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ABSTRACT
Since many Internet applications employ a multi-tier architecture,
in this paper, we focus on the problem of analytically modeling the
behavior of such applications. We present a model based on a net-
work of queues, where the queues represent different tiers of the
application. Our model is sufficiently general to capture (i) the
behavior of tiers with significantly different performance charac-
teristics and (ii) application idiosyncrasies such as session-based
workloads, tier replication, load imbalances across replicas, and
caching at intermediate tiers. We validate our model using real
multi-tier applications running on a Linux server cluster. Our exper-
iments indicate that our model faithfully captures the performance
of these applications for a number of workloads and configurations.
For a variety of scenarios, including those with caching at one of
the application tiers, the average response times predicted by our
model were within the 95% confidence intervals of the observed av-
erage response times. Our experiments also demonstrate the utility
of the model for dynamic capacity provisioning, performance pre-
diction, bottleneck identification, and session policing. In one sce-
nario, where the request arrival rate increased from less than 1500
to nearly 4200 requests/min, a dynamic provisioning technique em-
ploying our model was able to maintain response time targets by
increasing the capacity of two of the application tiers by factors of
2 and 3.5, respectively.

1. INTRODUCTION

1.1 Motivation
8nternet applications such as online ne7s' retail' and !nancial

sites have !eco/e co//onplace in recent +ears. :odern 8nternet
applications are co/ple; so<t7are s+ste/s that e/plo+ a /ulti=tier
architecture and are replicated or distri!uted on a cluster o< servers.
>ach tier provides a certain <unctionalit+ to its preceding tier and
/a?es use o< the <unctionalit+ provided !+ its successor to carr+ out
its part o< the overall re@uest processing. For instance' a t+pical e=
co//erce application consists o< three tiersBa <ront=end Ce! tier

.

that is responsi!le <or DTTP processing' a /iddle tier Gava enterprise
server that i/ple/ents core application <unctionalit+' and a !ac?=
end data!ase that stores product catalogs and user orders. 8n this
e;a/ple' inco/ing re@uests undergo DTTP processing' processing
!+ Gava application server' and trigger @ueries or transactions at the
data!ase.

This paper <ocuses on anal+ticall+ /odeling the !ehavior o< /ulti=
tier 8nternet applications. Such a /odel is i/portant <or the <ollo7=
ing reasons: JiK capacity provisioning, 7hich ena!les a server <ar/
to deter/ine ho7 /uch capacit+ to allocate to an application in or=
der <or it to service its pea? 7or?loadL JiiK performance prediction,
7hich ena!les the response ti/e o< the application to !e deter/ined
<or a given 7or?load and a given hard7are and so<t7are con!gura=
tion' JiiiK application configuration, 7hich ena!les various con!gu=
ration para/eters o< the application to !e deter/ined <or a certain
per<or/ance goal' JivK bottleneck identification and tuning, 7hich
ena!les s+ste/ !ottlenec?s to !e identi!ed <or purposes o< tuning'
and JvK request policing, 7hich ena!les the application to turn a7a+
e;cess re@uests during transient overloads.

:odeling o< single=tier applications such as vanilla Ce! servers
Je.g.' MpacheK is 7ell studied NO' PQ' PRS. 8n contrast' /odeling o<
/ulti=tier applications is less 7ell studied' even though this "e;i=
!le architecture is 7idel+ used <or constructing 8nternet applications
and services. >;tending single=tier /odels to /ulti=tier scenarios is
non=trivial due to the <ollo7ing reasons. First' various application
tiers such as Ce!' Gava' and data!ase servers have vastl+ di<<erent
per<or/ance characteristics and collectivel+ /odeling their !ehav=
ior is a di<!cult tas?. Further' in a /ulti=tier application' JiK so/e
tiers /a+ !e replicated 7hile others are not' JiiK the replicas /a+ not
!e per<ectl+ load !alanced' and JiiiK caching /a+ !e e/plo+ed at
inter/ediate tiersBall o< 7hich co/plicate the per<or/ance /od=
eling. Finall+' /odern 8nternet 7or?loads are session=!ased' 7here
each session co/prises a se@uence o< re@uests 7ith thin?=ti/es in
!et7een. For instance' a session at an online retailer co/prises the
se@uence o< user re@uests to !ro7se the product catalog and to /a?e
a purchase. Sessions are state<ul <ro/ the perspective o< the applica=
tion' an aspect that /ust !e incorporated into the /odel. The design
o< an anal+tical /odel that can capture the i/pact o< these <actors is
the <ocus o< this paper.

1.2 Research Contributions
This paper presents a /odel o< a /ulti=tier 8nternet application

!ased on a net7or? o< @ueues' 7here the @ueues represent di<<er=
ent tiers o< the application. Tur /odel can handle applications 7ith
an arbitrary nu/!er o< tiers and those 7ith signi!cantl+ di<<erent
per<or/ance characteristics. M ?e+ contri!ution o< our 7or? is that



the co/ple; tas? o< /odeling a /ulti=tier application is reduced to
the /odeling o< re@uest processing at individual tiers and the "o7
o< re@uests across tiers. Tur /odel is inherentl+ designed to handle
session=!ased 7or?loads and can account <or application idios+n=
crasies such as replication at tiers' load i/!alances across replicas'
caching e<<ects' and concurrenc+ li/its at each tier.

Ce validate the /odel using t7o open=source /ulti=tier applica=
tions running on a Uinu;=!ased server cluster. Ce de/onstrate the
a!ilit+ o< our /odel to accuratel+ capture the e<<ects o< a nu/!er o<
co//onl+ used techni@ues such as @uer+ caching at the data!ase tier
and class=!ased service di<<erentiation. For a variet+ o< scenarios'
including an online auction application e/plo+ing @uer+ caching at
its data!ase tier' the average response ti/es predicted !+ our /odel
7ere 7ithin the 9WX con!dence intervals o< the o!served average
response ti/es. Ce conduct a detailed e;peri/ental stud+ using our
protot+pe to de/onstrate the utilit+ o< our /odel <or the purposes o<
d+na/ic provisioning' response ti/e prediction' application con!g=
uration' and re@uest policing. Tur e;peri/ents de/onstrate the a!il=
it+ o< our /odel to correctl+ identi<+ !ottlenec?s in the s+ste/ and
the shi<ting o< !ottlenec?s due to variations in the 8nternet 7or?load.
8n one scenario' 7here the arrival rate to an application increased
<ro/ PWYY to nearl+ OQYY re@uestsZ/in' our /odel 7as a!le to con=
tinue /eeting response ti/e targets !+ success<ull+ identi<+ing the
t7o !ottlenec? tiers and increasing their capacit+ !+ <actors o< Q and
[.W' respectivel+.

The re/ainder o< this paper is structured as <ollo7s. Section Q
provides an overvie7 o< /ulti=tier applications and related 7or?.
Ce descri!e our /odel in Sections [ and O. Sections W and \ present
e;peri/ental validation o< the /odel and an illustration o< its appli=
cations respectivel+. Finall+' Section R presents our conclusions.

2. BACKGROUND AND RELATED WORK
This section provides an overvie7 o< /ulti=tier applications and

the underl+ing server plat<or/ assu/ed in our 7or?. Ce also dis=
cuss related 7or? in the area.

2.1 Internet Application Architecture
:odern 8nternet applications are designed using /ultiple tiers

Jthe ter/s 8nternet application and service are used interchangea!l+
in this paperK. M /ulti=tier architecture provides a "e;i!le' /odu=
lar approach <or designing such applications. >ach application tier
provides certain <unctionalit+ to its preceding tier and uses the <unc=
tionalit+ provided !+ its successor to carr+ out its part o< the overall
re@uest processing. The various tiers participate in the processing o<
each inco/ing re@uest during its li<eti/e in the s+ste/. ]epending
on the processing de/and' a tier /a+ !e replicated using clustering
techni@ues. 8n such an event' a dispatcher is used at each replicated
tier to distri!ute re@uests a/ong the replicas <or the purpose o< load
!alancing. Figure P depicts a three=tier application 7here the !rst
t7o tiers are replicated' 7hile the third one is not. Such an archi=
tecture is co//onl+ e/plo+ed !+ e=co//erce applications 7here a
clustered Ce! server and a clustered Gava application server consti=
tute the !rst t7o tiers' and the third tier consists o< a non=replica!le
data!ase.P

The 7or?load o< an 8nternet application is assu/ed to !e session=
!ased' 7here a session consists o< a succession o< re@uests issued !+
a client 7ith thin? ti/es in !et7een. 8< a session is state<ul' 7hich
is o<ten the case' successive re@uests 7ill need to !e serviced !+ the

PTraditionall+ data!ase servers have e/plo+ed a shared-nothing ar=
chitecture that does not support replication. Do7ever' certain ne7
data!ases e/plo+ a shared=ever+thing architecture NP[S that supports
clustering and replication !ut 7ith certain constraints.

Tier P Jnon!replicatedKSentr+

]rop sessions
Ji< neededK

Policing _alancer
Uoad

Tier P

Tier Q

Tier [

Tier Q
dispatcherdispatcher

8ndividual server

Figure 1: A three-tier application.

sa/e server at each tier' and the dispatcher 7ill need account <or this
server state 7hen redirecting re@uests.

Ms sho7n in Figure P' each application e/plo+s a sentr+ that po=
lices inco/ing sessions to an application`s server poolBinco/ing
sessions are su!aected to ad/ission control at the sentr+ to ensure
that the contracted per<or/ance guarantees are /etL e;cess sessions
are turned a7a+ during overloads.

Ce assu/e that 8nternet applications t+picall+ run on a server
cluster that is co//onl+ re<erred to as a data center. 8n this 7or?'
7e assu/e that each tier o< an application Jor each replica o< a tierK
runs on a separate server. This is re<erred to as dedicated hosting'
7here each application runs on a su!set o< the servers and a server
is allocated to at most one application tier at an+ given ti/e. bnli?e
shared hosting 7here /ultiple s/all applications share each server'
dedicated hosting is used <or running large clustered applications
7here server sharing is in<easi!le due to the 7or?load de/and i/=
posed on each individual application.

civen an 8nternet application' 7e assu/e that it speci!es its de=
sired per<or/ance re@uire/ent in the <or/ o< a service=level agree=
/ent JSUMK. The SUM assu/ed in this 7or? is a !ound on the av=
erage response ti/e that is accepta!le to the application. For in=
stance' the application SUM /a+ speci<+ that the average response
ti/e should not e;ceed one second regardless o< the 7or?load.

2.2 Request Processing in Multi-tier Applica-
tions

donsider a /ulti=tier application consisting o< tiers denoted !+
through . 8n the si/plest case' each re@uest is processed

e;actl+ once !+ tier and then <or7arded to tier <or <urther
processing. Tnce the result is co/puted !+ the !nal tier ' it
is sent !ac? to ' 7hich processes this result and sends it to

and so on. Thus' the result is processed !+ each tier in the
reverse order until it reaches ' 7hich then sends it to the client.
Figure Q illustrates the steps involved in processing a e!idf re@uest
at a three=tier online auction site. The !gure sho7s ho7 the re@uest
tric?les do7nstrea/ and ho7 the result propagates upstrea/ through
the various tiers.

:ore co/ple; processing at the tiers is also possi!le. 8n such sce=
narios' each re@uest can visit a tier multiple ti/es. Ms an e;a/ple'
consider a ?e+7ord search at an online superstore' 7hich triggers a
@uer+ on the /usic catalog' a @uer+ on the !oo? catalog and so on.
These @ueries can !e issued to the data!ase tier se@uentiall+' 7here
each @uer+ is issued a<ter the result o< the previous @uer+ has !een
received' or in parallel. Thus' in the general case' each re@uest at
tier can trigger /ultiple re@uests to tier . 8n the se@uential
case' each o< these re@uests is issued to once the result o< the
previous re@uest has !nished. 8n the parallel case' all re@uests are
issued to at once. 8n !oth cases' all results are /erged and then
sent !ac? to the upstrea/ tier .

2.3 Related Work



:odeling o< single=tier 8nternet applications' o< 7hich DTTP servers
are the /ost co//on e;a/ple' has !een studied e;tensivel+. M
@ueuing /odel o< a Ce! server serving static content 7as proposed
in NPRS. The /odel e/plo+s a net7or? o< <our @ueuesBt7o /od=
eling the Ce! server itsel<' and the other t7o /odeling the 8nternet
co//unication net7or?. M @ueuing /odel <or per<or/ance predic=
tion o< single=tier Ce! servers 7ith static content 7as proposed in
NOS. This approach JiK e;plicitl+ /odels dPb' /e/or+' and dis?
!and7idth in the Ce! server' JiiK utili6es ?no7ledge o< !le si6e and
popularit+ distri!utions' and JiiiK relates average response ti/e to
availa!le resources. M cPS=!ased @ueuing /odel o< a single re=
source' such as the dPb' at a Ce! server 7as proposed in N[S. The
/odel is para/eteri6ed !+ online /easure/ents and is used to de=
ter/ine the resource allocation needed to /eet desired average re=
sponse ti/e targets. M cZcZP @ueuing /odel <or replicated single=
tier applications Je.g.' clustered Ce! serversK has !een proposed in
NPgS. The architecture and protot+pe i/ple/entation o< a per<or=
/ance /anage/ent s+ste/ <or cluster=!ased Ce! services 7as pro=
posed in NPPS. The 7or? e/plo+s an :Z:ZP @ueuing /odel to co/=
pute responses ti/es o< Ce! re@uests. M /odel o< a Ce! server <or
the purpose o< per<or/ance control using classical <eed!ac? control
theor+ 7as studied in NPSL an i/ple/entation and evaluation using
the Mpache Ce! server 7as also presented in the 7or?. M co/!i=
nation o< a :ar?ov chain /odel and a @ueuing net7or? /odel to
capture the operation o< a Ce! server 7as presented in NPQSBthe
<or/er /odel represents the so<t7are architecture e/plo+ed !+ the
Ce! server Je.g. process=!ased versus thread=!asedK 7hile the latter
co/putes the Ce! server`s throughput.

Since these e<<orts <ocus pri/aril+ on single=tier Ce! servers'
the+ are not directl+ applica!le to applications e/plo+ing /ultiple
tiers' or to co/ponents such as Gava enterprise servers or data!ase
servers e/plo+ed !+ /ulti=tier applications. Further' /an+ o< the
a!ove e<<orts assu/e static Ce! content' 7hile /ulti=tier applica=
tions' !+ their ver+ nature' serve d+na/ic Ce! content.

M <e7 recent e<<orts have <ocused on the /odeling o< /ulti=tier
applications. Do7ever' /an+ o< these e<<orts either /a?e si/pli=
<+ing assu/ptions or are !ased on si/ple e;tensions o< single=tier
/odels. M nu/!er o< papers have ta?en the approach o< /odel=
ing onl+ the most constrained or the most bottlenecked tier o< the
application. For instance' NP9S considers the pro!le/ o< provision=
ing servers <or onl+ the Gava application tierL it uses an :ZcZPZPS
/odel <or each server in this tier. Si/ilarl+' the Gava application
tier o< an e=co//erce application 7ith servers is /odeled as a
cZcZh @ueuing s+ste/ in NPOS. Tther e<<orts have /odeled the en=
tire /ulti=tier application using a single @ueueBan e;a/ple is NRS'
that uses a :Zc8ZPZPS /odel <or an e=co//erce application. Chile
these approaches are use<ul <or speci!c scenarios' the+ have /an+
li/itations. For instance' /odeling onl+ a single !ottlenec?ed tier
o< a /ulti=tier application 7ill <ail to capture caching e<<ects at other
tiers. Such a /odel can not !e used <or capacit+ provisioning o<
other tiers. Finall+' as 7e sho7 in our e;peri/ents' s+ste/ !ottle=
nec?s can shi<t <ro/ one tier to another 7ith changes in 7or?load
characteristics. bnder these scenarios' there is no single tier that
is the e/ost constrainedf. 8n this paper' 7e present a /odel o< a
/ulti=tier application that overco/es these dra7!ac?s. Tur /odel
e;plicitl+ accounts <or the presence o< all tiers and also captures ap=
plication arti<acts such as session=!ased 7or?loads' tier replication'
load i/!alances' caching e<<ects' and concurrenc+ li/its.

3. A MODEL FOR A MULTI-TIER INTER-
NET APPLICATION

8n this section' 7e present a !aseline @ueuing /odel <or a /ulti=
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Figure 2: Request processing in an online auction application.

tier 8nternet application' <ollo7ed !+ several enhance/ents to the
/odel to capture certain application idios+ncrasies.

3.1 The Basic Queuing Model
donsider an application 7ith tiers denoted !+ ' ' .

8nitiall+ 7e assu/e that no tier is replicatedBeach tier is assu/ed
to run on e;actl+ one server' an assu/ption that is rela;ed later.
Modeling Multiple Tiers: Ce /odel the application using a net=

7or? o< o< @ueues' Jsee Figure [K. >ach @ueue
represents an application tier and the underl+ing server that it runs
on. Ce assu/e a processor sharing JPSK discipline at each @ueue'
since it closel+ appro;i/ates the scheduling policies e/plo+ed !+
/ost co//odit+ operating s+ste/s Je.g.' Uinu; dPb ti/e=sharingK.

Chen a re@uest arrives at tier it triggers one or /ore re@uests at
its su!se@uent tier L recall the e;a/ple o< a ?e+7ord search that
triggers /ultiple @ueries at di<<erent product catalogs. 8n our @ueu=
ing /odel' 7e can capture this pheno/enon !+ allo7ing a re@uest to
/a?e /ultiple visits to each o< the @ueues during its overall e;ecu=
tion. This is achieved !+ introducing a transition <ro/ each @ueue to
its predecessor' as sho7n in Figure [. M re@uest' a<ter so/e process=
ing at @ueue ' either returns to 7ith a certain pro!a!ilit+
or proceeds to 7ith pro!a!ilit+ J K. The onl+ e;ceptions
are the last tier @ueue ' 7here all re@uests return to the previous
@ueue' and the !rst @ueue ' 7here a transition to the preceding
@ueue denotes re@uest co/pletion. Ms argued in Section [.Q' our
/odel can handle /ultiple visits to a tier regardless o< 7hether the+
occur se@uentiall+ or in parallel.

T!serve that caching e<<ects are naturall+ captured !+ this /odel.
8< caching is e/plo+ed at tier ' a cache hit causes the re@uest to
i//ediatel+ return to the previous @ueue 7ithout triggering
an+ 7or? in @ueues or later. Thus' the i/pact o< cache hits
and /isses can !e incorporated !+ appropriatel+ deter/ining the
transition pro!a!ilit+ and the service ti/e o< a re@uest at .
Modeling Sessions: Recall <ro/ Section Q that 8nternet 7or?=

loads are session=!ased. M session issues one or /ore re@uests dur=
ing its li<eti/e' one a<ter another' 7ith thin? ti/es in !et7een J7e
re<er to this duration as the user think timeK. T+pical sessions in
an 8nternet application /a+ last several /inutes. Thus' our /odel
needs to capture the relativel+ long=lived nature o< sessions as 7ell
as the response ti/es o< individual re@uests 7ithin a session.

Ce do so !+ aug/enting our @ueuing net7or? 7ith a su!s+ste/
/odeling the active sessions o< the application. Ce /odel sessions
using an infinite server queuing system' ' that <eeds our net7or?
o< @ueues and <or/s the closed=@ueuing s+ste/ sho7n in Figure [.
The servers in capture the session=!ased nature o< the 7or?load
as <ollo7s. >ach active session is assu/ed to eoccup+f one server
in . Ms sho7n in Figure [' a re@uest issued !+ a session e/anates
<ro/ a server in and enters the application at . 8t then /oves
through the @ueues ' possi!l+ visiting so/e @ueues
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/ultiple ti/es Jas captured !+ the transitions <ro/ each tier to its
preceding tierK and getting processed at the visited @ueues. >ventu=
all+' its processing co/pletes' and it returns to a server in . The
ti/e spent at this server /odels the thin? ti/e o< the userL the ne;t
re@uest o< the session is issued su!se@uentl+. The in!nite server s+s=
te/ also ena!les the /odel to capture the independence o< the user
thin? ti/es <ro/ the re@uest service ti/es at the application.

Uet denote the service ti/e o< a re@uest at J K.
Mlso' denotes the pro!a!ilit+ o< a re@uest /a?ing a transition
<ro/ to Jnote that KL denotes the pro!a!ilit+
o< transition <ro/ to . Finall+' let denote the service ti/e
at an+ server in J7hich is essentiall+ the user thin? ti/eK. Tur
/odel re@uires these para/eters as inputs in order to co/pute the
average end=to=end response ti/e o< a re@uest.

Tur discussion thus <ar has i/plicitl+ assu/ed that sessions never
ter/inate. 8n practice' the nu/!er o< sessions !eing serviced 7ill
var+ as e;isting sessions ter/inate and ne7 sessions arrive. Tur
/odel can co/pute the /ean response ti/e <or a given nu/!er o<
concurrent sessions . This propert+ can !e used <or ad/ission
control at the application sentr+' as discussed in Section \.Q.

3.2 Deriving Response Times From the Model
The :ean=kalue Mnal+sis J:kMK algorith/ NPWS <or closed=@ueuing

net7or?s can !e used to co/pute the /ean response ti/e e;peri=
enced !+ a re@uest in our net7or? o< @ueues. The :kM algorith/ is
!ased on the <ollo7ing ?e+ @ueuing theor+ result: In product-form
closed queuing networksQ, when a request moves from queue to
another queue , it sees, at the time of its arrival at , a system
with the same statistics as a system with one less customer. don=
sider a product=<or/ closed=@ueuing net7or? 7ith custo/ers. Uet

denote the average nu/!er o< custo/ers in @ueue seen
!+ an arriving custo/er. Uet denote the average length o<
@ueue in such a s+ste/. Then' the a!ove result i/plies

JPK

civen this result' the :kM algorith/ iterativel+ co/putes the av=
erage response ti/e o< a re@uest. The :kM algorith/ uses >@uation
P to introduce custo/ers into the @ueuing net7or?' one !+ one' and
deter/ines the resulting average dela+s at various @ueues at each
QThe ter/ product=<or/ applies to an+ @ueuing net7or? in 7hich
the e;pression <or the e@uili!riu/ pro!a!ilit+ has the <or/ o<

7here is so/e <unc=
tion o< the nu/!er o< ao!s at the @ueue' cJhK is a nor/ali6ing
constant. Product <or/ solutions are ?no7n to e;ist <or a !road class
o< net7or?s' including ones 7here the scheduling discipline at each
@ueue is processor sharing JPSK.

step. 8t ter/inates 7hen all custo/ers have !een introduced' and
+ields the average response ti/e e;perienced !+ concurrent cus=
to/ers. hote that a session in our /odel corresponds to a custo/er
in the result descri!ed !+ >@uation P. The :kM algorith/ <or an

=tier 8nternet application servicing sessions si/ultaneousl+ is
presented in Mlgorith/ P and the associated notation is in Ta!le P.

The algorith/ uses the notion o< a visit ratio <or each @ueue '
' . The visit ratio <or @ueue J K is de!ned

as the average nu/!er o< visits /ade !+ a re@uest to during its
processing Jthat is' <ro/ 7hen it e/anates <ro/ and 7hen it
returns to itK. kisit ratios are eas+ to co/pute <ro/ the transition
pro!a!ilities and provide an alternate representation o<
the @ueuing net7or?. The use o< visit ratios in lieu o< transition
pro!a!ilities ena!les the /odel to capture /ultiple visits to a tier re=
gardless o< 7hether the+ occur se@uentiall+ or in parallelBthe visit
ratio is onl+ concerned 7ith the /ean nu/!er o< visits /ade !+ a
re@uest to a @ueue and not when or in what order these visits occur.

Thus' given the average service ti/es and visit ratios <or the @ueues'
the average thin? ti/e o< a session' and the nu/!er o< concurrent
sessions' the algorith/ co/putes the average response ti/e o< a
re@uest.

input : L
output : Javg. dela+ at K' Javg. resp. ti/eK
initialization:

L L
for to do

L
Zl service de/and at each @ueue lZL

end
Zl introduce h custo/ers' one !+ one lZ
for to do
for to do

Zl avg. dela+ at each @ue.lZL
end

Zl throughput lZL

for to do
Zl update @ueue lengths Jlittle`s la7K lZL

end
L

end
Zl response ti/e lZL

Algorithm 1: :ean=value anal+sis algorith/ <or an =tier ap=
plication.

3.3 Estimating the Model Parameters
8n order to co/pute the response ti/e' the /odel re@uires sev=

eral para/eters as inputs. 8n practice' these para/eters can !e esti=
/ated !+ /onitoring the application as it services its 7or?load. To
do so' 7e assu/e that the underl+ing operating s+ste/ and applica=
tion so<t7are co/ponents Jsuch as the Mpache Ce! serverK provide
/onitoring hoo?s to ena!le accurate esti/ation o< these para/eters.
Tur e;perience 7ith the Uinu;=!ased /ulti=tier applications used in
our e;peri/ents is that such <unctionalit+ is either alread+ availa!le
or can !e i/ple/ented at a /odest cost. The rest o< this section de=
scri!es ho7 the various /odel para/eters can !e esti/ated in prac=
tice.



S+/!ol :eaning
hu/!er o< application tiers

hu/!er o< sessions
mueue representing tier J K

8n<. server s+ste/ to capture sessions
bser thin? ti/e

Mvg. per=re@uest service ti/e at
Mvg. length o<

Throughput
Mvg. per=re@uest dela+ at

Mvg. per=re@uest response ti/e
Mvg. per=re@uest service de/and at

kisit ratio <or
Mvg. nu/. custo/ers in
seen !+ an arriving custo/er

Table 1: Notation used in describing the MVA algorithm.

Estimating visit ratios: The visit ratio <or an+ tier o< a /ulti=tier
application is the average nu/!er o< ti/es that tier is invo?ed during
a re@uest`s li<eti/e. Uet denote the nu/!er o< re@uests serviced
!+ the entire application over a duration . Then the visit ratio <or
tier can !e si/pl+ esti/ated as

7here is the nu/!er o< re@uests serviced !+ that tier in that dura=
tion. _+ choosing a suita!l+ large duration ' a good esti/ate <or
can !e o!tained. Ce note that the visit ratios are eas+ to esti/ate in
an online <ashion. The nu/!er o< re@uests serviced !+ the applica=
tion can !e /onitored at the application sentr+. For replicated
tiers' the nu/!er o< re@uests serviced !+ all servers o< that tier can
!e /onitored at the dispatchers. :onitoring o< !oth para/eters re=
@uires si/ple counters at these co/ponents. For non=replicated tiers
that lac? a dispatcher' the nu/!er o< serviced re@uests can !e deter=
/ined !+ real=ti/e processing o< the tier logs. 8n the data!ase tier'
<or instance' the nu/!er o< @ueries and transactions processed over
a duration can !e deter/ined !+ processing the data!ase log using
a script.
Estimating service times: Mpplication co/ponents such as Ce!'

Gava' and data!ase servers all support e;tensive logging <acilities and
can log a variet+ o< use<ul in<or/ation a!out each serviced re@uest.
8n particular' these co/ponents can log the residence ti/e o< indi=
vidual re@uests as o!served at that tierBthe residence ti/e includes
the ti/e spent !+ the re@uest at this tier and all the subsequent tiers
that processed this re@uest. This logging <acilit+ can !e used to es=
ti/ate per=tier service ti/es. Uet denote the average per=re@uest
residence ti/e at tier . Ce start !+ esti/ating the /ean service
ti/e at the last tier. Since this tier does not invo?e services <ro/
an+ other tiers' the re@uest e;ecution ti/e at this tier under lightl+
loaded conditions is an e;cellent esti/ate o< the service ti/e. Thus'
7e have'

Uet ' ' and !e rando/ varia!les denoting the service ti/e
o< a re@uest at a tier ' residence ti/e o< a re@uest at tier ' and
the nu/!er o< ti/es re@uests service <ro/ as part o< the
overall re@uest processing' respectivel+. Then' under lightl+ loaded
conditions'

Ta?ing averages on !oth sides' 7e get'

Since and are independent' this gives us'

Thus' the service ti/es at tiers ' ' can !e esti/ated.
Estimating think times: The average user thin? ti/e' ' can

!e o!tained !+ recording the arrival and !nish ti/es o< individual
re@uests at the sentr+. is esti/ated as the average ti/e elapsed
!et7een 7hen a re@uest !nishes and 7hen the ne;t re@uest J!elong=
ing to the sa/e sessionK arrives at the sentr+. _+ using a su<!cient
nu/!er o< o!servations' 7e can o!tain a good esti/ate o< .
Increased Service Times During Overloads: Tur esti/ation o<

the tier=speci!c service ti/es assu/ed lightl+ loaded conditions. Ms
the load on a tier gro7s' so<t7are overheads such as 7aiting on
loc?s' virtual /e/or+ paging' and conte;t s7itch overheads' that
are not captured !+ our /odel' can !eco/e signi!cant co/ponents
o< the re@uest processing ti/e.

8ncorporating the i/pact o< increased conte;t s7itching overhead
or contention <or /e/or+ or loc?s into our /odel is non=trivial.
Rather than e;plicitl+ /odeling these e<<ects' 7e i/plicitl+ account
<or their i/pact !+ associating increased service ti/es 7ith re@uests
under heav+ loads. Ce use the btili6ation Ua7 NPYS <or a @ueuing
s+ste/ 7hich states that ' 7here and are the @ueue
utili6ation and throughput' respectivel+. donse@uentl+' 7e can i/=
prove our esti/ate o< the average service ti/e at tier as

7here is the utili6ation o< the !usiest resource Je.g. dPb' dis?'
or net7or? inter<aceK and is the tier throughput. Since all /od=
ern operating s+ste/s support <acilities <or /onitoring s+ste/ per=
<or/ance Je.g.' the s+sstat pac?age in Uinu; NP\SK' the utili6ations
o< various resources is eas+ to o!tain online. Si/ilarl+' the tier
throughput can !e deter/ined at the dispatcher Jor <ro/ logsK
!+ counting the nu/!er o< co/pleted re@uests in a duration .

4. MODEL ENHANCEMENTS
This section proposes enhance/ents to our !aseline /odel to cap=

ture <our application arti<actsBreplication and load i/!alance at
tiers' concurrenc+ li/its' and /ultiple session classes.

4.1 Replication and Load Imbalance at Tiers
Recall that our !aseline /odel assu/es a single server J@ueueK

per tier and conse@uentl+ does not support the notion o< replication
at a tier. Ce no7 enhance our /odel to handle this scenario. Uet

denote the nu/!er o< replicas at tier . Tur approach to capture
replication at tier is to replace the single @ueue 7ith @ueues'

' ' ' one <or each replica. M re@uest in an+ @ueue can no7
/a?e a transition to an+ o< the @ueues o< the previous tier or to
an+ o< the @ueues o< the ne;t tier.

8n general' 7henever a tier is replicated' a dispatcher is necessar+
to distri!ute re@uests to replicas. The dispatcher deter/ines 7hich
re@uest to <or7ard to 7hich replica and directl+ in"uences the tran=
sitions /ade !+ a re@uest.

The dispatcher is also responsi!le <or !alancing load across repli=
cas. 8n a per<ectl+ load !alanced s+ste/' each replica processes
<raction o< the total 7or?load o< that tier. 8n practice' ho7ever' per=
<ect load !alancing is di<!cult to achieve <or the <ollo7ing reasons.
First' i< a session is state<ul' successive re@uests 7ill need to !e ser=
viced !+ the sa/e state<ul server at each tierL the dispatcher is <orced



to <or7ard all re@uests <ro/ a session to this replica regardless o< the
load on other replicas. Second' i< caching is e/plo+ed !+ a tier' a
session and its re@uests /a+ !e pre<erentiall+ <or7arded to a replica
7here a response is li?el+ to !e cached. Thus' sessions /a+ have
affinity <or particular replicas. Third' di<<erent sessions i/pose di<=
<erent processing de/ands. This can result in varia!ilit+ in resource
usage o< sessions' and si/ple techni@ues such as <or7arding a ne7
session to the least=loaded replica /a+ not !e a!le to counter the
resulting load i/!alance. Thus' the issues o< replication and load
i/!alance are closel+ related. Tur enhance/ent captures the i/=
pact o< !oth these <actors.

8n order to capture the load i/!alance across replicas' 7e e;plic=
itl+ /odel the load at individual replicas. Uet denote the nu/!er
o< re@uests <or7arded to the /ost loaded replica o< tier over
so/e duration . Uet denote the total nu/!er o< re@uests han=
dled !+ that tier over this duration. Then' the i/!alance <actor is
co/puted as

Ce use e;ponentiall+ s/oothed averages o< these ratios as /ea=
sures o< the load i/!alance at individual replicas. The visit ratios o<
the various replicas are then chosen as

The higher the load on a replica' the higher the value o< the i/=
!alance <actor' and the higher its visit ratio. 8n a per<ectl+ load=
!alanced s+ste/' ' . T!serve that the nu/!er o< re@uests
<or7arded to a replica and the total nu/!er o< re@uests can
!e /easured at the dispatcher using counters. The :kM algorith/
can then !e used 7ith these /odi!ed visit ratios to deter/ine the
average response ti/e.

4.2 Handling Concurrency Limits at Tiers
The so<t7are co/ponents o< an 8nternet application have li/its

on the a/ount o< concurrenc+ the+ can handle. For instance' the
Mpache Ce! server uses a con!gura!le para/eter to li/it the nu/=
!er o< concurrent threads or processes that are spa7ned to service
re@uests. This li/it prevents the resident /e/or+ si6e o< Mpache
<ro/ e;ceeding the availa!le RM: and prevents thrashing. donnec=
tions are turned a7a+ 7hen this li/it is reached. Tther tiers i/pose
si/ilar li/its.

Tur !aseline /odel assu/es that each tier can service an un=
!ounded nu/!er o< si/ultaneous re@uests and <ails to capture the
!ehavior o< the application 7hen the concurrenc+ li/it is reached at
an+ tier. This is depicted in Figure OJaK' 7hich sho7s the response
ti/e o< a three=tier application called Ru!is that is con!gured 7ith a
concurrenc+ li/it o< PWY <or the Mpache Ce! server and a li/it o< RW
<or the /iddle Gava tier Jdetails o< the application appear in Section
W.PK. Ms sho7n' the response ti/es predicted !+ the /odel /atch the
o!served response ti/es until the concurrenc+ li/it is reached. _e=
+ond this point' the /odel continues to assu/e an increasing nu/!er
o< si/ultaneous re@uests !eing serviced and predicts an increase in
response ti/e' 7hile the actual response ti/e o< success<ul re@uests
sho7s a "at trend due to an increasing nu/!er o< dropped re@uests.

8n general' 7hen the concurrenc+ li/it is reached at tier ' one
o< t7o actions are possi!le: JPK the tier can silentl+ drop additional
re@uests and rel+ upon a ti/eout /echanis/ in tier to detect
these drops' or JQK the tier can e;plicitl+ noti<+ tier o< its in=
a!ilit+ to serve the re@uest J!+ returning an error /essageK. 8n either
case' tier /a+ reissue the re@uest so/e nu/!er o< ti/es !e<ore
a!andoning its atte/pts. 8t 7ill then either drop the re@uest or e;=
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Figure 4: Response time of Rubis with 95% confidence inter-
vals. A concurrency limit of 150 for Apache and 75 for the Java
servlet tier is used. Figure (a) depicts the deviation of the base-
line model from observed behavior when concurrency limit is
reached. Figure (b) depicts the ability of the enhanced model to
capture this effect.

plicitl+ noti<+ its preceding tier. Finall+' tier can noti<+ the client
o< the <ailure.

Rather than distinguishing these possi!ilities' 7e e/plo+ a gen=
eral approach <or capturing these e<<ects. Uet denote the con=
currenc+ li/it at . To capture re@uests that are dropped at tier
7hen its concurrenc+ li/it is reached' 7e add additional transitions'
one <or each @ueue representing a tier' to the !asic /odel that 7e
presented in Figure [. Mt the entrance o< ' 7e add a transition
into an in!nite server @ueuing su!s+ste/ . Uet denote
the pro!a!ilit+ o< a re@uest transiting <ro/ to as sho7n
in Figure W. has a /ean service ti/e o< . This enhance=
/ent allo7s us to distinguish !et7een the processing o< re@uests that
get dropped due to concurrenc+ li/its and those that are processed
success<ull+. Re@uests that are processed success<ull+ are /odeled
e;actl+ as in the !asic /odel. Re@uests that are dropped at tier
e;perience so/e dela+ in the su!s+ste/ !e<ore returning to

Bthis /odels the dela+ !et7een 7hen a re@uest is dropped at
tier and 7hen this in<or/ation gets propagated to the client that
initiated the re@uest.

Ui?e in the !aseline /odel' 7e can use the :kM algorith/ to
co/pute the response ti/e o< a re@uest. The algorith/ co/putes the
<raction o< re@uests that !nish success<ull+ and those that encounter
<ailures' as 7ell as the dela+s e;perienced !+ !oth t+pes o< re@uests.
To do so' 7e need to esti/ate the additional para/eters that 7e have
added to our !asic /odel' na/el+' and <or each tier .
Estimating : Tur approach to esti/ate consists o< the

<ollo7ing t7o steps.

Step 1 : Estimate throughput of the queuing network if there were no
concurrency limits: Solve the @ueuing net7or? sho7n in Fig=
ure W using the :kM algorith/ using Ji.e.' assu/=
ing that the @ueues have no concurrenc+ li/itsK. Uet denote
the throughput co/puted !+ the :kM algorith/ in this step.

Step 2 : Estimate : Treat as an open' !nite=!u<<er :Z:ZPZ
@ueue 7ith arrival rate Jusing the co/puted in Step PK.
>sti/ate as the pro!a!ilit+ o< !u<<er over"o7 in this
:Z:ZPZ @ueue NgS.

Estimating : Mn esti/ate o< is application=speci!c
and depends on the /anner in 7hich in<or/ation a!out dropped re=
@uests is conve+ed to the client' and ho7 the client responds to it.
8n our current /odel 7e /a?e the si/pli<+ing assu/ption that upon
detecting a <ailed re@uest' the client reissues the re@uest. This is
captured !+ the transitions <ro/ !ac? to in Figure W. Tur
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Figure 5: Multi-tier application model enhanced to handle con-
currency limits.

approach <or esti/ating is to su!aect the application to an o<=
"ine 7or?load that causes the li/it to !e e;ceeded onl+ at tier
Jthis can !e achieved !+ setting a lo7 concurrenc+ li/it at that tier
and su<!cientl+ high li/its at all the other tiersK' and then record
the response ti/es o< the re@uests that do not !nish success<ull+.

is then esti/ated as the di<<erence !et7een the average re=
sponse ti/e o< these unsuccess<ul re@uests and the su/ o< the ser=
vice ti/es at tiers ' ' .

8n Figure OJ!K 7e plot the response ti/es <or Ru!is as predicted
!+ our enhanced /odel. Ce !nd that this enhance/ent ena!les us
to capture the !ehavior o< the Ru!is application even 7hen its con=
currenc+ li/it is reached.

4.3 Handling Multiple Session Classes
8nternet applications t+picall+ classi<+ inco/ing sessions into /ul=

tiple classes. To illustrate' an online !ro?erage Ce! site /a+ de!ne
three classes and /a+ /ap !nancial transactions to the Gold class'
custo/er re@uests such as !alance in@uiries to the Silver class' and
casual !ro7sing re@uests <ro/ non=custo/ers to the Bronze class.
T+picall+ such classi!cation helps the application sentr+ to pre<eren=
tiall+ ad/it re@uests <ro/ /ore i/portant classes during overloads
and drop re@uests <ro/ less i/portant classes.

Ce can e;tend our !aseline /odel to account <or the presence
o< di<<erent session classes and to co/pute the response ti/e o< re=
@uests 7ithin each class. donsider an 8nternet application 7ith
session classes: . Mssu/e that the sentr+ i/ple=
/ents a classi!cation algorith/ to /ap each inco/ing session to
one o< these classes. Ce can use a straight<or7ard e;tension o< the
:kM algorith/ to deal 7ith /ultiple session classes. ]ue to lac?
o< space' 7e o/it speci!c details. Ce note that this algorith/ re=
@uires the visit ratios' service ti/es' and thin? ti/e to !e /easured
on a per-class basis. civen a =tuple J K o< sessions
!elonging to the classes that are si/ultaneousl+ serviced !+ the
application' the algorith/ can co/pute the average dela+s incurred
at each @ueue and the end=to=end response ti/e on a per=class !asis.
8n Section \.Q 7e discuss ho7 this algorith/ can !e used to "e;i!l+
i/ple/ent session policing policies in an 8nternet application.

4.4 Other Enhancements and Salient Features
Tur closed @ueuing /odel has several desira!le <eatures.
Simplicity: For an =tier application 7ith concurrent sessions'

the :kM algorith/ has a ti/e co/ple;it+ o< . The algo=
rith/ is si/ple to i/ple/ent' and as argued earlier' the /odel pa=
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Figure 6: Rubis based on Java servlets: bottleneck at CPU of
middle tier. The concurrency limits for the Apache Web server
and the Java servlets container were set to be 150 and 75, re-
spectively.

ra/eters are eas+ to /easure online.
Generality: Tur /odel can handle an application 7ith ar!itrar+

nu/!er o< tiers. Further' 7hen the scheduling discipline is proces=
sor sharing JPSK' the :kM algorith/ 7or?s 7ithout /a?ing an+ as=
su/ptions a!out the service ti/e distri!utions o< the custo/ers NPYS.
This <eature is highl+ desira!le <or t7o reasons: JPK it is represen=
tative o< scheduling policies in co//odit+ operating s+ste/s Je.g.'
Uinu;`s dPb ti/e=sharingK' and JQK it i/plies that our /odel is su<=
!cientl+ general to handle 7or?loads 7ith an ar!itrar+ service ti/e
re@uire/ents.[

Chile our /odel is a!le to capture a nu/!er o< application id=
ios+ncrasies' certain scenarios are not e;plicitl+ captured.
Multiple resources: Ce /odel each server occupied !+ a tier us=

ing a single @ueue. 8n realit+' the server contains various resources
such as the dPb' dis?' /e/or+' and the net7or? inter<ace. Tur
/odel currentl+ does not capture the utili6ation o< various server re=
sources !+ a re@uest at a tier. Mn enhance/ent to the /odel 7here
various resources 7ithin a server are /odeled as a net7or? o< @ueues
is the su!aect o< <uture 7or?.
Resources held simultaneously at multiple tiers: Tur /odel es=

sentiall+ captures the passage o< a re@uest through the tiers o< an
application as a au;taposition o< periods' during each o< 7hich the
re@uest utili6es the resources at exactly one tier. Mlthough this is
a reasona!le assu/ption <or a large class o< 8nternet applications'
it does not appl+ to certain 8nternet applications such as strea/ing
video servers. M video server that is constructed as a pipeline o<
processing /odules 7ill have all o< its /odules or etiersf active as
it continuousl+ processes and strea/s a video to a client. Tur /odel
does not appl+ to such applications.

5. MODEL VALIDATION
8n this section 7e present our e;peri/ental setup <ollo7ed !+ our

e;peri/ental validation o< the /odel.

5.1 Experimental Setup
Applications: Ce use t7o open=source /ulti=tier applications in

our e;peri/ental stud+. Rubis i/ple/ents the core <unctionalit+ o<
an e_a+ li?e auction site: selling' !ro7sing' and !idding. 8t i/ple=
/ents three t+pes o< user sessions' has nine ta!les in the data!ase
and de!nes Q\ interactions that can !e accessed <ro/ the clients`
Ce! !ro7sers. Rubbos is a !ulletin=!oard application /odeled a<ter

[The applica!ilit+ o< the :kM algorith/ is /ore restricted 7ith
so/e other scheduling disciplines. >.g.' in the presence o< a F8FT
scheduling discipline at a @ueue' the service ti/e at a @ueue needs to
!e e;ponentiall+ distri!uted <or the :kM algorith/ to !e applica!le.
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Figure 7: Rubis based on Java servlets: bottleneck at CPU of database tier. The concurrency limits for the Apache Web server and
the Java servlets container were set to be 150 and 75, respectively.

an online ne7s <oru/ li?e Slashdot. bsers have t7o di<<erent lev=
els o< access: regular user and /oderator. The /ain ta!les in the
data!ase are the users' stories' co//ents' and su!/issions ta!les.
Ru!!os provides QO Ce! interactions. _oth applications 7ere de=
veloped !+ the ]+naServer group at Rice bniversit+ NWS. >ach appli=
cation contains a Gava=!ased client that generates a session=oriented
7or?load. Ce /odi!ed these clients to generate the 7or?loads and
ta?e the /easure/ents needed !+ our e;peri/ents. Ce chose an av=
erage duration o< W /in <or the sessions o< !oth Ru!is and Ru!!os.
For !oth applications' the thin? ti/e 7as chosen <ro/ an e;ponen=
tial distri!ution 7ith a /ean o< P sec.

Ce used [=tier versions o< these applications. The <ront tier 7as
!ased on Mpache Q.Y.Og Ce! server. Ce e;peri/ented 7ith t7o
i/ple/entations o< the /iddle tier <or Ru!isBJiK !ased on Gava
servlets' and JiiK !ased on Sun`s GQ>> >nterprise Gava _eans J>G_sK.
The /iddle tier <or Ru!!os 7as !ased on Gava servlets. Ce e/=
plo+ed To/cat O.P.Q9 as the servlets container and G_oss [.Q.Q as
the >G_ container. Ce used Kernel TCP Virtual Server J?tcpvsK
version Y.Y.PO N9S to i/ple/ent the application sentr+. ?tcpvs is
an open=source' Ua+er=R re@uest dispatcher i/ple/ented as a Uinu;
?ernel /odule. M round=ro!in load !alancer i/ple/ented in ?tcpvs
7as used <or Mpache. Re@uest dispatching <or the /iddle tier 7as
per<or/ed !+ mod jk' an Mpache /odule that i/ple/ents a variant
o< round ro!in re@uest distri!ution 7hile ta?ing into account session
a<!nit+. Finall+' the data!ase tier 7as !ased on the :+s@l O.Y.Pg
data!ase server.
Hosting environment: Ce conducted e;peri/ents 7ith the ap=

plications hosted on t7o di<<erent ?inds o< /achines. The !rst host=
ing environ/ent consisted o< 8_: servers J/odel \W\W=[_bK 7ith
\\Q :D6 processors and QW\:_ RM: connected !+ PYY:!ps eth=
ernet. The second setting' used <or e;peri/ents reported in Section
\' had ]ell servers 7ith Q.gcD6 processors and WPQ:_ RM: in=
terconnected using giga!it ethernet. This served to veri<+ that our
/odel 7as "e;i!le enough to capture applications running on di<<er=
ent t+pes o< /achines. Finall+' the 7or?load generators 7ere run on
/achines 7ith Pentiu/=888 processors 7ith speeds OWY:D6=PcD6
and RM: si6es in the range PQg=WPQ:_. Mll the /achines ran the
Uinu; Q.O.QY ?ernel.

5.2 Performance Prediction
Ce conduct a set o< e;peri/ents 7ith the purpose o< ascertaining

the a!ilit+ o< our /odel to predict the response ti/e o< /ulti=tier
applications. Ce e;peri/ent 7ith JiK t7o ?inds o< applications JRu=
!is and Ru!!osK' JiiK t7o di<<erent i/ple/entations o< Ru!is J!ased
on Gava servlets and >G_sK' and JiiiK di<<erent 7or?loads <or Ru!is.
>ach o< the three application tiers are assigned one server e;cept in
the e;peri/ents reported in Section W.O. Ce var+ the nu/!er o< con=
current sessions seen !+ the application and /easure the average re=

sponse ti/es o< success<ull+ !nished re@uests over [Y sec intervals.
>ach e;peri/ent lasts [Y /in. Ce co/pute the average response
ti/e and the 9WX con!dence intervals <ro/ these o!servations.

Tur !rst e;peri/ent uses Ru!is 7ith a Gava servlets=!ased /id=
dle tier. Ce use t7o di<<erent 7or?loadsB : dPb=intensive on
the Gava servlets tier' and : dPb=intensive on the data!ase tier.
These 7ere created !+ /odi<+ing the Ru!is client so that it gener=
ated an increased <raction o< re@uests that stressed the desired tier.
>arlier' in Figure OJ!K 7e had presented the average response ti/e
and 9WX con!dence intervals <or sessions var+ing <ro/ P to WYY
<or the 7or?load . Mlso plotted 7ere the average response ti/es
predicted !+ our !asic /odel and our /odel enhanced to handle con=
currenc+ li/its. Mdditionall+' 7e present the o!served and predicted
residence ti/es in Figure \JaK. Figure \J!K sho7s that the dPb on
the Gava servlets tier !eco/es saturated !e+ond PYY sessions <or this
7or?load. Ms alread+ e;plained in Section O.Q' the !asic /odel <ails
to capture the response ti/es <or 7or?loads higher than a!out PYY
sessions due to an increase in the <raction o< re@uests that arrive at
the Mpache and servlets tiers onl+ to !e dropped !ecause o< the tiers
operating at their concurrenc+ li/its. Ce !nd that our enhanced
/odel is a!le to capture the e<<ect o< dropped re@uests at these high
7or?loads and continues to predict response ti/es 7ell <or the entire
7or?load range.

Figure R plots the response ti/es' the residence ti/es' and the
server dPb utili6ations <or servlets=!ased Ru!is su!aected to the
7or?load 7ith var+ing nu/!er o< sessions. Ms sho7n in Fig=
ure RJcK' the dPb on the data!ase server is the !ottlenec? resource
<or this 7or?load. Ce !nd that our !asic /odel captures response
ti/es 7ell. The predicted response ti/es are 7ithin the 9WX con!=
dence interval o< the o!served average response ti/e <or the entire
7or?load range.

he;t' 7e repeat the e;peri/ent descri!ed a!ove 7ith Ru!is !ased
on an >G_=!ased /iddle tier. Tur results are presented in Figure
g. Mgain' our !asic /odel captures the response ti/e 7ell until the
concurrenc+ li/its at Mpache and G_oss are reached. Ms the nu/!er
o< sessions gro7s !e+ond this point' increasingl+ large <ractions o<
re@uests are dropped' the re@uest throughput saturates' and the re=
sponse ti/e o< re@uests that !nish success<ull+ sho7s a "at trend.
Tur enhance/ent to the /odel is again <ound to capture this e<<ect
7ell.

Finall+' 7e repeat the a!ove e;peri/ent 7ith the Ru!!os appli=
cation. Ce use a Gava servlets !ased /iddle tier <or Ru!!os and
su!aect the application to the 7or?load that is dPb=intensive
on the servlets tier. Figure 9 presents the o!served and predicted
response ti/es as 7ell as the server dPb utili6ations. Ce !nd that
our enhanced /odel predicts response ti/es 7ell over the chosen
7or?load range <or Ru!!os.
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Figure 8: Rubis based on EJB: bottleneck at CPU of middle tier.
The concurrency limits for the Apache Web server and the Java
servlets container were set to be 150 and 75, respectively.
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Figure 9: Rubbos based on Java servlets: bottleneck at CPU of
middle tier. The concurrency limits for the Apache Web server
and the Java servlets container were set to be 150 and 75, re-
spectively.

5.3 Query Caching at the Database
Recent versions o< the :+s@l server <eature a @uer+ cache. Chen

in use' the @uer+ cache stores the te;t o< a S>U>dT @uer+ together
7ith the corresponding result that 7as sent to the client. 8< the iden=
tical @uer+ is received later' the server retrieves the results <ro/
the @uer+ cache rather than parsing and e;ecuting the @uer+ again.
muer+ caching at the data!ase has the e<<ect o< reducing the aver=
age service ti/e at the data!ase tier. Ce conduct an e;peri/ent
to deter/ine ho7 7ell our /odel can capture the i/pact o< @uer+
caching on response ti/e. Ce su!aect Ru!!os to a 7or?load con=
sisting o< WY si/ultaneous sessions. To si/ulate di<<erent degrees
o< @uer+ caching at :+s@l' 7e use a <eature o< :+s@l @ueries that
allo7s the issuer o< a @uer+ to speci<+ that the data!ase server not
use its cache <or servicing this @uer+O. Ce /odi!ed the Ru!!os
servlets to /a?e the/ re@uest di<<erent <ractions o< the @ueries 7ith
this option. For each degree o< caching 7e plot the average response
ti/e 7ith 9WX con!dence intervals in Figure PY. Ms e;pected' the
o!served response ti/e decreases steadil+ as the degree o< @uer+
caching increasesBthe average response ti/e is nearl+ POYY /sec
7ithout @uer+ caching and reduces to a!out PYY /sec 7hen all the
@ueries are cached. 8n Figure PY 7e also plot the average response
ti/e predicted !+ our /odel <or di<<erent degrees o< caching. Ce
!nd that our /odel is a!le to capture 7ell the i/pact o< the reduced
@uer+ processing ti/e 7ith increasing degrees o< caching on average
response ti/e. The predicted response ti/es are <ound to !e 7ithin
the 9WX con!dence interval o< the o!served response ti/es <or the
entire range o< @uer+ caching.

5.4 Load Imbalance at Replicated Tiers
OSpeci!call+' replacing a SELECT 7ith SELECT SQL NO CACHE
ensures that :+s@l does not cache this @uer+.
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Figure 10: Caching at the database tier of Rubbos.

Ce con!gure Ru!is using a replicated Gava servlets tierB7e as=
sign three servers to this tier. Ce use the 7or?load 7ith PYY
si/ultaneous sessions. The user thin? ti/es <or a session are chosen
using an e;ponential distri!ution 7hose /ean is chosen uni<or/l+
at rando/ <ro/ the set . Ce choose short=lived ses=
sions 7ith a /ean session duration o< P /inute. Tur results are pre=
sented in Figure PP. hote that replication at the /iddle tier causes
the response ti/es to !e signi!cantl+ s/aller than in the e;peri/ent
depicted in Figure \JaK. Further' choosing sessions 7ith t7o 7idel+
di<<erent thin? ti/es ensures varia!ilit+ in the 7or?load i/posed !+
individual sessions and creates load i/!alance at the /iddle tier.

Figure PPJaK plots the nu/!er o< re@uests passing through each
o< the three servers in the servlets tier over [Y sec intervals dur=
ing a PY /in run o< this e;peri/entL Figure PPJ!K plots the average
end=to=end response ti/es <or these re@uests. These !gures sho7
the i/!alance in the load on the three replicas. Mlso' the /ost
loaded server changes over ti/eBchoosing a short session duration
causes the load i/!alance to shi<t a/ong replicas <re@uentl+. Figure
PPJcK plots the average response ti/es o!served <or re@uests passing
through the three serversBinstead o< presenting response ti/es cor=
responding to speci!c servers' 7e plot values <or the least loaded'
the second least loaded' and the /ost loaded server. Figure PPJcK
also sho7s the response ti/es predicted !+ the /odel assu/ing per-
fect load balancing at the /iddle tier. bnder this assu/ption' 7e see
a deviation !et7een the predicted values and the o!served response
ti/es. he;t' 7e use the /odel enhance/ent descri!ed in Section
O.P to capture load i/!alance. For this 7or?load the values <or the
load i/!alance <actors used !+ our enhance/ent 7ere deter/ined
to !e ' ' and . Ce plot the re=
sponse ti/es predicted !+ the enhanced /odel at the e;tre/e right
in Figure PPJcK. Ce o!serve that the use o< these additional para/=
eters i/proves our prediction o< the response ti/e. The predicted
average response ti/e JP[WY /secK closel+ /atched the o!served
value JPQ9W /secKL 7ith the assu/ption o< per<ect load !alancing
the /odel underesti/ated the average response ti/e to !e 9WY /sec.

5.5 Multiple Session Classes
Ce created t7o classes o< Ru!is sessions using the 7or?loads

and respectivel+. Recall that the re@uests in these classes have
di<<erent service ti/e re@uire/ents at di<<erent tiersB is dPb=
intensive on the Gava servlets tier 7hile is dPb intensive on the
data!ase tier. Ce conduct t7o sets o< e;peri/ents' each o< 7hich
involves ?eeping the nu/!er o< sessions o< one class !;ed at PY
and var+ing the nu/!er o< sessions o< the other class. Ce then co/=
pute the per=class average response ti/e predicted !+ the /ulti=class
version o< our /odel JSection O.[K. Ce plot the o!served and pre=
dicted response ti/es <or the t7o classes in Figure PQ. Chile the
predicted response ti/es closel+ /atch the o!served values <or the
!rst e;peri/ent' in the second e;peri/ent JFigure PQJ!KK' 7e o!=
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Figure 12: Rubis serving sessions of two classes. Sessions of class
1 were generated using workload while those of class 2 were
generated using workload .

serve that our /odel underesti/ates the response ti/e <or class P
<or WY sessionsB7e attri!ute this to an inaccurate esti/ation o< the
service ti/e o< class P re@uests at the servlets tier at this load.

6. APPLICATIONS OF THE MODEL
8n this section 7e de/onstrate so/e applications o< our /odel <or

/anaging resources in a data center. Ce also discuss so/e i/portant
issues related to the online use o< our /odel.

6.1 Dynamic Capacity Provisioning and Bot-
tleneck Identification

]+na/ic capacit+ provisioning is a use<ul techni@ue <or handling
the /ulti=ti/e=scale variations seen in 8nternet 7or?loads. The goal
o< d+na/ic provisioning is to d+na/icall+ allocate su<!cient capac=
it+ to the tiers o< an application so that its response ti/e needs can !e
/et even in the presence o< the pea? 7or?load. T7o ?e+ co/ponents
o< a d+na/ic provisioning techni@ue are: JiK predicting the 7or?load
o< an application' and JiiK deter/ining the capacit+ needed to serve
this predicted 7or?load. The <or/er pro!le/ has !een addressed in
papers such as N\S. The 7or?load esti/ates /ade !+ such predictors
can !e used !+ our /odel to address the issue o< ho7 /uch capacit+
to provision. T!serve that the inputs to our model-based provision-
ing technique are the workload characteristics, number of sessions
to be serviced simultaneously, and the response time target, and the
desired output is a capacity assignment for the application. Ce start
7ith an initial assign/ent o< one server to each tier. Ce use the
:kM algorith/ to deter/ine the resulting average response ti/e as
descri!ed in Sections [ and O. 8n case this is 7orse than the target'
7e use the :kM algorith/ to deter/ine' <or each replica!le tier' the
response ti/e resulting <ro/ the addition o< one /ore server to it.
Ce add a server to the tier that results in the /ost i/prove/ent in re=
sponse ti/e. Ce repeat this till 7e have an assign/ent <or 7hich the

predicted response ti/e is !elo7 the targetBthis assign/ent +ields
the capacit+ to !e assigned to the application`s tiersW. The a!ove pro=
visioning procedure has a ti/e co/ple;it+ o< ' 7here is
the nu/!er o< servers that the application is eventuall+ assigned'
is the the nu/!er o< tiers' and is the nu/!er o< sessions. Since
provisioning decisions are t+picall+ /ade over periods o< tens o<
/inutes or hours' this overhead is practicall+ <easi!le.

Ce conduct an e;peri/ent to de/onstrate the application o< our
/odel to d+na/icall+ provision Ru!is con!gured using Gava servlets
at its /iddle tier. Ce assu/e an ideali6ed 7or?load predictor that
can accuratel+ <orecast the 7or?load <or the near <uture. Ce gen=
erated a P=hour long session arrival process !ased on a Ce! trace
<ro/ the P99g Soccer Corld dup site NQSL this is sho7n in Figure
P[JaK. Sessions are generated according to this arrival process using
7or?load .

Ce i/ple/ented a provisioning unit that invo?es the /odel=!ased
procedure descri!ed a!ove ever+ PY /in to deter/ine the capacit+
re@uired to handle the 7or?load during the ne;t interval. Tur goal
7as to /aintain an average response ti/e o< P sec <or Ru!is re@uests.
Since our /odel re@uires the nu/!er o< si/ultaneous sessions as
input' the provisioning unit converted the pea? rate during the ne;t
interval into an esti/ate o< the nu/!er o< si/ultaneous sessions <or
7hich to allocate capacit+ using Uittle`s Ua7 NgS as '
7here is the pea? session arrival rate during the ne;t interval as
given !+ the predictor and is the average session duration. The pro=
visioning unit ran on a separate server. 8t i/ple/ented scripts that
re/otel+ log on to the application sentr+ and the dispatchers <or the
a<<ected tiers a<ter ever+ re=co/putation to en<orce the ne7l+ co/=
puted allocations. The concurrenc+ li/its o< the Mpache Ce! server
and the To/cat servlets container 7ere !oth set to PYY. Ce present
the 7or?ing o< our provisioning unit and the per<or/ance o< Ru=
!is in Figure P[J!K. The provisioning unit is success<ul in changing
the capacit+ o< the servlets tier to /atch the 7or?loadBrecall that
7or?load is dPb intensive on this tier. The session arrival rate
goes up <ro/ a!out PY sessZ/in at /in to nearl+ [Y sessZ/in
at /in. dorrespondingl+' the re@uest arrival rate increases
<ro/ a!out PWYY re@Z/in to a!out OQYY re@Z/in. The provisioning
unit increases the nu/!er o< To/cat replicas <ro/ Q to a /a;i/u/
o< R during the e;peri/ent. Further' at /in' the nu/!er o<
si/ultaneous sessions during the upco/ing PY /in interval is pre=
dicted to !e higher than the concurrenc+ li/it o< the Mpache tier.

Whote that our current discussion assu/es that it is al7a+s possi!le
to /eet the response ti/e target !+ adding enough servers. So/e=
ti/es this /a+ not !e possi!le Je.g.' due to the 7or?load e;ceeding
the entire availa!le capacit+' or a non=replica!le tier !eco/ing satu=
ratedK and 7e /a+ have to e/plo+ ad/ission control in addition to
provisioning. This is discussed in Section \.Q.
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Figure 13: Model-based dynamic provisioning of servers for Ru-
bis.

To prevent ne7 sessions !eing dropped due to the connection li/it
!eing reached at Mpache' a second Mpache server is added to the
application. Thus' our /odel=!ased provisioning is a!le to identi<+
potential !ottlenec?s at di<<erent tiers Jconnections at Mpache and
dPb at To/catK and /aintain response ti/e targets !+ adding ca=
pacit+ appropriatel+. Ce note that the single=tier /odels descri!ed
in Section Q.[ 7ill onl+ !e a!le to add capacit+ to one tier and 7ill
<ail to capture such changing !ottlenec?s.

6.2 Session Policing and Class-based Differen-
tiation

8nternet applications are ?no7n to e;perience une;pected surges
in their 7or?load' ?no7n as flash crowds NQYS. There<ore an i/=
portant co/ponent o< an+ such application is a sentr+ that polices
inco/ing sessions to an application`s server poolBinco/ing ses=
sions are su!aected to ad/ission control at the sentr+ to ensure that
the contracted per<or/ance guarantees are /etL e;cess sessions are
turned a7a+ during overloads. 8n an application supporting /ultiple
classes o< sessions' 7ith possi!l+ di<<erent response ti/e re@uire=
/ents and revenue sche/es <or di<<erent classes' it is desira!le to
design a sentr+ that' during a "ash cro7d' can deter/ine a su!set o<
sessions ad/itting 7hich 7ould opti/i6e a /eaning<ul /etric. Mn
e;a/ple o< such a /etric could !e the overall e;pected revenue gen=
erated !+ the ad/itted sessions 7hile /eeting their response ti/e
targets Jthis constraint on response ti/es 7ill !e assu/ed to hold in
the rest o< our discussion 7ithout !eing statedK. For/all+' given
session classes' ' ' ' 7ith up to sessions o< class and
using overall revenue as the /etric to !e opti/i6ed' the goal o< the
sentr+ is to deter/ine an =tuple J ' ' K such that

7here denotes the revenue generated !+ ad/itted ses=
sions o< .

Tur /ulti=class /odel descri!ed in Section O.[ provides a "e;i!le
procedure <or reali6ing this. First o!serve that the inputs to this pro-
cedure are the workload characteristics of various classes and the
capacity assigned to the application tiers, and the desired output is
the number of sessions of each class to admit. 8n theor+' 7e could
use the /ulti=class :kM algorith/ to deter/ine the revenue +ielded
!+ ever+ ad/issi!le =tuple. dlearl+ this 7ould !e co/putationall+
prohi!itive. 8nstead' 7e use a heuristic that considers the session
classes in a non=increasing order o< their revenue=per=session. For
the class under consideration' it adds sessions till either all avail=
a!le sessions are e;hausted' or adding another session 7ould cause
the response ti/e o< at least one class' as predicted !+ the /odel'
to violate its target. The outco/e o< this procedure is an =tuple
o< the nu/!er o< sessions that can !e used !+ the policer to /a?e
ad/ission control decisions.
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Figure 14: Maximizing revenue via differentiated session polic-
ing in Rubis. The application serves two classes of sessions.

Ce no7 descri!e our e;peri/ents to de/onstrate the 7or?ing o<
the session policer <or Ru!is. Ce con!gured the servlets version o<
Ru!is 7ith Q replicas o< the servlets tier. Si/ilar to Section O.[' 7e
chose and to construct t7o session classes and re=
spectivel+. The response ti/e targets <or the t7o classes 7ere chosen
to !e P sec and Q secL the revenue +ielded !+ each ad/itted session
7as assu/ed to !e nY.P and nP respectivel+. Ce assu/e session
durations o< e;actl+ PY /in <or illustrative purposes. Ce create the
<ollo7ing "ash cro7d scenarios. Ce assu/e that PWY sessions o<
and PY sessions o< arrive at L WY sessions each o< and
are assu/ed to arrive at /in. Figure POJaK presents the 7or?=
ing o< our /odel=!ased policer. Mt ' !ased on the procedure
descri!ed a!ove' the policer !rst ad/its all PY sessions o< the class
7ith higher revenue=per=session' na/el+ L it then proceeds to ad=
/it as /an+ sessions o< as it can J9YK 7hile ?eeping the average
response ti/es under target. Mt /in' the policer !rst ad/its
as /an+ sessions o< as it can JQPKL it then ad/its W sessions o<

Bad/itting /ore 7ould' according to the /odel' cause the re=
sponse ti/e o< to !e violated. Ce !nd <ro/ Figure POJaK that
the response ti/e re@uire/ents o< !oth the classes are /et during
the e;peri/ent. Ce /a?e t7o additional o!servations: JiK during NY'
PYS /in' the response ti/e o< is 7ell !elo7 its target o< Q secB
this is !ecause there are onl+ PY sessions o< this class' less than the
capacit+ o< the data!ase tier <or the desired response ti/e targetL
since the 9Y sessions o< stress /ainl+ the servlets tier Jrecall the
nature o< and K' the+ have /ini/al i/pact on the response
ti/e o< sessions' 7hich /ainl+ e;ercise the data!ase tier' and JiiK
during JPY' QYS /in' the response ti/e o< is 7ell !elo7 its target
o< P secBthis is !ecause the policer ad/its onl+ W sessionsL the
servlets tier is lightl+ loaded since the sessions do not stress it'
and there<ore the sessions e;perience lo7 response ti/es.

Figure POJ!K de/onstrates the i/pact o< ad/itting /ore sessions
on application response ti/e. Mt ' the policer ad/its e;cess

sessionsBit ad/its POY and PY sessions respectivel+. Ce !nd
that sessions o< e;perience degraded response ti/es Jin e;cess
o< Q sec as opposed to the desired P secK. Si/ilarl+' at /in' it
ad/its e;cess sessionsBit ad/its W and [P sessions respectivel+.
ho7 sessions o< e;perience response ti/e violations. T!serve
that ad/itting e;cess sessions o< one class does not cause a percep=
ti!le degradation in the per<or/ance o< the other class !ecause the+
e;ercise di<<erent tiers o< the application.

6.3 Overheads and Accuracy of Parameter Es-
timation

8n this section 7e discuss issues related to the online use o< our
/odel.
System Overheads: The /odel re@uires several para/eters to !e

/easured at the sentr+' the dispatchers' the application tiers' and in
the operating s+ste/. 8n order to @uanti<+ the overheads i/posed
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Figure 15: Impact of error in estimating the model parameters.

!+ these online /easure/ents' 7e /onitored the dPb and net7or?
overheads i/posed !+ the online /onitoring co/ponents. :easure=
/ents on our hosting environ/ent indicate that the dPb overhead
o< online para/eter esti/ation is negligi!leBconsistentl+ less than
PX in a nu/!er o< e;peri/ents. Si/ilarl+' real=ti/e parsing and
processing o< application logs i/poses a negligi!le overhead. The
statistics /easured at various co/ponents need to !e periodicall+
co//unicated to the sever running our /odel. Ce /easured the
net7or? overhead o< these /essages. For Ru!is servicing WYY con=
current sessions the net7or? tra<!c created !+ our online esti/ation
7as a!out Y.W :!ps' 7hich is negligi!le on a giga!it ethernet UMh.
Inaccuracies in Parameter Estimation: To understand the i/=

pact o< inaccuracies in the esti/ated para/eters on the predicted
response ti/es' 7e deli!eratel+ introduced var+ing a/ounts o< error
in the esti/ated visit ratios and the esti/ated service ti/es o< the
/iddle tier. Ce then used these para/eter values to co/pute the
/ean response ti/e using the /odel and deter/ined the di<<erence
!et7een the predicted response ti/es 7ith and 7ithout the errors.
Figures PWJaK and J!K plot the error in average response ti/e caused
!+ var+ing degrees o< error <or Ru!is servicing 7or?load . Tur
results suggest a linear dependence !et7een errors in the esti/ated
para/eters and those in predicted response ti/e. This indicates that
s/all errors in our /easure/ents 7ill onl+ introduce s/all errors in
the /odel predictions.

7. CONCLUSIONS
8n this paper 7e presented an anal+tical /odel <or /ulti=tier 8nter=

net applications. Tur /odel is !ased on using a net7or? o< @ueues
to represent ho7 the tiers in a /ulti=tier application cooperate to
process re@uests. Tur /odel is JiK general enough to capture 8nter=
net applications 7ith an ar!itrar+ nu/!er o< heterogeneous tiers' JiiK
is inherentl+ designed to handle session=!ased 7or?loads' and JiiiK
can account <or application idios+ncrasies such as load i/!alances
7ithin a replicated tier' caching e<<ects' the presence o< /ultiple
classes o< sessions' and li/its on the a/ount o< concurrenc+ at each
tier. The /odel para/eters are eas+ to /easure and update. Ce val=
idated the /odel using t7o open=source /ulti=tier applications run=
ning on a Uinu;=!ased server cluster. Tur e;peri/ents de/onstrated
that our /odel <aith<ull+ captures the per<or/ance o< these appli=
cations <or a variet+ o< 7or?loads and con!gurations. Ce de/on=
strated the utilit+ o< our /odel in /anaging resources <or 8nternet
applications under var+ing 7or?loads and shi<ting !ottlenec?s. Ms
part o< <uture 7or?' 7e plan to investigate the suita!ilit+ our /odel
<or capturing /ore diverse 7or?loads Je.g.' 8T=intensive at certain
tiersK and to design enhance/ents to handle these. Mnother direc=
tion is to e;tend our /odel to handle other ?inds o< scheduling dis=
ciplines Jsuch as proportional=share schedulingK at the application
servers.
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