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Abstract

The estimation of probability densities from data is widely used as an
intermediate step in the estimation of entropy, Kullback-Leibler (KL)
divergence, and mutual information, and for statistical tasks such as
hypothesis testing. We propose an alternative to density estimation–
partitioning a space into regions whose approximate probability mass
is known–that can be used for the same purposes. We call these re-
gions hyperspacings, a generalization of spacings in one dimension. Af-
ter discussing one-dimensional spacings estimates of entropy and KL-
divergence, we show how hyperspacings can be used to estimate these
quantities (and mutual information) in higher dimensions. Our approach
outperforms certain widely used estimators based on intermediate den-
sity estimates. Using similar ideas, we also present a new distribution-
free hypothesis test for distributional equivalence that compares favor-
ably with the Kolmogorov-Smirnov test. Using hyperspacings, it is eas-
ily extended to multiple dimensions.

1 Introduction

Many problems in machine learning involve the estimation of information theoretic quanti-
ties such as entropy, Kullback-Leibler (KL) divergence, and mutual information in contin-
uous probability spaces. A first step toward calculating these quantities is often estimating
a probability density over one or more (possibly multivariate) random variables. Exam-
ples include estimation of joint and marginal densities in image registration problems as
part of mutual information estimation [14] and estimation of marginal densities in order to
estimate marginal entropies in Independent Components Analysis (ICA) problems [11].

It is not essential to estimate a density, however, before estimating entropy or other in-
formation theoretic quantities from a sample. Using methods based on order statistics and
spacings (defined below), the entropy of a one-dimensional random variable can be di-
rectly estimated without an explicit density estimate [13]. These estimates are consistent
and asymptotically efficient [2], and have been exploited in solutions of the ICA problem
[3, 9]. Recently, the concept of spacings was extended to higher dimension and applied to
the problem of entropy estimation [8]. Another class of entropy estimators that sidestep
density estimation has been developed using so-called entropic spanning graphs [6].



Here we build on previous work with spacings and their generalization to multiple dimen-
sions [8]. We start in Section 2 by reviewing entropy estimation in one dimension. We then
introduce Near Uniform Partitions (NUPs), which provide a simple conceptual framework
for this family of estimators and lead to a novel algorithm for KL-divergence estimation.
In Section 3, we introduce hyperspacings, an attempt to create NUPs in higher dimensions.
In addition to algorithms for multidimensional estimation of entropy and KL-divergence,
this provides a new method for estimating mutual information. We compare our entropy
estimator to a standard technique based on density estimates. In Section 4, we show how
a spacings algorithm for estimating KL-divergence suggests a natural hypothesis test for
whether two samples come from the same distribution. Like the Kolmogorov-Smirnov
test, this test is distribution free, but being based on NUPs, it can be generalized to arbi-
trary dimension. We conclude by comparing the two tests in simulations.

2 Spacings estimates of entropy and KL-divergence

Consider a scalar random variable Z, and a random iid sample of Z denoted by
Z1,Z2, ...,ZN . The order statistics of a random sample of Z are simply the elements of
the sample rearranged in non-decreasing order: Z(1) ≤ Z(2) ≤ ... ≤ Z(N) (c.f. [1]). A spac-
ing of order m, or m-spacing, is then defined1 to be Z(i+m) −Z(i), for 1 ≤ i < i+m ≤ N.
The m−spacing estimator of entropy, due to Vasicek [13], is defined as

ĤN(Z1, ...,ZN) =
1
N

N−m

!
i=1

log
(
N
m

(Z(i+m) −Z(i))
)

. (1)

To gain insight into this estimator, note that for any random variable Z with an impulse-free
density p(·) and continuous distribution function P(·), the following holds. Let p∗ be the
N-way product density p∗(Z1,Z2, ...,ZN) = p(Z1)p(Z2)...p(ZN). Then

Ep∗ [P(Z(i+1))−P(Z(i))] =
1

N+1
, ∀i,1≤ i≤ N−1. (2)

That is, the expected value of the probability mass of the interval between two successive
elements of a sample from a random variable is 1

N+1 . This remarkably general fact is a
simple consequence of the uniformity of the random variable P(Z), the probability integral
transform of Z (c.f. [7]). Using this idea, one can develop a simple entropy estimator.
We start by approximating the probability density p(z) by assigning equivalent masses to
each interval between points and assuming a uniform distribution of this mass across the
interval.2 Defining Z(0) and Z(N+1) to be the infimum and supremum of the support of p(z),
we have:

p̂(z;Z1, ...,ZN) =
1

N+1
Z(i+1) −Z(i) , (3)

for Z(i) ≤ z< Z(i+1). Then, we can write

H(Z)
(a)
≈ −

Z "

−"
p̂(z) log p̂(z)dz

= −
N

!
i=0

Z Z(i+1)

Z(i)

1
N+1

Z(i+1) −Z(i) log
1

N+1
Z(i+1) −Z(i) dz

1Here, spacing is defined as the length of an interval marked by order statistics. We will also refer
the interval itself as a spacing where convenient.

2The notion of a density estimate aids in the intuition behind m−spacing estimates. However, we
stress that density estimation is not a necessary intermediate step in our ultimate entropy estimator.
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≡ Ĥsimple(Z1, ...,ZN). (4)

The approximation (a) arises by approximating the true density p(z) by p̂(z;Z1, ...,ZN).
The approximation (b) stems from the fact that we in general do not know Z(0) and Z(N+1),
i.e. the true support of the unknown density. Instead, we form the entropy estimate using
only information from the region for which we have some information.

2.1 m-spacings and overlapping m-spacings

The estimate Ĥsimple has high variance inherited from the variance of the interval probabil-
ities (2). The variance can be reduced by considering m-spacing estimates, such as

Ĥmspacing(Z1, ...,ZN) ≡ m
N−1

N−1
m −1

!
i=0

log
(
N+1
m

(Z(m(i+1)+1)−Z(mi+1))
)

. (5)

When m,N → ", mN → 0, this estimator is consistent [2]. As m and N grow, the probability
masses form-spacings concentrate around their expected values. This property holds for all
probability distributions with continuous cumulative distribution functions. A modification
of (5) in which the m-spacings overlap,

Ĥoverlap(Z1, ...,ZN) ≡ 1
N−m

N−m

!
i=1

log
(
N+1
m

(Z(i+m)−Z(i))
)

, (6)

further reduces the asymptotic variance and is equivalent to Vasicek’s estimator (1) except
for constants adjusted to improve the small sample performance. There is no specific den-
sity associated with this estimator, and yet this does not diminish its performance. Next,
we introduce Near Uniform Partitions, which capture some key properties of spacings.

2.2 Near Uniform Partitions

Suppose we could put a grid on a probability distribution so that the integral of the distri-
bution over each grid element was a constant. Such a “uniform partition” might be useful
for estimating quantities associated with the distribution, especially expectations. Near
Uniform Partitions (NUPs) are an approximation to such a grid. To construct a NUP on
a space with respect to a probability distribution, we must define a set of mutually exclu-
sive and collectively exhaustive regions on that space that are likely to have approximately
equivalent probability masses. The following definition formalizes this idea.

Definition 2.1 (Near Uniform Partition) Consider a probability space (#,F ,P) and the
associated N-way product space (#N ,F N ,PN). Let X = {X1,X2, ...,XN} ∈#N be a sam-
ple drawn according to PN. Let R = R(X) be a partition of the outcomes # into regions



{R1,R2, ...RK} which depends on the sample X, and hence is a random partition. Using
P(Ri) as a shorthand for

R
Rip(x)dx, we say that the random variable R is an $-% Near

Uniform Partition if, for a random draw of R,

Prob
(
max
i

∣∣∣∣
1
K
−P(Ri)

∣∣∣∣ > $

)
< %. (7)

Next, we make the following claim: that sets of non-overlapping m-spacings form a (non-
trivial) NUP for any continuous probability distribution. Consider a sample of size N =
mK−1 along with the infimum and supremum of support of the distribution. To establish
that the set ofK non-overlappingm-spacings form a NUP, we must choose an $ and % so that
(7) holds. We start with the fact that the distribution of probability mass in anm−spacing is
given by a beta distribution with parametersm and N+1−m [1], with expectation m

N+1 = 1
K

and variance m(N+1−m)
(N+1)2(N+2) . Applying Chebyshev’s inequality gives

Prob
(∣∣∣∣
1
K
−P(Ri)

∣∣∣∣ > $

)
≤ m(N+1−m)

(N+1)2(N+2)$2
. (8)

If all of the m-spacings have probability within $ of their expectations, then the maximum
deviation of these probabilities is also within $, so we can apply the union bound to obtain

Prob
(
max
i

∣∣∣∣
1
K
−P(Ri)

∣∣∣∣ > $

)
≤ mK(N+1−m)

(N+1)2(N+2)$2
<

1
(N+2)$2

. (9)

With large enough N, we can choose $ and % arbitrarily small, establishing the claim. Next,
we see how NUPs lead to a conceptually simple algorithm for KL-divergence estimation.

2.3 KL-divergence estimation

Starting with the definition of KL-divergence between distributions P and Q, we write

D(P||Q) =
Z "

−"
p(x) log

p(x)
q(x)

dx =
Z "

−"

p(x)
q(x)

(
log

p(x)
q(x)

)
q(x)dx

=
Z "

−"

dP(x)
dQ(x)

(
log

dP(x)
dQ(x)

)
dQ(x) = −h( dP

dQ
),

where h(·) is the differential entropy. dP
dQ is the density of P with respect to the underlying

measure Q. This derivation can be interpreted in the following way: By representing the
probability law P in a space in which Q is uniform, the divergence between P and Q can
be written as simply the negative entropy of P. Practically, we achieve this by representing
P under the NUP defined by the m-spacings of Q.

More explicitly, suppose we have samples from distributions P and Q, each of size N, and
we wish to estimateD(P||Q). The steps of the KL-divergence algorithm are a) Setm=

√
N,

b) Compute non-overlapping m-spacings using samples of Q, c) Compute the histogram of
samples from P, using the m-spacings of Q as bins, and d) Calculate the negative entropy
of this histogram to obtain a KL-divergence estimate. (This algorithm has computational
complexity O(N logN) due to the sorting required to find the order statistics.)

The number of P samples in each histogram bin represents the amount of “P probability”
(dP) for a fixed amount of change in Q (dQ). Our confidence that each histogram bin has
a fixed amount of Q mass comes from the fact that the m-spacings of Q form a NUP. It
is interesting to note that this algorithm, since it depends only on the ordering of the two
samples, is completely invariant to arbitrary monotonic (non-linear!) mappings of the axes.
This is a property shared by the KL-divergence of the true distributions P and Q and hence
makes it an appealing property of the estimator. Note in particular that this property is not
shared by KL-divergence estimates based on kernel density estimators.
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Figure 1: Left, center: Hyperspacings for N = 4000 points for the uniform and standard
2-D Gaussian distributions. In each case, the hyperspacings have probability mass that
is approximately linear in the number of Voronoi regions that compose them. Right: A
hyperspacing of radius 5. Our entropy estimator is based on overlapping hyperspacings of
this form, as opposed to the non-overlapping hyperspacings shown on the left. NOTE: This
figure is best viewed in color.

3 Hyperspacings: spacings in multiple dimensions

Our next goal is to extend the benefits of spacings and NUPs to higher dimensions. To do
so, we need to generate regions of multidimensional spaces with predictable probability
mass. Next, we present two methods for generating such regions from samples.

3.1 Voronoi regions and hyperspacings

Given a set of points Z1,Z2, ...,ZN in D dimensions, a set of Voronoi regions V 1,V 2, ...,VN

is formed by associating with each point Zi the set V i of all points which are closer to Zi
than to any other point Z j. Voronoi regions can be thought of as a generalization of spacings
in higher dimensions. An entropy estimator similar to Ĥsimple (4) is obtained by assigning
to each Voronoi region a probability mass of 1N , distributing that mass uniformly in each
region, and discounting regions with infinite area (or volume in higher dimensions):

ĤVor−simple ≡
1

N− z !
V is.t.A(Vi) *="

log
(
NA(V i)

)
. (10)

Here A is the area of region Vi, and z is the number of Voronoi regions with infinite area.
Such an estimator can also be built from Delaunay regions, the “duals” of Voronoi regions
[10]. In two dimensions, a Delaunay region is formed by connecting the centers of three
mutually adjacent Voronoi regions. One important property of Delaunay tessellations is
that each region is finite. The tradeoff, however, is that like spacings estimates in one
dimension, only the convex hull of the sample is modeled. Most of the algorithms we
present can be developed using either Voronoi or Delaunay regions, but we will usually
simply refer to the Voronoi version for brevity.

Just as the 1-spacing estimator (Ĥsimple) was extended to the m-spacings estimator
(Ĥmspacing), we can extend the basic Voronoi entropy estimator to reduce its variance. In
one dimension, this was achieved by “pasting” together contiguous intervals into an m-
spacing. In D dimensions, we paste together multiple Voronoi regions into hyperspacings.
Non-overlapping hyperspacings for two different distributions are shown in the first two
panels of Figure 1. A single hyperspacing, used as part of the overlapping hyperspacings
estimate, is shown on the right of the figure.



N=100 N=1000 N=5000
Distributions Hyper ROT Hyper ROT Hyper ROT

Bias & Bias & Bias & Bias & Bias & Bias &
1D Gaussian 2.0 5.9 0.1 5.6 1.1 1.8 0.8 1.7 0.4 0.7 0.4 0.8
1D Uniform 4.0 1.7 6.7 2.6 1.1 0.3 5.0 0.5 0.5 0.1 3.8 0.2
1D Exponential 10.3 9.9 5.2 10.9 1.3 2.3 8.5 2.7 0.5 1.4 6.9 1.5
2D Gaussian 7.3 2.6 6.3 2.6 0.8 1.2 1.9 1.1 0.2 0.5 0.8 0.5
2D Uniform 5.3 1.4 4.2 2.0 1.1 0.3 4.4 0.4 0.6 0.1 3.6 0.2
2D Exponential 4.2 6.9 5.5 7.2 0.9 3.2 6.1 3.2 0.4 0.9 5.8 0.9
2D Gauss x Exp. 4.8 6.8 0.6 6.5 1.0 2.0 1.4 1.9 0.6 0.9 1.6 0.9
2D Annulus 12.9 1.3 32.3 0.9 6.5 0.4 22.2 0.4 3.6 0.2 16.1 0.1

2D Hollow Square 7.9 1.1 26.0 1.0 2.3 0.4 16.8 0.3 0.6 0.2 12.0 0.2
3D Gaussian 16.7 3.7 14.5 4.2 3.3 0.7 7.3 0.9 1.5 0.5 4.7 0.5
3D Uniform 11.0 1.4 0.5 1.4 2.9 0.2 1.8 0.3 1.6 0.1 2.1 0.1
3D Exponential 13.1 5.5 5.5 7.9 2.3 1.4 1.2 1.7 1.5 0.9 0.2 0.9

Table 1: Results of entropy experiments. The entropy of each distribution shown on the left
was estimated from samples (of size 100, 1000, and 5000) using the hyperspacings estimate
based on Delaunay tessellations (“Hyper”) and based on a kernel density estimate with
Gaussian kernels, using Silverman’s “rule-of-thumb” to estimate the kernel size (“ROT”).
The bias for each estimate is the mean absolute value percentage difference from the true
entropy. Distributions were chosen so that the true entropy had a value of 2 or greater. &
shows the standard deviation of each estimate as a percentage of the entropy. For N = 100,
results are mixed between the two estimators, but for larger sample sizes, the hyperspacings
estimate performs substantially better, with lower bias and similar standard deviation on
both smooth and rapidly changing densities.

In constructing a hyperspacing, it is tempting to include any Voronoi region whose center
is included in some Euclidean $-ball of a particular point. However, this method of forming
hyperspacings gives clusters with more constituent Voronoi regions in areas of high density
than in areas of low density. Instead, we define an adjacency metric on the set of Voronoi
regions by setting the distance between any two regionsVi andV j to be the shortest path on
the adjacency graph for the set of regions. The rightmost panel of Figure 1 shows a typical
adjacency metric ball around a particular Voronoi region. The use of an adjacency metric
makes the hyperspacings method of partitioning a distribution relatively insensitive to the
underlying distribution, and allows the efficient computation of hyperspacings.

Unlike m-spacings in one dimension, however, it is difficult to prove that hyperspacings are
NUPs. Instead we note the following properties of hyperspacings:

1. For a uniform distribution on the unit hypercube , a single hyperspacing (not in-
tersecting the boundary of the hypercube) with m subregions has expected prob-
ability mass m

N . According to our experiments in two dimensions, the standard
deviation of this mass is already less than 10% of the expected mass for a hyper-
spacing radius of only 4 (in the adjacency metric).

2. Every probability density with bounded partial derivatives is locally approxi-
mately uniform. Also, the probability mass in a hyperspacing does not depend
upon the local height of a density, as long as it is uniform.3 Together these imply
that the probability masses of hyperspacings are asymptotically invariant to the
underlying density at any particular location, as long as the density is smooth.

3. Hyperspacings on densities with unbounded derivatives can still be well behaved,

3This is a direct consequence of the invariance of Voronoi tessellations to scale [10].



Distribution 1 Distribution 2 Kol-Smir Hyperspace
Uniform(µ= 0,&2 = 1) Uniform(µ= 0,&2 = 0.9) 57 86
Uniform(µ= 0.1,&2 = 1) Uniform(µ= 0,&2 = 1) 39 81
Normal(µ= 0,&2 = 1) Normal(µ= 0,&2 = 0.9) 9 6
Normal(µ= 0.1,&2 = 1) Normal(µ= 0,&2 = 1) 48 6
3-mode(µ= 0,&2 = 1) 3-mode(µ= 0,&2 = 1.02) 81 44
5-mode(µ= 0,&2 = 1) 5-mode(µ= 0,&2 = 1.02) 94 99
7-mode(µ= 0,&2 = 1) 7-mode(µ= 0,&2 = 1.01) 59 100

Table 2: Results of hypothesis test experiments for the 1-D test. A sample of size 1000
was drawn from the pair of distributions in each row. Under the null hypothesis, the distri-
butions are the same. The power of the tests (shown in columns 3 and 4) are the rejection
percentages for the null hypothesis out of 1000 runs at the '= 0.05 significance level. The
higher power test is shown in bold in each case.

as long as the number of hyperspacings which contain sharp transitions is small
relative to the total number of hyperspacings.

In summary, we shall assume that hyperspacings are “close enough” to NUPs to be useful,
and we shall let them adopt the roles of m-spacings in our higher dimensional estimators.

3.2 Entropy experiments and mutual information

Using overlapping hyperspacings as surrogates for overlapping m-spacings, we formed an
entropy estimator for distributions in arbitrary dimension that is essentially equivalent to
Ĥoverlap (6). We conducted experiments to evaluate our entropy estimator in one, two,
and three dimensions. We compared against Silverman’s “rule-of-thumb” estimator [12],
which is a fixed kernel estimator. Results in Table 1 show that our estimator outperforms
the Silverman estimator for larger samples, and is comparable for small samples. Setting
m= log(N), our 2-D estimator is O(N logN), since 2-D Voronoi regions can be computed
in O(N logN) [10]. We do not yet have complexity results for higher dimensions.

It is well-known that the mutual information between two random variables can be written
as h(X)+ h(Y )− h(X ,Y ), where h(·, ·) is the joint differential entropy [4]. With an esti-
mator of both one and two-dimensional entropies, it is easy to estimate mutual information
simply by computing each of the constituent entropies. We now offer another application
of our KL-divergence estimators.

4 A distribution-free test of distributional equivalence

The KL-divergence estimator described in Section 2.3 can be used to form a simple hy-
pothesis test of distributional equivalence, i.e. whether two samples were drawn from the
same distribution. The idea is to estimate the KL-divergence4 between two samples and
see whether it exceeds a particular threshold. Since KL-divergence is minimized when two
distributions are equivalent, this is a natural test. Our one-dimensional hypothesis test, like
our KL-divergence estimator, is distribution-free in the sense that an arbitrary monotonic
transformation of the coordinate axes will not affect its behavior. We stress that this is true
for any sample size. As with the Kolmogorv-Smirnov (KS) test [7], the critical values for
this test do not depend upon the distributions being tested, since the distribution over the
test statistic is equivalent under the null hypothesis, irrespective of the distribution. This

4We found that the symmetric divergence, D(P||Q)+D(Q||P) produced a more powerful test than
the simple KL-divergence.



is true because the test statistic is only dependent upon the ordering of points in the two
samples, and this does not depend on the densities themselves, but only on their ratio.

To obtain critical values (at the ' = 0.05 significance level) for our hypothesis test, we
computed the test statistic over 50,000 trials, using 1000 samples from each of two uniform
distributions on each run. We compared the power of our test and the KS test by evaluating
the rate of rejection of the null hypothesis under sampling from the pairs of distributions
shown in Table 2. The power of our test was higher in the majority of cases we examined.

In addition, our test generalizes elegantly via hyperspacings to higher dimensions, although
it is no longer strictly distribution-free. Our initial tests compared to 2-D extensions of the
KS test [5] suggest that our test is more powerful for some distribution pairs and less for
others. An example for which it outperforms [5] is in detecting the difference between a
uniform distribution rotated at 45 vs. 55 degrees. Here, the power of our test was 52 vs. 18
for [5]. We note that our algorithm is O(N logN) in 2-D vs. a complexity of O(N2) for [5].
Further investigations of the multidimensional tests are left for future work.

4.1 Summary

The central idea in this paper is that spacings have certain distribution-free properties, and
that these properties can be extended to higher dimensions, in an approximate fashion, via
hyperspacings. We have presented new competitive algorithms for KL-divergence estima-
tion and hypothesis testing in one dimension, and new multidimensional algorithms for
these quantities, as well as entropy and mutual information, using hyperspacings.
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