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Abstract

The ability to create effective multi-agent organizations is key to the development
of larger, more diverse multi-agent systems. Organizational control provides long-
term organizational goals, roles, and responsibilities as guidelines for each agent.
Organizational design and instantiation is the process that accepts a set of organiza-
tional goals, performance requirements, agents, and resources and assigns respon-
sibilities and roles to each agent. We present a prescriptive organizational design
and instantiation process for multi-agent systems. An important aspect of our ap-
proach is the separation of application-specific organizational issues from more
generic organizational coordination mechanisms. We describe our model of orga-
nizational design and our search process and provide examples of how it operates.
We also present example organizations generated by our automated system for the
distributed sensor network domain under different environmental characteristics
and performance requirements.
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1 Introduction
The ability to create effective multi-agent organizations is key to the development of
larger, more diverse multi-agent systems. Organizational control provides long-term
organizational goals, roles, and responsibilities as guidelines for each agent. These
guidelines reduce the complexity of each agent’s operational decision making, lower
the cost of distributed resource allocation and agent coordination, help limit inappro-
priate agent behavior, and reduce communication requirements [2]. To design an orga-
nization requires that both application-specific and more generic organizational coor-
dination knowledge be applied to organizational goals, performance requirements, and
environmental information in order to generate organizational responsibilities that each
agent elaborates into appropriate operational behaviors.

To date, explicitly designed multi-agent organizational structures have been hand-
crafted, sometimes assisted by automated template expansion [17] or computed ad-
justments made to a pre-determined structure [16]. This article describes work on
developing a fully automated organizational design and instantiation process. With
application-specific information, such as organizational goals and agent descriptions,
the process first finds groups of agents for each goal with the combined resources to
achieve that goal. It then adds more generic organizational structures that enable the
agents to coordinate their actions with regard to their joint goals. The process also
reserves resources within agents to enable the dynamic formation of teams where stati-
cally defined structures are not suitable. In addition to the design process we describe a
prototype system that uses the process to create appropriate, yet substantially different,
organizational forms when given different requirements and environmental expecta-
tions. One important aspect of our approach is the separation of application-specific
organizational knowledge frommore generic organizational coordinationmechanisms.
This separation allows the reuse of organizational coordination mechanisms across a
wide range of problem domains and environmental situations.

The multi-agent organizational design and instantiation problem is summarized as
follows. The input consists of application-specific organizational goals, environmental
conditions, performance requirements, possible roles, agents, and resources. The out-
put is an assignment of both application-specific and organizational coordination roles
and responsibilities to each agent such that the performance requirements are satisfied
and the organization operates effectively over anticipated environmental conditions.
To solve this problem autonomously, we have developed the knowledge-based design
process illustrated in Figure 1 and described in Section 2.

Before continuing, it is important to distinguish organizational from operational
control. Organizational responsibilities represent long-term guidelines while opera-
tional control involves short-term agreements among agents to perform specific activ-
ities. Our process does not pertain to operational activities. Rather than describe in
detail how particular operational decisions are made, the organizational design process
ensures that resources and coordination mechanisms exist for agents to make efficient
operational decisions during the life of the organization.

Our approach exploits a separation we have observed between application-specific
and organizational coordination issues. The former, shown on the left side of Figure 1,
involves decomposing high-level organizational goals for the application into simpler
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Figure 1: Organizational Design Process

organizational subgoals and then binding them to application-specific roles. The latter,
shown on the right, pertains to the coordinationmechanisms that are needed when mul-
tiple agents are required to perform those roles jointly. The result is a set of bindings
for each agent to both application-specific and coordination-specific roles as illustrated
in Figure 2. The bindings specify not only the roles the agent is bound to, but also the
other agents and their roles that the agent sends information to and receives information
from. The figure shows two of agent S24’s application-specific roles, RADARSCAN-
NER and FUSER, and one of its coordination roles, SUBORDINATE, which refers to
its relationship to an agent performing a MANAGER role.

Consider an agent-based distributed sensor network (DSN). An application-specific
organizational goal is to track vehicles with an accuracy of 10 feet and a maximum de-
tection delay of 3 seconds. The environmentalmodel gives the expected traffic volume,
spatial density, arrival rate, and vehicle movement. Available roles are radar-based
scanning and data processing. While the roles suit varied scenarios, the best coordi-
nation mechanism for agents playing them depends on a number of factors. If only a
few agents are necessary to cover the monitored area, a peer-to-peer mechanism may
be best. If many agents are required, vehicles arrive frequently, and scanning resources
are scarce, a multi-level hierarchy may be appropriate.

Our intuition is that organizational coordination knowledge often transcends appli-
cations. Thus, a general-purpose, automated organizational design and instantiation
system can include generic coordination knowledge. Ideally, the developer would need
only supply information about the application to enable the system to determine an
organizational structure. This separation allows us to take a prescriptive, knowledge-
based approach to organizational design and instantiation that does not require the spec-
ification of the coordination mechanisms that will be used in the organization.

Past work in multi-agent organizational design either has been purely descriptive,
such as organizational ontologies [6], has used predeterminedorganizational forms [17],
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Agent S24 (82.5, 52.5)
RADARSCANNER→SCAN((62.5,32.5),40,40)
TO: VERIFIER S22

FUSER→FUSE((45,60),45, 30)T

TO: FOCUSSEDRADAR S22 S24 S23 S18 . . .
TO: VERIFIER S22
FROM: FOCUSSEDRADAR S22 S24 S23 . . .
FROM: HANDLER S22

SUBORDINATE→COORDGOAL(SCAN)
TO: MANAGER S22
FROM: MANAGER S22

. . .
Figure 2: Example application-specific and coordination bindings for a single agent
resulting after the organizational design process.

or has focused on specifying a specific organizational design, not searching for one [5,
12]. In our work, after the application’s features are specified, the system finds organi-
zational structures based on domain-independent coordination knowledge. The work of
So and Durfee [16, 15] comes closest to ours. With a model based on the task environ-
ment, organizational structure, and performance metrics, they explored how to choose
an organizational structure for a given problem. However, they used only hierarchi-
cal coordination structures and were primarily concerned with making span-of-control
decisions.

Other multi-agent work has dealt with agent coordination but emphasized oper-
ational over organizational issues. STEAM [22] provides a hierarchical, role-based
framework for the quick formation of agent teams and coordination between them. As
such, it is a coordination mechanism that contributes to the automated system’s store
of knowledge. Similarly, GPGP [14, 4] provides a family of coordination mechanisms,
each of which fits within the scope of the automated designer’s knowledge.

Several approaches to organizing large groups of agents utilize emergent or bottom-
up techniques [24, 23, 19, 21] for self-organization. While there are certainly situa-
tions in which such methods are appropriate, time constraints may not allow the self-
organization processes to unfold. Also, the quality of an emergent organizationmay be
less than that of a carefully designed one [7, 2].

Finally, Dastani’s model for matching agents to roles based on the goals they can
achieve [3] has some similarities to ours. However, that work is aimed at enabling
agents to enact roles as they enter open agent societies. We are interested in assigning
agents to roles so that they may function together as a coherent organization.

The remainder of the article is organized as follows. Section 2 describes our model
and the design and search processes. Section 3 provides examples of organizational
designs generated by a prototype designer for a DSN under various environmental
conditions and performance requirements. We conclude and describe future work in
Section 4.
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Environmental Model
maxNewArrivals 10
maxTracks 10
maxVelocity 20mph
vehicleWidth 3′

(x,y) (0,0)
length 90′

width 90′

Performance Requirements
Detect Delay 3sec

Track Resolution 10′

Figure 3: Example environmental model

2 Model and Design Process
2.1 Application-Specific Inputs
Referring to the left side of Figure 1, the environmental model M gives the expected
environmental features over time and is represented as a set of attribute-values pairs:

M = {〈fi, vfi〉} (1)

where fi is a user specified, domain-specific environmental feature and v fi ∈ R. The
set of performance requirements Q specifies the requirements that the organization
must meet to satisfy the organizational goals. Similar to the environmental model, Q
is a set of attribute-value pairs:

Q = {〈qi, vqi〉} (2)

where qi is a feature and vqi ∈ R is its value.
Figure 3 shows an environmentalmodel and performance requirements for the sim-

plified version of the DARPA EWChallenge ProblemDSN [10] we refer to throughout
the article. In it agents that control radar-based scanners cooperate to track vehicles
moving through a rectangular region. The environmental model indicates the expected
traffic volume, spatial density, arrival rate, etc. In this example, assume the perfor-
mance requirements are to track all vehicles with 10 feet of accuracy and a detection
delay of at most 3 seconds.

Returning to Figure 1, an organizational goal g is a high-level, long-term objective.
We represent organizational goal decomposition as a tree T whose nodes are goals and
edges represent subgoal relations. Figure 4 shows a goal tree for our example DSN.
The root MONITOR decomposes into subgoals for detecting and tracking vehicles.
Similarly, DETECT and TRACK can be further decomposed. Under DETECT, the
child SCAN pertains to scanning the monitored area for new vehicles, VERIFY to
determining if a detection from the SCAN goal is actually a new vehicle, and HANDLE
to setting up activities associated with a new vehicle detection, in this case tracking it.
The FUSE goal pertains to fusing data from track updates from the UPDATE goal.

The root goal of the tree is parameterized by the environmental model and perfor-
mance requirements. Subgoals inherit their parents’ parameters unless the developer
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Scan
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Figure 4: Example DSN goal tree and associated communication graph (dotted edges)

Goal TAL
SCAN Scanning
VERIFY Verifying
HANDLE Handling
FUSE Fusing
UPDATE Updating

Figure 5: To-be-assigned lists of the leaf goals in Figure 4.

specifies otherwise. Each goal g also has a to-be-assigned list, TAL, of responsibil-
ities. A leaf goal is satisfied if agents bound to it perform the responsibilities in its
TAL within the performance requirements on it. A non-leaf goal is satisfied if all of
its children are satisfied.

Figure 5 shows the to-be-assigned lists of the leaf goals fromFigure 4. Although the
goals in our example have single responsibilities in their TALs, in general a goal will
entail multiple responsibilities. Figure 6 shows the parameters and TAL of the goal
SCAN. SCAN inherits all parameters exceptmaxTracks and TrackResolution.

As in traditional planning, where goal decomposition continues until subgoals can
be achieved by primitive actions, organizational goal decomposition continues until
the TALs of subgoals can be fulfilled by assigning roles. Unlike planning actions,
however, roles are atemporal “job descriptions” lasting throughout the organization’s
lifetime. Each role ri has an assignable-list ALi of responsibilities that it can perform
and a set of user-defined functions. These functions include a real-valued quality func-
tion qfi indicating how well the role achieves a goal, a set of requirement functions
Fi that specify constraints that must be met by agents performing the role when it is
bound to a goal, and a distribution functionD i specifying a procedure for how the role
when bound to a goal can be distributed among a group of agents. We define the set of
available application-specific roles R as

R = {ri} = {〈ALi, qfi, Fi, Di〉} . (3)

Figure 7 shows the roles and their assignable lists available in the DSN example.
RADARSCANNER is a general purpose scanning role whose primary purpose is to
perform sweeps of an area for new vehicle detections. As such its AL contains the
TAL scanning from the leaf goal SCAN. Also, because RADARSCANNER could be
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SCAN((x,y), length, width, maxNewArrivals,
maxVelocity, vehicleWidth, detectDelay)

TAL: Scanning

Figure 6: Parameters and to-be-assigned list of SCAN goal.

used in some applications to track vehicles rather than just detect new ones, its AL
contains the TAL updating from the goal UPDATE as well. FOCUSSEDRADAR is
a directed scanning role specifically for sending vehicle track updates; however, since
its information could be used for new vehicle detections, its AL also contains both
updating and scanning. Each remaining role has only a single element in its AL.

For each role, the quality function qf i and the requirement functions in Fi are de-
pendent on goal parameters (represented by P{X} in Figure 7 where {X} indicates the
first letter of one of the goals in Figure 4) andD i is a function of the parameters of the
goal the role is bound to and the set of available agents A. More specifically, any role
whose assignable list contains a goal’s TALmay be bound to that goal. However, since
this may be true for multiple roles, the quality functions of the roles help to determine
which role is the most suitable for a goal given that goal’s parameters. For instance,
since RADARSCANNER and FOCUSSEDRADAR contain the same elements in their
ALs (see Figure 7), by comparing their quality functions, we can determine which is
more likely to be useful in a given environment before considering agent bindings. This
serves to prune the search space early in the design process by focussing the search on
finding agents able to perform the role most likely to satisfy the goal effectively.

While the quality functions are useful in selecting roles that satisfy goals before
agents are bound to them, the requirement functions in the set F i specify requirements
that must be met by agents performing those roles when bound to goals. For instance,
as shown in Figure 9, when RADARSCANNER is bound to SCAN, the requirement
function for RADARSCANNER given the parameters of SCAN, determines how often
the region must be scanned to guarantee vehicle detections within the acceptable track
delay. This is important because it specifies not only what individual agents must do,
but also what the combined behavior of a group of agents must be if no single agent
has the capabilities to perform the role individually. In other words, any coordination
mechanism used to coordinate the agents performing the role jointly should ensure that
the group behavior meets the requirements specified by the requirement functions.

A role’s distribution functionDi specifies a procedure for how to divide a group of
agents to satisfy a role jointly assuming they could be coordinated properly. A simple
distribution function for RADARSCANNER, for example, would specify that the area
over which the role is responsible be subdivided among the set of agents such that the
agents are responsible for potentially overlapping subareas.

In addition to specifying a goal tree and roles to satisfy the leaves, it is necessary to
specify how information is to flow among goals since certain goals require information
from others. We represent such relationships as a directed communication graph G =
(L, E) where L is the set of leaf goals in T and E is the set of edges between them.
An edge (u, v) exists if information must flow from goal u to goal v. The dotted edges
between goals in Figure 4 show the communication graph for our DSN. For example,
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Role AL qfi Fi Di

RADARSCANNER Scanning, Updating PS ,PU PS PS , A

FOCUSSEDRADAR Updating, Scanning PU ,PS PU PU , A

VERIFIER Verifying PV PV PV , A

HANDLER Handling PH PH PH , A

FUSE Fusing PF PF PF , A

Figure 7: Application-Specific Roles for the DSN example showing each role’s
assignable list and the parameters to each of the functions in Equation 3. P {X} repre-
sents the parameters of a goal where {X} indicates the first letter of one of the goals in
Figure 4. A is the set of agents.

suppose an edge exists in the communication graph from g 1 to g2 and that agent sets
A1 andA2 are bound to each respectively. If the goals are spatial in character, not every
agent in A2 necessarily needs information from every agent in A1. To represent this,
the parameters of each spatially defined goal specify the area the goal is responsible for.
Thus, a goal requires information from another only if the information pertains to the
goal’s area. As seen in Figure 6, the area is specified in the goal’s parameters. As we
will see below, after the responsibility of handling a spatial goal is distributed among a
set of agents, each agent becomes responsible for a subregion of the whole represented
by a subgoal with the subregion specified in its parameters. An agent bound to such
a subgoal will then send information to another agent bound to a different subgoal
if an edge exists between the two subgoals’ parents and the subregions specified for
each agent overlap.1 We see an example of responsibility for subgoals in Figure 2
where Agent S24 is responsible for scanning in the subregion with the top-left corner at
coordinates (62.5, 32.5) and a length and width of forty feet each while it is responsible
for fusing data pertaining to the area with top-left corner at (45,60) and length 45 feet
and width 30 feet. As part of its RADARSCANNER role, S24 sends information
to Agent S22 which acts as the verifier responsible for the area encompassing S24’s
scanning area.

Finally, A = {ai} is the set of agents available to the organization. For a i we
specify a set φi of features such as its location, plus a set ρi = 〈rk, dk, mk〉 of each
role rk that the agent is able to play, the percent drain dk on the agent’s resources caused
by rk , and the number of messages per timemk the agent sends during its operational
performance of rk (mk may be a function). We also specify a set Ci = {〈cj, vcj 〉} of
capabilities, where cj is a capability and vcj ∈ R is its value. Thus, ai = 〈φi, ρi, Ci〉.

1In this work, because we have been concerned with a distributed sensor network, we have assumed that
goals have spatial characteristics. The parameterization of goals, therefore, explicitly includes their spatial
information, and the connections among a goal’s subgoals are made based on their spatial character. It is easy
to imagine goals for which spatial dimensions do not apply and where the interdependencies among subgoals
are based on other features. As we gain experience by applying the design process to more domains, we will
abstract the parameterization of goals further to make them more domain-independent.

8



Detect

Scan

Verify

Handle

RADAR-
SCANNER

VERIFIER

HANDLER

Figure 8: Subtree of the goal tree in Figure 4 with roles bound to each leaf goal.
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RADAR-
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Requirement
Function Scan Freq.
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Figure 9: RADARSCANNER’s requirement function generates the scan frequency requirement
for the RADARSCANNER→SCAN binding.

2.2 Application-Specific Binding
With the above input, the design process attempts to assign application-specific roles
to organizational leaf goals to form role-goal bindings. As discussed in Section 2.1,
any role whose AL contains a goal’s TAL may be bound to that goal while the quality
functions of roles allow the process to make decisions about which roles to select.
Figure 8 shows a subtree of the organizational goal tree in our DSN example with
one role bound to each leaf goal. In this case RADARSCANNER was chosen over
FOCUSSEDRADAR to be bound to the goal SCAN.

Binding a role to a goal produces requirements as specified by the role’s require-
ment functions, Fi. As Figure 9 shows, if the RADARSCANNER→SCAN binding
is instantiated, RADARSCANNER’s application-specific requirement function gener-
ates the scan frequency necessary to meet the performance requirement on new vehicle
detections. We define the set of role-goal bindings within an organization as:

RGB = {〈ri, gj , µk〉} (4)

where ri ∈ R and gj is a leaf goal such that TALj ⊆ ALi, and µk = {〈µh, vµh〉}
is a set of requirement attribute-value pairs determined by r i’s requirement function
parameterized by gj . For RADARSCANNER→SCAN, µh and vµh specify the scan
frequency that must be maintained.

Next the process binds agents to each role-goal binding. Using the agents’ capabil-
ities and the roles’ distribution functions, the design process identifies agents that meet
the requirements of a role-goal binding to form a set of role-goal-agent bindings. The
particular binding specifies the role the agent is bound to, the decomposed sub-goal it
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Figure 10: Role-goal-agent bindings for RADARSCANNER→SCAN and
VERIFIER→VERIFY. The dotted arrows show how information flows between the bind-
ings.

is responsible for, and the sets of agents it receives information from and sends infor-
mation to. Continuing with the example, Figure 10 illustrates role-goal-agent bindings
for the RADARSCANNER→SCAN and VERIFIER→VERIFY role-goal bindings for
a set of sixteen, homogeneous sensor agents. In the distributed sensor network agents
have fixed locations and can scan circular areas with a fixed radius (the overlap of the
sensors’ viewable areas is greater than that depicted). Figure 10 shows that all six-
teen agents are bound to RADARSCANNER→SCAN. If this were not the case, gaps
would exist in the coverage. The design process was able to make this decision based
on RADARSCANNER’s distribution function which specifies what the characteristics
of a covering set of sensor agents should be.

Figure 10 shows that Agents 3 and 14 are also bound to VERIFIER→VERIFY in
addition to RADARSCANNER→SCAN. The reason that a single agent is not bound to
the VERIFY role is that no agent among the available set has the processing capabilities
both to scan for new vehicle detections and keep track of all existing tracks in order to
verify new ones. The reason more than two agents are not bound to the VERIFY role
is that to do so would put extra load on the agents and require more communication
since the agents acting as VERIFIERs would need to share information about existing
tracks in order to verify new detections accurately. As we will see in Sections 2.5 and
3, the decision to split a role in a particular way can not be entirely specified by a
role’s distribution function and often relies on heuristics. In this case, Verifier’s user-
defined distribution function specifies that the role should be divided among agents
such that their capacities are not exceeded and that agents performing that role are
spatially near the agents they are performing the role for. The decision to limit the
number of VERIFIERs to two is an attempt to make a tradeoff between agent loading
and inter-agent communication.

The dotted arrows in Figure 10 show the application-specific flow of information
between the sets of bindings as determined by the communication graph in Figure 4.
Each scanning agent must send information to a verifying agent and since scanning is
a spatial activity, different verifiers are responsible for the different groups of scanners.
Also, each VERIFIER agent must send information to an agent bound to the goal of
handling new detections as specified by the edge between VERIFY and HANDLE.
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Note that the dotted arrows do not specify the flow of information pertaining to the
organizational coordination of the agents. While the application-specific bindings do
provide some level of coordination among agents, organizational coordination struc-
tures are still necessary. For instance, the application-specific bindings do not give
agents acting as scanners the ability to schedule their scans to provided sufficient cov-
erage. Such coordination bindings are made later in the design process.

We define the set of role-goal-agent bindings of agent a i ∈ A as

RGABai = {〈rk, gj, g
′
j , fg′

j
, tg′

j
, T 〉} (5)

where rk ∈ R, gj is a leaf goal, g′
j is a subgoal of gj as determined by rk’s decompo-

sition method Dk, fg′
j
is the set of agents ai receives information from, tg′

j
is the set

of agents ai sends information to, and T is a flag indicating if this binding is a teaming
assignment (described below). As discussed in Section 1, Figure 2 shows an example
of one agent’s role-goal-agent bindings.

2.3 Coordination-Domain Binding
So far, the organizational design process has involved only application-specific infor-
mation shown in the left half of Figure 1. An advantageous feature of our approach
is that the rest of the process can use more domain-independent organizational co-
ordination knowledge to add coordination structures. In general, a role will require
multiple agents to fulfill the performance requirements of an organizational subgoal.
Not only must role-goal-agent bindings be found, but those agents must be coordinated
in performing their roles. The agents bound to RADARSCANNER→SCAN have the
necessary capabilities to satisfy the requirements, but unless their scanning is synchro-
nized correctly, holes may exist in the coverage since in the DSN, sensor agents have
limited range and at least three are needed to triangulate the position of any vehicle.

Consider Figure 11 which illustrates coordination goal generation and the assign-
ment of coordination roles for the application-specific bindings in Figure 10. Because
the RADARSCANNER role is split among a group of agents, as shown in Figure 11a,
the agents must be coordinated in their fulfillment of that role. This automatically
causes the system to generate a new coordination goal that was not part of the origi-
nal goal decomposition. This new goal must be fulfilled by more domain-independent
coordination roles, as shown on right of Figure 1. Possible coordination roles for the
sensing agents include: peer-to-peer negotiation of scan schedules or a simple, one-
level hierarchy where a manager agent develops the scan schedule for the group. In
Figure 11b, a one-level hierarchy is used. In deciding which agents should act as man-
agers, the design process considers the other roles each agent plays and the relative
utility of assigning managerial responsibilities to them. In Figure 11b, Agents 3 and
14, which are also VERIFIER agents are chosen to be the managers. This is to min-
imize the amount of communication by multiplexing verifying and managing within
the same agent. As will be seen in Section 3, if balancing agent load is more important
than communication usage, it may be better to bind other agents to the managerial role.

A coordination role-goal-binding can, itself, require a set of agents to satisfy it,
causing the creation of another higher-level coordination goal, as seen in Figure 11b
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Figure 11: Illustration of coordination goal generation and the assignment of coordination roles.
(a) The RADARSCANNER role is split among a group of agents which automatically causes the
system to generate a new coordination goal. (b) In this example the system chooses a one-level
hierarchy to satisfy the new goal, but since the management role must also be split among a
group of agents, it generates yet another coordination goal which (c) in this example is satisfied
by a peer-to-peer structure.

where the manager role is divided. In Figure 11c a peer-to-peer mechanism is chosen
to satisfy the goal because only two managers are present. In other situations, another
level of hierarchy may also have been chosen resulting in a multi-level hierarchy of
sensing, middle-manager, and overall manager roles as seen in Figure 14.

2.4 Teams
The role-goal-agent bindings and their parameters specify the long-term structure of
the designed organization. Although such bindings are appropriate for long-term orga-
nizational goals, more transient goals are better satisfied by teams [6, 22, 18, 20, 13, 1].
Teams, coalitions, and congregations are temporary structures that form to satisfy par-
ticular tasks that enter the environment and disband when the tasks are completed.
In the DSN, tracking a vehicle might be done by a team whose membership changes
as the vehicle moves. Teams are not strictly part of the organizational structure; the
assignment of agents to roles associated with the team will be shorter lived than the
assignment of agents to roles to satisfy organizational goals. However, teams are not
purely operational either, as sufficient resources must be set aside organizationally to
allow for generating and participating in teams. Furthermore, when an agent within an
organization is participating in a team, its team activities will impact its performance
in its other roles. Therefore, the organizational structure must be prepared for team
activity by its members.
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Our design process does not generate teams. Rather, it ensures that appropriate
organizational structures and resources are reserved to form teams as needed. For the
DSN, this means finding role-goal-agent bindings for the leaf goals of TRACK and
setting the team flag T to true to indicate that agents participate in the role only as
needed. A team role resembles an organizational role in that the agent with a team-role
will have an expected number and frequency of messages to send and amount of work
to do. The agents bound to these roles, however, will only be expected to perform
those activities if and when they are called upon to join a team. We must also specify
appropriate coordination roles in order to enable teams to form. In this work, we define
a TEAMINITIATOR role that is responsible for generating teams operationally. Note
that this is not an application-specific role input to the organizational design process.
Rather, it is a coordination role that is part of the store of knowledge contained within
the organizational design process.

As mentioned in Section 2.2, Figure 2 shows a set of bindings for an agent in the
DSN. Each binding specifies which organizational subgoal the agent is bound to and
the agents to which it sends information and those from which it receives informa-
tion. If the role is a teaming assignment such as FUSER→FUSE, it is signified with a
superscript T .

2.5 Search and Suitability
In general, multiple roles can satisfy the same organizational subgoal, many agents
can be bound to a role-goal binding, and each agent can play multiple roles, making
it computationally infeasible to generate every binding. Our prototype system uses
organization-design knowledge and heuristics to generate a reasonable set of bind-
ings. For the application-specific portions of the design process, the heuristics use
information provided by the developer in the quality, requirements, and decomposi-
tion specifications of the roles plus the capabilities of the agents. For example, to
evaluate and compare sets of role-goal bindings the system finds the average value
of the roles’ quality functions given the goals they are bound to. For instance, con-
sider Figure 8 once more. It shows a subtree of the organizational goal tree with roles
bound to each leaf goal. In an alternate set of role-goal bindings, FOCUSSEDRADAR,
not RADARSCANNER, could be bound to SCAN because FOCUSSEDRADAR also
contains scanning in its assignable list (see Figure 7). The original set of bindings,
however, will have a higher average quality than the other, since RADARSCANNER’s
quality function will have higher value than FOCUSSEDRADAR’S when bound to
scan. This causes the search process to explore organizational candidates with the role-
goal bindings shown in Figure 8 before considering candidates that use the other.

To evaluate the communication load on the system, the search process determines
the ratio of the average bandwidth required by the agents to perform their roles to the
available bandwidth. Again, consider the DSN. As we saw in Section 2.3, it is possible
to assign the Manager role to an agent acting as both VERIFIER and RADARSCAN-
NER or to an agent acting solely as a RADARSCANNER. If the Manager role is mul-
tiplexed within the same agent as the VERIFIER role and the Manager and VERIFIER
are responsible for the same agents, the search process assumes that the agent is able
to combine verifying and managing messages to reduce the total bandwidth it requires.
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If the Manager role were assigned to an agent acting solely as a RADARSCANNER,
the search process assumes that the agent would have to send management messages in
addition to its scanning messages and the verifying messages of the VERIFIER. Thus,
the former would have a smaller combined communication load than the latter.

In general the heuristics consider which roles should be bound to the organizational
goals, which agents can be bound to particular role-goal bindings, and the computa-
tional and communication loading on agents that would result under different assign-
ments. In addition, the search may require some amount of backtracking since initial
binding choices may lead to states in which no agent given its current set of roles and
capabilities can satisfy the remaining responsibilities.

For coordination goals, the design system goes through a process of finding role-
goal-agent bindings similar to the process of finding bindings for organizational goals.
The main difference is that the roles available for satisfying the coordination goals
and the search heuristics exist within the system as domain-independent knowledge.
The interface between the application-specific and organizational coordination-specific
roles and goals is a set of parameters. In the current prototype the set is not yet com-
plete. The primary parameter used is the number of agents to be coordinated. For
instance, the heuristic for choosing between peer-to-peer and hierarchical coordination
mechanisms for a group of n agents assumes that the number of messages necessary
for the former is O(n2) and O(n) for the latter. Thus, only for very small numbers
of agents will the system choose a peer-to-peer mechanism. Related to the number of
messages is the assumption that it is better for agents who must communicate to be
spatially near one another.

Another heuristic used in making coordination decisions has to do with the amount
of time available to perform a task. If the time is small, the system is more likely to add
a level of hierarchy to an existing hierarchy. The assumption is that high-levelmanagers
can notice and correct for inefficiencies not noticed by lower-level managers and may
be worth the overhead of a more complicated structure. This will be seen in Section 3
for the DSN when the acceptable delay on new vehicle detections is small. 2 In future
research, we plan to develop more principled abstractions of application parameters to
coordination parameters and heuristics that rely on a detailed evaluation function and
a better understanding of the subgoal interdependence. For now we note that mecha-
nisms similar to those in our prototype for structuring organizations are common in the
organization design literature [8].

Although the heuristics above should lead to an organization that meets the perfor-
mance requirements, they do not give enough information to rank candidate organiza-
tions that all satisfy the requirements. We must consider other factors to evaluate them.
For that it is important to have an organizational evaluation function that is based on
user-specified criteria to determine a particular candidate’s utility. In on-going work,

2Similar to the note in Section 2.1, the heuristics described here make assumptions about the type of
interdependencies that exists among organizational subgoals. In particular, because we have focused on a
distributed sensor network, we have assumed spatial and temporal interdependencies. In other domains these
assumptions may not hold. As we continue our work and apply it to new domains, it is important for us to
characterize the interdependencies among subgoals in order to create more generalized parameterizations of
application-specific goals. Incorporating a better understanding of subgoal interdependence into the system
will enable the system to apply coordination where needed and choose the mechanism appropriate for a given
type of interdependency.
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Single-level hierarchy: 6 Managers. Verifier and Handler
roles multiplexed within same agent as Manager. Managers
coordinate peer-to-peer.

Figure 12: Example organization with the cost of communication greater than that of
agent load. The labels in the figures refer to the roles present in the organization. M
stands for manager, S subordinate, V verifier, H handler, and R radar scanner.

we are developing a detailed evaluation capability to evaluate fully specified organi-
zations and to prune the search through partially complete ones. For now, we rely on
simple utility criteria stemming from the relative costs of agent load and communica-
tion. Using user-defined weights, the utility function is a weighted sum of the ratio
of the required bandwidth to the available bandwidth and the average fraction of the
resource usage of each agent.

3 Example Organization Designs
We present four example organizational designs generated by our automated system
on the goal tree and communication graph in Figure 4, the parameters in Figure 3, and
the roles in Figure 7. We varied the input along several dimensions: size of the area
monitored, number of agents, value of the acceptable detect delay, and the relative costs
of communication and agent load. In all cases the agents we used were evenly spaced
throughout the region, each with identical features, roles they can be bound to, and
capabilities. Figures 12-15 summarize the results. Each organization in the figures took
only a few seconds to generate because the heuristics of the search process substantially
prune the search space. For instance, as described in Section 2.1, the search process
uses the roles’ quality functions so as not to expand partial organizational candidates
that use low-quality role-goal bindings. Similarly, the process takes a greedy approach
to binding agents to role-goal binding. This can result in the need for backtracking,
but in the examples presented here it did not. In continuing work, we are investigating
how to explore the space more fully by evaluating a greater number of permutations of
agents within roles and roles bound to goals.

The first scenario shown in Figure 12 involved 36 agents in a 90 ′ × 90′ rectangular
area, an acceptable detect delay of 3 seconds, and the cost of communication greater
than that of agent loading. The result was a single-level hierarchywith 6 managers each
managing 6 agents. The managers coordinated among themselves using a peer-to-peer
mechanism. In order to minimize communication, there were 6 verifying and handling
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Figure 13: Example organizationwith the cost of communication less than that of agent
load. The labels in the figures refer to the roles present in the organization. M stands
for manager, S subordinate, V verifier, H handler, and R radar scanner.

roles each multiplexedwithin the same agents as the managing roles. This organization
corresponds closely to the hand-crafted structure used for the EW Challenge Problem
[10] where communication cost was a major concern. The performance of this organi-
zational form relative to others was recently tested experimentally [9, 11]. Also, in this
scenario and the others, the FUSER and FOCUSSEDRADAR roles were set as team
roles with the TEAMINITIATOR role distributed among the HANDLER agents.

Switching the relative costs of communication and load still resulted in a single-
level hierarchy as shown in Figure 13, but the verifying and handling roles were no
longer multiplexed within managers. They were distributed to separate agents to min-
imize load. In effect because communication was inexpensive, the organization could
afford to use more communication in order to balance the computational load among
the agents.

For the third scenario, we used the same costs as in the first, but reduced the ac-
ceptable track delay to 2 seconds. This time the generated organization was a two-level
hierarchy with 6 mid-level managers and 1 upper-level manager to coordinate them as
show in Figure 14. At first this may seem counter-intuitive since increasing the level of
hierarchy can often introduce delays. However, in this problemwith a small acceptable
delay on new detections, it is critical that the scanning agents have tightly synchronized
scan-schedules. Because producing a shared scan-schedule can be done in advance of
detection activities, the design system added a second level of hierarchy in order to
resolve scan-schedule conflicts among the managers in a centralized fashion.

In the last scenario, the parameters were also the same as in the first run except that
we increased the number of agents to 100 and the size of the region to 150 ′ × 150′.
In this case the system generated another two-level hierarchy as seen in Figure 15 this
time with nine managers and two upper-level managers which coordinate using a peer-
to-peer mechanism. The extra-level was added since to coordinate the nine managers
in a peer-to-peer fashion would have incurred greater communication overhead.

We were pleased that our design system produced such appropriately different or-
ganizational forms given only changes to the environmental characteristics and perfor-
mance requirements. These results confirm for us the usefulness of our approach in
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Figure 14: Example organization with reduced acceptable track delay. The labels in
the figures refer to the roles present in the organization. M stands for manager, S
subordinate, V verifier, H handler, and R radar scanner.

generating organizational forms without pre-specified organizational information.

4 Conclusions and Future Work
We believe that the prescriptive, knowledge-based organizational design process we
have presented has great promise. It relies on a separation between application and
organizational coordination issues to generalize coordination mechanisms across do-
mains, requiring a developer only to supply problem-specific organizational informa-
tion. The results from our prototype system show that through this process we are able
to design organizations of different forms by varying performance requirements and
environmental characteristics. We believe this is the first work to do so.

We have identified several areas of future work stemming from the initial research
presented here. First, we will develop further the internal evaluation capability of our
system beyond the current simple weighted sum of agent load and communication util-
ity criteria. The new evaluation mechanism must rank candidate organizations given
the set of agent bindings, performance requirements, and more detailed evaluation cri-
teria specified by the developer. We also hope to apply the evaluation capability to
partial bindings in order to prune more quickly the search for a suitable organization.
Another long-term goal is that in addition to evaluating generated organizations, we
would like the system to suggest what additional resources and capabilities, if they
were provided, would have supported a better organization. In addition to the inter-
nal evaluation capability, it is important for us to have an external means of evaluating
the organizational designs produced by our system. Such a mechanism must include
detailed analysis of an organization’s performance and simulation results and will be
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Figure 15: Example organizations.

especially important as we use the design process in new application domains with
which we have less experience.

We must also improve the search and backtracking process to explore the space
of organizations more effectively and clarify the knowledge engineering process for
domains to simplify the developer’s job of specifying domain-specific organizational
information. Finally, we must continue to refine our understanding of generic coordina-
tion knowledge so as to parameterize the coordination roles more appropriately. Part of
this will involve understanding the distinguishing features of organizational goals and
how those features relate to the mechanisms available to coordinate the agents bound
to those goals. In part this will involve a greater understanding of aspects such as how
resource contention, the number of agents bound to a goal, and the interdependency
among agents and subgoals interrelate. Finally, although our work currently includes
a model of task duration and resource requirements, we do not consider task, commu-
nication, or agent failure as part of the expected organizational environment. In future
work, we plan to extend our design system to incorporate these factors.
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