (MPI). Many of the features of
MPI that are important for programmers present significant difficulties
for model checking. In this paper, we examine a small parallel program
that computes the evolution in time of a discretized function u defined
on a 2-dimensional domain and governed by the diffusion equation. Al-
though this example is simple, it makes use of many of the problematic
features of MPI. We discuss the modeling of these features and use Spin
and INCA to verify several correctness properties for various configura-
tions of this program. Finally, we describe some general theorems that
can be used to justify simplifications in finite-state models of MPI pro-
grams and that guarantee certain properties must hold for any program
using only a particular subset of MPI.

1 Introduction

The advent of relatively cheap clustered computers and infrastructure support-
ing parallel programs on them has made supercomputers much more accessible
and greatly expanded the range of application of scientific computing. Yet de-
velopers of parallel scientific software have encountered many problems that
are familiar to specialists in verification of concurrent software: programs dead-
lock; they display inappropriate nondeterministic behavior; bugs are difficult to
reproduce, let alone pinpoint and correct. Finite-state verification (FSV) tech-
niques, such as model checking, can offer solutions to many of these problems, at
least in principle. But typical scientific parallel programs pose special challenges
for FSV techniques. For instance, in the widely used Message-Passing Interface
(MPI) [13], the memory available for buffering messages between two processes,
and thus the number of messages that can be buffered, can change dynamically
and unpredictably during execution.

In this paper, we describe some first attempts at applying FSV techniques
to a small, but realistic, example of a parallel scientific program that uses MPI.
This program computes the evolution in time on a 2-dimensional domain of a



2

discretized function governed by the differential equation known as the “dif-
fusion” (or “heat”) equation. We discuss some of the issues in modeling such
programs and present the results of verifying several data-independent proper-
ties of the communication skeletons of various configurations of this program,
using Spin [7] and INCA [3,15]. Finally, we describe some theorems that can be
used to justify simplifications in models of MPI programs, and that guarantee
certain properties must hold for programs using only a particular subset of MPI.

In the next section, we briefly discuss the basic MPI constructs and introduce
our example program, Diffusion2d. In section 3, we explain how we modeled
this program for Spin and present the results of our initial attempts to verify
properties with Spin. We then discuss modeling and verification with INCA. In
section 5, we present the theorems. In section 6, we briefly describe some related
work, and we discuss our conclusions and plans for future work in section 7.

2 The Message-Passing Interface and an Example
Program

Most parallel scientific programs rely on message-passing for inter-process com-
munication. The basic ideas of this paradigm have been around since the late
1960s, and by the early 1990s, several different and incompatible message-passing
systems were being used to develop significant applications. The desire for porta-
bility and a recognized standard led to the creation of the Message-Passing In-
terface, which defines the precise syntax and semantics for a library of functions
for writing message-passing programs in a language such as C or Fortran. Since
that time, a number of high-quality proprietary and open-source MPI implemen-
tations have become available on almost any platform, and MPI has become the
de facto standard for parallel scientific software.

2.1 MPI Basics

An MPI program consists of autonomous processes executing their own code in
an MIMD style, although in practice the code executed by the different processes
is often identical. The processes communicate by calls to functions implementing
the MPI communication primitives. There are more than 140 such functions in
the MPI-1 Standard. In this section, we briefly describe a few of the most basic
ones, those used in our Diffusion2d example.

Each of the MPI functions described here takes, as one of its arguments,
an MPI communicator. A communicator specifies a set of processes which may
communicate with each other through MPI functions. Given a communicator
with n processes, the processes are numbered 0 to n− 1; this number is referred
to as the rank of the process in the communicator. MPI provides a pre-defined
communicator, MPI_COMM_WORLD, which represents the set of all processes.

The simplest function for sending a message from one process to another is
the standard mode, blocking send function, with the form

MPI_SEND(buf, count, datatype, dest, tag, comm),



3

where buf is the address of the first element in the sequence of data to be sent;
count is the number of elements in the sequence, datatype indicates the type of
each element in the sequence; dest is the rank of the process to which the data
is to be sent; tag is an integer that may be used to distinguish the message; and
comm is a handle representing the communicator in which this communication
is to take place.

The simplest function for receiving a message is the blocking receive function,
with the form

MPI_RECV(buf, count, datatype, source, tag, comm, status).

Here, buf is the address for the beginning of the segment of memory into which
the incoming message is to be stored. The integer count specifies an upper bound
on the number of elements of type datatype to be received. The integer source
is the rank of the sending process and the integer tag is the tag identifier. How-
ever, unlike the case of MPI_SEND, these last two parameters may take the
wildcard values MPI_ANY_SOURCE and MPI_ANY_TAG, respectively. The pa-
rameter comm represents the communicator, while status is an “out” parameter
used by the function to return information about the message that has been re-
ceived. An MPI receive operation will only select a message for reception if the
source, tag, and communicator of the message match the corresponding receive
parameters appropriately.

The MPI implementation may decide to buffer an outgoing message. On the
other hand, the implementation may decide to block the sending process, perhaps
until the size of the system buffer becomes sufficiently small, before sending out
the message. Finally, the system may decide to block the sending process until
the receiving process is at a matching receive, and there is no pending message in
the system buffer that also matches that receive. If the implementation chooses
this last option, we say that it forces this particular send to be synchronous.

The MPI Standard requires that messages be nonovertaking, in the sense
that two messages from a single sender to single destination, both matching the
same receive, can only be received in the order in which they were sent. But this
is the only guarantee concerning the order in which messages are received—if
two different processes send messages to the same process, the messages may be
received in the order opposite to that in which they were sent.

MPI also provides non-blocking send and receive operations in which, for
example, a sending process can continue execution even before the system has
finished copying the message from the send buffer. In addition, both the blocking
and non-blocking sends come in several modes. We have described the standard
mode, but there are also the synchronous, buffered, and ready modes.

It is common in MPI programs to have processes exchange data, either di-
rectly, when two processes send to and receive from each other, or more generally,
as when each process in a grid sends to one neighbor and receives from another
neighbor. In such cases, each process must execute one send and one receive,
but if the program is coded so that each process first sends and then receives,
the program will deadlock if, for example, the MPI implementation chooses to



4

synchronize all the sends. The situation occurs frequently enough that MPI pro-
vides a special function that executes a send and a receive in one invocation,
as if the process forks off two independent threads—one executing the send, the
other the receive—and returns when both have completed. This function has the
form

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status).

The first 5 parameters are the usual ones for send, the next 5 together with
status are the usual ones for receive, and comm specifies the communicator for
both the send and receive.

Finally, MPI provides a function MPI_BARRIER(comm) that is used to force
all processes in the communicator comm to synchronize at a certain point.

2.2 Diffusion2d

Diffusion2d is a parallel program that computes the evolution in time of a dis-
cretized function u defined on a 2-dimensional domain and governed by the
diffusion equation. It is the “teacher’s solution” to a programming project for
a course in Parallel Programming (taught by Andrew Siegel) at the University
of Chicago. Though quite simple, it has many features common in scientific
programs: the physical domain is divided into a “grid” in which one process is
responsible for each section; each process also maintains a number of “ghost-
cells” that mirror the contents of cells on neighboring processes. The program
is written mostly in C, with some Fortran, and consists of 1036 lines spread out
over six files. Slightly more than half this total consists of a generic package for
dealing with grid structures; this package includes the exchangeGhostCells and
grid_write functions defined below.

Our first task was to create a more compact and abstract representation of the
code which captured the essential communication infrastructure. We follow the
convention of [6,17] in using uppercase sans serif type for the general functions,
and mixed-case typewriter font for their C bindings. We also abbreviate the
parameter lists by including only the send buffer and destination for a send, and
the receive buffer and source for a receive, resulting in the following pseudo-code:

int nprocsx, nprocsy, nxl, nyl, nprint, nsteps;
int myproc, mycoord0, mycoord1;
int upperNabe, lowerNabe, leftNabe, rightNabe;
int[,] u;
int[] send_buf, recv_buf, buf;

void main() {
int iter = 0;
// read nprocsx, nprocsy, nxl, nyl, nprint, nsteps
MPI_Init();
myproc = MPI_Comm_Rank();
mycoord0 = myproc % nprocsx; mycoord1 = myproc / nprocsx;



5

upperNabe = mycoord0 + nprocsx*((mycoord1 + 1)%nprocsy);
lowerNabe = mycoord0 + nprocsx*((mycoord1 + nprocsy - 1)%nprocsy);
leftNabe = (mycoord0 + nprocsx - 1)%nprocsx + nprocsx*mycoord1;
rightNabe = (mycoord0 + 1)%nprocsx + nprocsx*mycoord1;
send_buf = new int[nxl]; recv_buf = new int[nxl]; buf = new int[nxl];
u = new int[nxl+2,nyl+2];
setInitialValues();
exchangeGhostCells();
MPI_Barrier();
for (iter = 1; iter <= nsteps; ++iter) {

update(u);
exchangeGhostCells();
if ((iter % nprint) == 0) grid_write();

}
MPI_Barrier();
MPI_Finalize();

}
void exchangeGhostCells() {
for (int i = 1; i <= nxl; ++i) send_buf[i-1] = u[i,1];
MPI_Sendrecv(send_buf, lowerNabe, recv_buf, upperNabe);
for (int i = 1; i <= nxl; ++i) u[i,nyl+1] = recv_buf[i-1];
for (int i = 1; i <= nxl; ++i) send_buf[i-1] = u[i,nyl];
MPI_Sendrecv(send_buf, upperNabe, recv_buf, lowerNabe);
for (int i = 1; i <= nxl; ++i) u[i,0] = recv_buf[i-1];
for (int j = 1; j <= nyl; ++j) send_buf[j-1] = u[1,j];
MPI_Sendrecv(send_buf, leftNabe, recv_buf, rightNabe);
for (int j = 1; j <= nyl; ++j) u[nxl+1,j] = recv_buf[j-1];
for (int j = 1; j <= nyl; ++j) send_buf[j-1] = u[nxl,j];
MPI_Sendrecv(send_buf, rightNabe, recv_buf, leftNabe);
for (int j = 1; j <= nyl; ++j) u[0,j] = recv_buf[j-1];

}
void grid_write() {
if (myproc != 0) {

for (int n = 0; n < nprocsy; ++n)
if (mycoord1 == n)

for (int j = 1; j <= nyl; ++j)
for (int m = 0; m < nprocsx; ++m)

if (mycoord0 == m) MPI_Send(u[1..nxl,j], 0);
} else {

for (int n = 0; n < nprocsy; ++n)
for (int j = 1; j <= nyl; ++j)

for (int m = 0; m < nprocsx; ++m) {
int from_proc = m + nprocsx*n;
if (from_proc != 0) MPI_Recv(buf, from_proc);
else for (int i = 0; i < nxl; ++i) buf[i] = u[i+1,j];
disk_write(buf);

}
}
MPI_Barrier();

}



6

Each process executes its own copy of this code, and all of the variables are
local to this process. One process may take a different execution path through
the code than another by branching on its rank. The total number of processes
is specified by a flag to the MPI implementation when the program is executed.

The first six variables in the code are read from a file at the beginning
of program execution; they act essentially as the parameters which define the
geometry of the grid, the number of loop iterations, and the frequency with
which the data are to be written to disk. (Actually, the original source code
implicitly requires that nxl = nyl, so there are really only 5 parameters.) The
processes themselves may be thought of as being arranged in a global M × N
grid, where M = nprocsx and N = nprocsy. The variable myproc is set to the
rank r of this process; it is obtained from the MPI infrastructure via the function
MPI_COMM_RANK. The position of this process on the global grid is (m, n) =
(mycoord0, mycoord1), where 0 ≤ m < M , 0 ≤ n < N , and r = m + nM .

The next four variables are used to store the ranks of the neighboring pro-
cesses. The grid “wraps” around in both the x- and y-directions, so every process
has an upper, lower, left, and right neighbor. The four neighbors are not neces-
sarily distinct. In fact, if nprocsx = 1 then this process will be its own left and
right neighbor, and if nprocsy = 1 this process will be its own lower and upper
neighbor. In these cases some of the MPI calls will actually send messages from
a process to itself; this is allowed by MPI.

The variable u is used to store the values of the function that is evolving
with time. It stores the values of this function for the coordinates that lie within
the portion of the grid corresponding to this process. The dimensions of u are
(nxl + 2) × (nyl + 2) because the top and bottom rows, and the left and right
columns, are used to store the ghost cells—these are the cells that mirror the
corresponding cells in the neighboring processes. (The four “corner” positions
are not used.) The next three variables are used as temporary buffers for the
MPI communication carried out in exchangeGhostCells and grid_write.

After initializing the variables, the basic structure of execution is relatively
simple. First, a ghost-cell exchange is carried out. This updates the ghost cells by
sending out the current values of the boundary cells to the appropriate neighbors
and in turn receiving the values of their boundary cells, and storing the received
values into the ghost-cell positions of u.

Next, a barrier is called, and then the main loop begins. In each iteration,
first the values of u[1..nxl,1..nyl] are updated according to a formula derived
from the discretization of the diffusion equation. This is purely a local function—
it does not involve any MPI communication. Then a ghost-cell exchange takes
place, and, if iter is divisible by nprint, grid_write is called.

The function grid_write is somewhat complicated. The goal is to write the
cells to disk in the proper order: first, the entire global row 0 must be written,
from left to right, then the same for global row 1, etc. To control the order, the
data are sent, one local row at a time, from all of the processes of positive rank
to the process of rank 0, which then writes to the disk. The nested loops encode
a common MPI idiom for dealing with grid structures: n runs through global



7

y-coordinates of the processes; for each n, j runs through the local rows, and
then m runs through the global x-coordinates of the processes. For a process of
positive rank, action is taken only when (n, m) matches the global coordinates of
this process.

Through discussions with the programmer, we arrived at several correct-
ness properties for Diffusion2d. We describe three of these here: Deadlock-
Free, GlobalLockstep, and LocalLockstep. The first says that the program
can never deadlock. The second says that, for all n > 0, no process will call
update(u) at step n unless every process has already completed update(u) at
step n− 1. The programmer pointed out that though he expected this property
to hold, all that was actually required for correctness was the weaker property
LocalLockstep—this says the same thing, but only for the four neighbors of a
process.

In addition to these correctness properties, there were several questions con-
cerning Diffusion2d that arose in our discussions with the programmer. One is
Q1: Could the removal of the MPI_Barrier statements from the code lead to a
calculation that would not have occurred with the barriers, or could their removal
lead to deadlocks if there were none before? The ability to answer questions of
this sort could be very valuable to scientific programmers: barriers can take a
huge toll on the performance of a parallel program, but it is often difficult to
reason about them informally. Another is Q2: Are the final values written to
disk independent of the interleaving or buffering choices made by the MPI im-
plementation? The expectation is certainly that this should be so, but it is not
obvious, a priori, why that must be.

3 Applying Spin

3.1 Modeling the MPI Communication Primitives

Our first task was to model precisely the MPI communication functions. This
task was simplified somewhat by the fact that Diffusion2d uses only one tag,
and never makes use of the wildcards MPI_ANY_SOURCE or MPI_ANY_TAG.
For these reasons, we could simply use one Spin channel chan_i_j, for every
ordered pair of processes (i, j), to transfer messages from process i to process j.

Of course we must place a bound on the size of the channels. We call this
chan_size. A priori, this means that our model fails to be conservative, in that
the number of pending messages sent from one process to another can never
exceed chan_size in the model, whereas MPI imposes no such bound. However,
we will see that in certain cases we can justify a particular choice for chan_size.

We allow for the possibility that chan_size = 0, i.e., for the case where all
communication is forced to take place synchronously. In this case the definitions
of send and receive coincide exactly with those of Spin:

inline MPI_Send(schan, msg) { schan!msg } /* chan_size = 0 */
inline MPI_Recv(rchan, rbuf) { rchan?rbuf }



8

A process i wishing to send a message msg to process j calls MPI_Send with
schan = chan_i_j. The receive is used in a similar way, and there rbuf is a
variable, representing the receive buffer, into which the incoming message will
be stored.

If chan_size > 0 the situation is a little more complicated. The semantics of
Spin channels guarantees that each channel will maintain the messages in FIFO
order. However, recall that the MPI Standard allows for the MPI implementation
to choose, at any time, to force a particular communication to synchronize. To
capture this behavior in our model, we leave the receive procedure as is, but we
modify the send procedure by inserting a statement that may block until the
channel is empty:

inline MPI_Send(schan, msg) { /* chan_size > 0 */
schan!msg; if :: 1 -> empty(schan) :: 1 fi }

We represent MPI_SENDRECV by allowing the send and receive to happen
in either order. Again, we must also allow for the possibility that the send is
synchronized. For chan_size > 0 we hence arrive at the following:

inline MPI_Sendrecv(schan, msg, rchan, rbuf) { /* chan_size > 0 */
if :: schan!msg -> rchan?rbuf :: rchan?rbuf -> schan!msg fi;
if :: 1 -> empty(schan) :: 1 fi }

The case chan_size = 0 must be dealt with separately because of the possi-
bility that schan = rchan, i.e., the case where process i attempts to send/receive
a message to/from itself. The MPI Standard guarantees that the send and re-
ceive must be able to take place synchronously if there are no pending messages
(sent from i to i). This situation requires no special handling in the positive
chan_size case because, if there are no pending messages, the channel will be
empty, and so the message can first be placed in the channel and then received.
However, for chan_size = 0, the procedure defined above would always block,
when in fact it should always be able to complete without blocking. Hence we
modify the definition in this case so that the message is just placed directly into
the receive buffer:

inline MPI_Sendrecv(schan, msg, rchan, rbuf) { /* chan_size = 0 */
if :: (schan == rchan) -> rbuf = msg :: else ->

if :: schan!msg -> rchan?rbuf :: rchan?rbuf -> schan!msg fi
fi }

For chan_size > 0, we will refer to the procedures above as the complex
communication model. We will also consider the simple communication model,
in which we just remove the potentially blocking statement from the send and
send-receive procedures. The effect of this will be that some statements in the
simple model will not block whereas they might when the actual MPI program is
executed. However, we will see that in some cases, the simple model will suffice
for verifying certain properties, and can also improve the performance of Spin.



9

Finally, we turn to MPI_BARRIER. There are many standard ways to model
a barrier; we chose a simple “coordinator barrier” approach. This entailed intro-
ducing an extra process with which an ordinary process interacts when it wishes
to enter and exit a barrier. A special synchronous channel is used exclusively for
this purpose. A 0 is sent on this channel when the process enters the barrier,
and then a 1 is sent when the process attempts to exit the barrier. The barrier
function waits to receive one 0 for each original process before accepting any 1s:

chan barrier_chan = [0] of {bit};
inline MPI_Barrier() { barrier_chan!0; barrier_chan!1 }
active proctype Barrier() {
end_b: do :: barrier_chan?0; ...; barrier_chan?0;

barrier_chan?1; ...; barrier_chan?1 od }

The label end_b is used to indicate to Spin that an execution in which all other
processes have terminated and the barrier is at position end_b should not be
considered deadlocked.

3.2 Modeling Diffusion2d and Properties in Spin

Having dealt with the model of the MPI infrastructure, we turned to the Diffu-
sion2d program itself. The first question was how to represent the floating point
data. However, we observed that none of the properties discussed here depend
in any way on the actual values of the data. This fact reflects the simplicity
of the program we have chosen as our example. Had our program contained,
for example, a conditional statement that branched on an expression involving
some of the data, we would have had to think carefully about the appropriate
abstractions. Indeed, we plan on looking at such an example in future work. But
for this example, we could simply abstract away the data altogether, and we sent
only the bit 1, representing any message, on the channels. The upshot is that
the channels in our model keep track only of the number of pending messages
sent from one process to another.

We made a few other simple optimizations (for example, leaving out channels
that would never be used). Otherwise, the Promela code for each process looks
very much like the pseudo-code for Diffusion2d given above. To make it easy
to experiment with different choices of the parameters and other options, we
wrote a simple Java program that takes as input those choices, and outputs
the corresponding Spin model. The 5 parameters that come from the program
itself are nprocsx, nprocsy, nxl, nsteps, and nprint. The additional choices
affecting the model include chan_size, the choice between the simple or complex
communication model (if chan_size > 0), and the choice of whether or not to
include the barriers.

We now explain how we expressed the lockstep properties. (Spin already has
a built-in capacity to check for deadlock.) Let far(i, j) be the predicate which is
true precisely when process i is at the position just before the call to update(u)
and the value of iter in process i minus the value of iter in process j is



10

greater than 1. This can be expressed in Spin by making the two iter variables
global, inserting a label (Calculate) at the appropriate positions in the code,
and adding the following:

#define far_i_j (proc_i@Calculate && (iter_i - iter_j > 1))

This predicate represents the undesirable behavior; let Lockstep(i, j) be the
claim that far(i, j) is always false. We can use Spin to check this property by
including the never claim generated from the LTL formula <>far_i_j.

Now, GlobalLockstep is equivalent to the conjunction of the Lockstep(i, j)
over all (i, j) for which i $= j. To check this property, we could either verify the
Lockstep(i, j) individually, or we could define p to be the disjunction of the
far(i, j) and check the single never claim generated from <>p. The first approach
may allow Spin to scale further, though the second is probably more efficient
for small configurations. Similar comments apply to LocalLockstep, which is
the conjunction over all (i, j) for which i and j are neighbors and i $= j.

There is another approach which is more specific but could help the model
checker further by reducing the number of states that need to be explored. Let
calc(i, n) be the predicate which is true precisely when process i is at the position
just before the call to update(u) and the value of iter in process i is n:

#define calc_i_n (proc_i@Calculate && (iter_i == n))

For n ≥ 1, let Lockstep(i, j; n) be the claim that, on any execution, calc(i, n)
must be preceded by calc(j, n − 1). Hence Lockstep(i, j) is equivalent to the
conjunction, over all n, of the Lockstep(i, j; n). To check this property with
Spin, we use the never claim generated from the LTL formula (!q)Up, where
p = calc(i, n) and q = calc(j, n−1). The potential advantage arises from the fact
that the search can be truncated as soon as q becomes true when p is false.

3.3 Verification with Spin

We instantiated a large number of models for various choices of the parameters
and model options, and checked various versions of the properties. We used Spin
version 4.0.0 of 1 January 2003, running on a Linux box with a 2.2 GHz Xeon
processor and 4 GB of memory. In all cases we used the Spin options -DSAFETY
(as ours are all safety properties), -DNOFAIR (as no fairness assumptions were
needed), -DCOLLAPSE (for better compression), and -DMEMLIM=3000 (to utilize
all 3 GB of memory available to a single process). To simplify the discussion that
follows, we will use the term “n×m configuration” to refer to the configuration
with nprocsx = n, nprocsy = m, and, unless explicitly stated otherwise, nxl =
1 and nprint = nsteps = 2. (All inputs and results are available at http:
//laser.cs.umass.edu/~siegel/projects.)

We were able to verify DeadlockFree and LocalLockstep in all cases where
Spin did not run out of memory. But in verifying GlobalLockstep, a surpris-
ing thing occurred: for certain configurations, Spin found a counterexample. In
general, the existence of a counterexample required nprocsx or nprocsy to be at



11

least 4, chan_size ≥ 1, and nsteps ≥ 2. In such circumstances, it is possible for
one process to begin its calculation of u2 (the value of u at time step 2) before
another has begun its calculation of u1.

To see how this can happen, we outline the trace produced by Spin for the
4× 1 configuration. We may ignore the vertical exchanges of ghost cells as these
just involve a process communicating with itself. Say all processes have just
exited the first barrier and are about to enter the for loop. At this point iter
is 0 in each process. Now process 3 may proceed to call exchangeGhostCells
and send a message to process 2 as part of its first Sendrecv. Process 2 may also
proceed to this point, receive this message, and send a message to process 1. At
this point, process 2 may proceed to its second Sendrecv statement and send a
message to process 3. Now process 1 may proceed to send a message to process
0, receive the message from process 2, proceed to its second Sendrecv and send
a message to process 2. Process 2 can then receive that message, completing its
participation in the exchangeGhostCells routine, return to the top of the loop,
and then begin its calculation of u2. Process 0 has still not entered the loop.
Notice that at this point there will be two pending messages: one sent from
process 2 to process 3, the other sent from process 1 to process 0.

As remarked earlier, the correctness of Diffusion2d does not depend on this
property. However, the violation was a surprise to the programmer, who thought
the synchronization enforced by the sends and receives would force all the pro-
cesses to stay “close”. In fact, once we have understood this counterexample, it
is not hard to see that in a strip of 2n processes, processes 0 and n can become n
time steps apart, if chan_size ≥ 1. It appears, however, that for chan_size = 0,
GlobalLockstep holds.

We did run out of memory for relatively small configurations—for example,
4 × 4 for DeadlockFree, even with chan_size = 0. We were able to verify the
4×3 case with chan_size = 0 and with barriers. In this case there were 3.8×106

states stored, Spin used 153 MB of memory, and it took slightly over 3 minutes
to execute spin -a and compile and execute the analyzer. Without barriers, the
performance was 1.5 × 106 states, 60 MB, and just over 1 minute.

For positive chan_size, the choice of simple or complex communication
model made a big difference in the size of the state space. Consider, for exam-
ple, the 4×2 configuration without barriers and with chan_size = 1. Using the
complex model, there were 2.8 × 107 states stored in verifying DeadlockFree;
with the simple model this number was reduced to 9.6 × 104.

As we suspected, verification of Lockstep(0, 1; 2) required fewer states than
for the stronger Lockstep(0, 1). For example, verification in the 3 × 3 configu-
ration with chan_size = 1, no barriers, and the simple communication model,
required storing 89, 838 states for the former property, and 400, 482 states for
the latter. This allowed us to scale Lockstep(0, 1; 2) as far as the 4 × 4 con-
figuration (2.5 × 107 states, 1655 MB, 29 minutes). Spin was able to find the
counterexample to Lockstep(0, 2; 2) in quite large configurations—at least 7×7
(beyond this point, Spin complains that there are too many channel types).



12

The lockstep properties provide an example for which the simple commu-
nication model is conservative. For, if we ignore what goes on within a call to
an MPI function, the set of all execution prefixes is the same whether one uses
the simple or complex model; the difference lies in the fact that some of those
finite prefixes may be considered deadlocked in the complex model, but not in
the simple one. Since a lockstep property does not depend on this distinction, it
will hold under the simple model if, and only if, it holds under the complex one.

All of the results were the same with and without the barriers. At the very
least, this provided some evidence that the barriers might not be necessary.

4 Applying INCA

INCA takes as input a description of a concurrent program in the S-Expression
Design Language (SEDL) together with a property expressed in the INCA query
language [14]. (The query actually describes a violation of the property, much like
the never claims in Spin.) From these it produces an Integer Linear Programming
(ILP) problem which can be analyzed by standard linear programming tools such
as CPLEX. If the ILP problem has no solution, the property is guaranteed to
hold on all executions of the program. On the other hand, a solution to the
ILP problem may or may not correspond to an actual counterexample to the
property; if not, then there are ways to augment the ILP problem to increase the
precision of the model. A constrained search using the values in a solution to the
ILP problem as the counts of events in an execution can be used to determine
whether a solution corresponds to a counterexample.

SEDL resembles a subset of Ada in a Lisp-like syntax. One defines tasks,
which have their own local variables, execute concurrently, and communicate
via rendezvous. SEDL does not explicitly provide for buffered communication,
nor for shared variables (which is essentially what the Spin channels are). For
these reasons, for our initial experiments with INCA we restricted ourselves to
the case chan_size = 0.

As with Spin, our first task was to model the MPI primitives. To do this,
each task j declares entries chan_i_j. Process i sends a message to process j by
calling that entry; process j receives from i by issuing an accept on that entry.
The MPI_SENDRECV is modeled using the SEDL select statement, which is
like the Spin if statement. For example, an MPI_SENDRECV issued in process
0, sending to process 6 and receiving from 3, would be represented as follows:

(select (when t (call proc_6 chan_0_6) (accept chan_3_0))
(when t (accept chan_3_0) (call proc_6 chan_0_6)))

This even works in the case where a process send-receives itself as INCA allows
a task to call one of its own entries. The barrier was modeled exactly as with
Spin, and again, we abstracted away the floating point data to produce a model
much like the one used for Spin.

There is a standard INCA deadlock query, and the queries for Lockstep(i, j)
and Lockstep(i, j; n) are just like the corresponding never claims in Spin. There



13

is no easy way to represent the conjunction of two properties as a single property
in INCA (this is because one cannot easily represent the disjunction of two ILP
problems as a single ILP problem) and so, unlike the case for Spin, we could not
check all parts of GlobalLockstep or LocalLockstep all at once.

We instantiated models for the same configurations that we had used for
Spin, and used INCA version 3.5 and CPLEX Optimizer 8.1.0 on the same
hardware. For INCA, the limiting factor is more often time than memory: the
ILP problems generated by INCA can often be solved by CPLEX very quickly,
but sometimes CPLEX will run for hours without reaching a conclusion; in these
cases we say we “ran out of time.”

We were able to verify all of the properties whenever we did not run out of
time. (Recall that the violation to GlobalLockstep requires a positive value
for chan_size.) For DeadlockFree, the choice of whether or not to include the
barriers made a big difference in how far we could scale. With the barriers we
ran out of time on the 3 × 3 grid. Without them we could scale as far as 8 × 8,
and the time required (which includes the time to run INCA and CPLEX) grew
roughly exponentially in the number of processes: 33 seconds for the 5 × 5 grid,
5 minutes for 6 × 6, 54 minutes for 7 × 7, 2, 577 minutes for 8 × 8.

We were able to verify Lockstep(0, 1; 2) and Lockstep(0, 2; 2) for very large
grids as well (at least 12 × 12), with and without barriers. For even the largest
of these, the analysis time is under one minute.

4.1 Using INCA for Buffered Communication

In order to incorporate buffers into our INCA model, we created a separate
channel task chan_i_j for each pair of processes. Since we are only keeping track
of the number of messages in a channel, each channel task contains one integer
variable (len) which is incremented or decremented as messages are deposited
or removed. The sending task calls an entry send in the channel task to deposit
a message; the receive task calls an entry receive to pick up a message.

As with Spin we had two channel models: the simple one, in which a send
blocks only if the channel is full, and the complex one, which might block the
sender until the message can be received. For the simple model, the definition
of chan_0_1 appears as follows:

(task chan_0_1
((entry send) (entry receive) (variable len chan_range 0))
((loop (select
(when (< len chan_size) (accept send) (assign len (+ len 1)))
(when (> len 0) (accept receive) (assign len (- len 1)))))))

Now an MPI_SEND from process 0 to 1 becomes simply (call chan_0_1 send),
while the corresponding receive is (call chan_0_1 receive). The send-receive
statement is modeled using the select construct as before.

For the complex channel model, we modified the channel task by requiring
the sender to make two calls: the first to an entry send as before, the second



14

to an entry complete. The latter has the possibility of blocking until the chan-
nel becomes empty, i.e., until the message has been received. The definition of
MPI_SENDRECV must also be modified as follows:

(select
(when t (call chan_0_6 send)
(select

(when t (call chan_0_6 complete) (call chan_3_0 receive))
(when t (call chan_3_0 receive) (call chan_0_6 complete))))

(when t (call chan_3_0 receive)
(call chan_0_6 send) (call chan_0_6 complete)))

In our first attempts applying this approach to the lockstep properties, we
obtained many spurious solutions with disconnected cycles in the channel tasks.
However, we were able to take advantage of the special structure of the channel
tasks to create a very efficient form of the cycle-elimination procedure described
in [15], and this provided enough precision for a conclusive result in all cases.

Using the simple communication model with chan_size = 1, we were able to
verify Lockstep(0, 1; 2) and find the counterexamples to Lockstep(0, 2; 2), each
in configurations up to size 12 × 12. The times for the 12 × 12 grid were 2 and
43 minutes, respectively. We were even able to use INCA to find an execution
prefix, for a 12 × 12 grid, in which two processes become 6 time steps apart.

5 Theoretical Results

Our experience analyzing Diffusion2d led us to begin a more general investiga-
tion of the properties of MPI programs. Here we give a brief summary of our
inquiry; the details and proofs appear in [16]. To simplify matters, we focused
on programs that use only the subset of MPI that occurs in Diffusion2d. While
these functions represent only a small subset of the MPI library, they are among
the most fundamental and commonly used MPI functions, and many interesting
and complex parallel programs can be written using only them. Furthermore,
we expect that the techniques we have developed to deal with this subset can
be extended to a much larger portion of MPI, including the collective functions
such as MPI_BROADCAST and MPI_GATHER.

In order to reason about such programs, we defined a precise notion of a
model M of an MPI program. In essence M consists of an automaton for each
process, and a set of channels (each with a fixed sending and receiving process).
The transitions may be labeled by either local events, or by communication
events. The latter have the form c!a and c?a, where a is a constant. Each state is
either a terminal state (a state with no outgoing transitions, representing process
termination), a local-event state (all transitions departing from that state are
local), a sending state (there is only one departing transition and it is labeled
by a send event), a receiving state (all the departing transitions are labeled
by receive events), or a send-receive state—a state from which first a send can
happen and then a receive, or first a receive then the send.



15

An execution prefix of M is a sequence of transitions from the various au-
tomata such that (i) the projection onto each automaton is a path starting from
the initial state, and (ii) for each channel, the sequence of sends and receives
on the channel obey FIFO ordering. A synchronous prefix is one in which every
send is immediately followed by its matching receive. All of the theorems here
also require that M have no wildcard receives—this means that for any state
s, there exists a channel c such that every receive transition departing from s
has a label of the form c?a for some a. This corresponds to a program that uses
neither MPI_ANY_TAG nor MPI_ANY_SOURCE.

An execution prefix results in a potential deadlock if (i) at least one process
is not at a terminal state, (ii) no process is at a local state, and (iii) if a process p
is at a receiving or send-receive state, then for all channels c for which there is a
receive transition leaving that state, there are no pending messages on c and no
process is at a state from which it can execute a send on c. We say “potential”
because it is not necessarily the case that a program that has followed such a
path will deadlock. It is only a possibility—whether or not an actual deadlock
occurs depends on the buffering choices made by the MPI implementation at
the point just after the end of this prefix: if the implementation decides to
force all sends to synchronize at this point, the program will deadlock; if it
decides to buffer one or more sends, the program may not deadlock. Hence the
potentially deadlocked prefixes are precisely the ones for which some choice by
a legal MPI implementation would lead to deadlock. Since this is precisely the
kind of behavior we wish to avoid, we say that M is deadlock-free if it has no
execution prefix of this form. We say that it is synchronously deadlock-free if it
has no synchronous execution prefix of this form. We can prove the following:

Theorem 1. Let M be a model of an MPI program with no wildcard receives.
Then M is deadlock-free if, and only if, M is synchronously deadlock-free.

The consequence is that, for such a model, it suffices to check deadlock-free with
chan_size = 0.

The next theorem concerns the question of barriers. It states that if a model is
deadlock-free, it must remain deadlock-free after removing all barrier statements.
Barriers can be represented in our formalism by adding a coordinator process as
we did with our Spin and INCA models. If M is a model and B is an appropriate
set of states from the automata in M, we let MB denote the model with the
new barrier process and with barriers added just after the states in B. We have

Theorem 2. Assume M has no wildcard receives. If MB is deadlock-free then
M is deadlock-free.

We say that M is locally deterministic if it has no wildcard receives and
every local-event state has exactly one outgoing transition.

Theorem 3. Suppose M is a locally deterministic model of an MPI program.
Then there exists an execution prefix S for M with the following property: if T
is any execution prefix of M, then for all processes p, the projection of T onto
p is a subsequence of the projection of S onto p, up to possible reordering of the
send and receive parts of send-receive statements.



16

Corollary 1. Suppose M is a locally deterministic model of an MPI program.
Then M is deadlock-free if, and only if, there exists a synchronous execution
prefix T such that either T is infinite or T is finite and ends with each process
in a terminal state.

Now suppose we are given values of the parameters for Diffusion2d, and
also a choice of platform for which the numeric operations are deterministic
functions. Then the “full-precision” model M of the program is locally deter-
ministic. Therefore Theorem 3 provides an affirmative answer to Q2. As for Q1,
Theorem 2 shows that if Diffusion2d was deadlock-free with the barriers, it will
be deadlock-free after the barriers are removed; it must necessarily result in the
same computation by Theorem 3. Hence the barriers really are unnecessary for
the correctness of the program. Moreover, to check that Diffusion2d (with the
given parameters) is deadlock-free, Corollary 1 shows that it suffices to check
a single execution of M and observe that it terminates normally. So verifying
DeadlockFree does not really require any model checking at all (though the
lockstep properties are a different matter).

6 Related Work

Finite-state verification techniques have been applied to various message-passing
systems almost from the beginning and Spin, of course, provides built-in sup-
port for a number of message-passing features. Various models and logics for
describing message-passing systems (e.g., [1, 12]) are an active area of research.
But only a few investigators have looked specifically at the MPI communica-
tion mechanisms. Georgelin et al. [5] have described some of the MPI primitives
in LOTOS, and have used simulation and some model checking to study the
LOTOS descriptions. Matlin et al. [10] used Spin to verify part of the MPI
infrastructure.

Our theorems about MPI programs depend on results about the equivalence
of different interleavings of events in the execution of a concurrent program. Our
results are related to the large literature on reduction and atomicity (e.g., [2,4,8])
and traces [11]. Most of the work on reduction and atomicity has been concerned
with reducing sequences of statements in a single process, although Cohen and
Lamport [2] consider statements from different processes and describe, for ex-
ample, a producer and consumer connected by a FIFO channel in which their
results allow them to assume that messages are consumed as soon as they are
produced. We do not yet fully understand, however, the extent to which our
results in the MPI setting correspond to their results for TLA.

Manohar and Martin [9] introduce a notion of slack elasticity for a variant of
CSP. Essentially, a system is slack elastic if increasing the number of messages
that can be buffered in its communication channels does not change the behavior
of the system. Their goal is to obtain information about pipelining for hardware
design and the nondeterminism and communication constructs in their formalism
are somewhat different from ours. The theorems they prove, however, are similar
in many respects to ones we describe for MPI programs.



17

7 Conclusions

MPI-based software for scientific computation represents an important and grow-
ing domain of concurrent software, with all the standard problems introduced
by concurrency. Although FSV techniques can offer solutions to many of these
problems, various aspects of the MPI framework, such as dynamic changes in
message buffer size, and the scale of typical MPI programs present substantial
obstacles to the successful application of FSV methods. In this paper, we have
applied FSV techniques to a small, but realistic, example of a parallel scientific
program using MPI in order to check some properties of interest to the program-
mer. We have shown how to model some of the problematic MPI communication
constructs, and we have described some theoretical results that simplify the ver-
ification process.

For small configurations of the MPI program, both Spin and INCA could
verify the two properties that hold and found counterexamples for the one that
did not. The programmer was surprised that GlobalLockstep was violated, but
the violation can occur only when at least one dimension of the grid is greater
than three and messages are buffered, making the system big enough to be hard
to reason about informally (although certainly tiny by MPI standards). We do
not attach much significance to the fact that INCA could do larger configurations
than Spin. Although we regard ourselves as reasonably skilled Spin users, we
are certainly more expert in applying INCA. It may well be that there are more
efficient ways to model the MPI constructs in Promela, or that different settings
would significantly improve the performance of Spin. In any case, it would be
foolish to generalize very far on the basis of analysis of a single program.

Although MPI programs like the examples described here exhibit significant
symmetry, we do not expect substantial gains from applying standard symmetry
methods in model checking. The problem is that these methods cannot reduce
the state space by a factor of more than the order of the symmetry group, and
the growth of the symmetry group does not keep pace with the growth of the
state space as the systems are scaled up. Compositional methods, on the other
hand, might very well allow for collapsing the system to some minimal config-
uration, depending on the property being checked, and we hope to investigate
this approach in the future.

Our theoretical results help simplify the verification and suggest that other
results tailored to the MPI domain may increase the range of MPI programs
to which FSV techniques may be effectively applied. We plan to extend our
investigation to the more general cases of programs making use of wildcard
receives, non-blocking sends and receives, and the MPI collective operations. It
will also be important to find appropriate abstractions for programs where the
values of floating point data affect the flow of control.

We thank Andrew Siegel for supplying the Diffusion2d example and for many
discussions of the problems of developing MPI-based scientific software. We are
also grateful to Ewing Lusk for clarifying some of the more complicated parts
of the MPI Standard and for encouraging this work. This research was partially



18

supported by the U. S. Army Research Laboratory and the U. S. Army Research
Office under agreement number DAAD190110564.

References

1. Bollig, B., Leucker, M.: Modelling, specifying, and verifying message passing sys-
tems. In Bettini, C., Montanari, A., eds.: Proceedings of the Symposium on Tem-
poral Representation and Reasoning (TIME’01), IEEE Computer Society Press
(2001) 240–248

2. Cohen, E., Lamport, L.: Reduction in TLA. In Sangiorgi, D., de Simone, R., eds.:
CONCUR ’98. Volume 1466 of LNCS., Nice, Springer-Verlag (1998) 317–331

3. Corbett, J.C., Avrunin, G.S.: Using integer programming to verify general safety
and liveness properties. Formal Methods in System Design 6 (1995) 97–123

4. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In Cytron,
R., Gupta, R., eds.: Proceedings of the ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation, San Diego, ACM Press (2003)
338–349

5. Georgelin, P., Pierre, L., Nguyen, T.: A formal specification of the MPI primitives
and communication mechanisms. Technical Report 1999-337, LIM (1999)

6. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI—The Complete Reference: Volume 2, the MPI Extensions. MIT
Press, Cambridge, MA (1998)

7. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)
8. Lipton, R.J.: Reduction: A method of proving properties of parallel programs.

Communications of the ACM 18 (1975) 717–721
9. Manohar, R., Martin, A.J.: Slack elasticity in concurrent computing. In Jeuring,

J., ed.: Proceedings of the Fourth International Conference on the Mathematics
of Program Construction. Volume 1422 of LNCS., Marstrand, Sweden, Springer-
Verlag (1998) 272–285

10. Matlin, O.S., Lusk, E., McCune, W.: SPINning parallel systems software. In
Bonaki, D., Leue, S., eds.: Model Checking of Software: 9th International SPIN
Workshop. Volume 2318 of LNCS., Grenoble, Springer-Verlag (2002) 213–220

11. Mazurkiewicz, A.: Trace theory. In Brauer, W., Reisig, W., Rozenberg, G., eds.:
Petri Nets: Applications and Relationships to Other Models of Concurrency. Vol-
ume 255 of LNCS., Berlin, Springer-Verlag (1987) 279–324

12. Meenakshi, B., Ramanujam, R.: Reasoning about message passing in finite state
environments. In Montanari, U., Rolim, J.D.P., Welzl, E., eds.: Automata, Lan-
guages and Programming, 27th International Colloquium, ICALP 2000. Volume
1853 of LNCS., Geneva, Springer-Verlag (2000) 487–498

13. Message-Passing Interface Standard 2.0. http://www.mpi-forum.org/docs (1997)
14. Siegel, S.F.: The INCA query language. Technical Report UM-CS-2002-18, De-

partment of Computer Science, University of Massachusetts (2002)
15. Siegel, S.F., Avrunin, G.S.: Improving the precision of INCA by eliminating solu-

tions with spurious cycles. IEEE Transactions on Software Engineering 28 (2002)
115–128

16. Siegel, S.F., Avrunin, G.S.: Analysis of MPI programs. Technical Report UM-CS-
2003-036, Department of Computer Science, University of Massachusetts (2003)

17. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI—The Com-
plete Reference: Volume 1, The MPI Core. 2 edn. MIT Press, Cambridge, MA
(1998)


