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Abstract

An efficient single-query motion planning approach for non-stationary robots is presented. The ap-
proach exploits workspace information to identify highly constrained placements of the robot along a
potential solution path. Due to the constraints imposed by the environment at these placements, we view
them as an assembly, consisting of the robot and the environment. The original motion planning prob-
lem is then decomposed into a series of disassembly tasks. Each assembly is disassembled by moving
the robot from the narrow passage into adjacent open regions. This disassembly can be performed ef-
ficiently by exploiting the geometric constraints imposed by the environment. To obtain a solution to
the original motion planning problem, the resulting disassembly paths for two consecutive disassemblies
along the solution path can be connected efficiently, as they meet in an open, unconstrained region of the
workspace. Experimental evidence shows that the proposed approach results in a significant reduction
in computational cost for motion planning in high-dimensional configuration spaces.

1 Introduction

Global motion planning has been shown to be PSPACE-complete in the general case [9, 17]. The fastest
known complete motion planning algorithm requires computation time exponential in the number of degrees
of freedom of the robot [5]. Intuitively, the exponential computational complexity of motion planning in
configuration space can be explained by the need to compute a description of configuration space obstacles
in a space of exponential size, followed by a search in this exponential space for a collision-free path.

The most efficient motion planners for high-dimensional spaces found in the literature sample configu-
ration space to construct a so-called roadmap [11]. Rather than computing a detailed, explicit description of
the boundary between free space and obstacles [13], the roadmap determined by these planners captures an
approximation of that boundary. The space to be represented and searched, however, remains exponential
in size.

The motion planning approach presented in this paper is based on the observation that geometric con-
straints in the workspace can be exploited to restrict the search in configuration space to a small, relevant
subset. This observation is particularly apparent in disassembly tasks: in an assembly, geometric constraints
restrict the motion of individual parts [20]. These constraints can be exploited to efficiently determine the
allowed directions of motion of each part, and thus a disassembly motion.
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We propose to view the general motion planning problem as a series of disassembly tasks. Along a
given path, we regard those configurations that are highly constrained by their environment as assemblies. In
the sampling-based motion planning literature, these configurations are said to be inside narrow passages.
The disassembly can take advantage of the geometric constraints imposed by the environment to direct
search in configuration space. If a motion planning problem requires a solution that traverses multiple
narrow passages (or contains multiple assemblies), the overall problem is decomposed into a sequence of
disassembly problems. The solutions to these disassembly problems can be connected efficiently, as motion
planning between the assemblies is much easier. The proposed approach effectively decomposes the overall
motion planning problem into a number of difficult and easy sub-problems.

Figure 1: Decomposition of a path planning problems into two disassembly problems: a) initial and final
configurations of a robot; b) “assembled” state; c) constraints imposed by the environment are used to
solve two disassembly problems; d) the motion planning problem is solved by connecting the disassembly
sequence with the initial and final configurations.

The decomposition of the overall motion planning problem into disassembly tasks is illustrated in Fig-
ure 1. Figure 1 a) shows the original motion planning problem with the initial and the final configuration
of an L-shaped robot. Motion planning inside the left or right part of the environment is trivial, only the
traversal of the narrow passage is difficult. In Figure 1 b) the assembly is shown: a placement of the robot
inside the narrow passage. Using the geometric constrains imposed by the environment, the narrow passage
can be solved by iteratively moving the robot to either side. Once the robot has cleared the narrow passage,
the remaining motion planning problem is trivial, as shown in Figures 1 c) and d).

We present a single-query, sampling-based motion planning approach for non-stationary robots based
on these ideas and demonstrate that it outperforms other sampling-based motion planners by a large margin.

2 Related Work

The original probabilistic roadmap (PRM) approach [11] uniformly samples the entire configuration space
to build a representation of free space. Using the resulting representation, any motion planning query can
be answered efficiently. Such approaches are referred to as multi-query approaches. Many motion planners
presented in the literature aim to improve the performance of motion planning based on uniform sampling
by limiting the amount of configuration space exploration required to solve a motion planning problem.
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Some approaches improve performance by replacing the uniform sampling scheme with sampling in-
formed by workspace information. By incrementally modifying a uniformly placed sample so that the robot
is close to the medial axis of workspace, the quality of generated samples can be improved [8]. Information
obtained in the workspace can also be exploited to locally adapt the sampling density [19, 21]. The result-
ing methods sample less densely in configuration space regions that correspond to open spaces in the work
space, resulting in a reduced cost of the overall exploration. Such an adaptation of sampling density can also
be accomplished directly in the configuration space by exploiting models and active learning methods from
machine learning [3].

Single-query planners answer a single motion planning query [1, 10, 12, 14, 16, 18]. Exploration ends
when a solution is found. The different methods vary in the heuristics they use to guide the exploration.
These heuristics are designed to minimize exploration based on insights about the planning problem. For
example, a bias towards areas of configuration space in the proximity of initial and final configuration of the
planning problem has been proposed [1]. In another approach, the Voronoi bias directs exploration towards
unexplored regions [14]. The use of local information about the environment obtained from collision checks
has also been proposed to efficiently solve industrial disassembly problems [6]. Another single-query motion
planning heuristic is based on an information theoretic framework [4].

Decomposition-based motion planning methods [2, 7] decompose the motion planning problem into a
low-dimensional and a high-dimensional subproblem. The low-dimensional motion planning problem can
be solved efficiently in the workspace. The solution to this problem captures connectivity information in the
workspace relevant to the high-dimensional planning problem. By exploiting this information, a solution to
the overall motion planning problem can be computed efficiently. Decomposition-based motion planning
methods inherently are single-query methods, because they exploit the workspace connectivity information
related to a particular planning problem. The motion planning method presented in this paper falls into the
category of decomposition-based motion planners.

3 Motion Planning as Disassembly

The goal of the proposed motion planning method is to exploit information obtained in the workspace to
reduce the amount of configuration space exploration required to solve a given motion planning problem.
We now give an overview of the three main steps of the algorithm.

Determining Workspace Connectivity The proposed motion planning approach can be classified as
decomposition-based [2]. As such, it decomposes the planning problem into two subproblems. The first
subproblem is solved by determining workspace connectivity information. The result is a continuous tunnel
of obstacle-free workspace, connecting the initial and final positions of the robot. This tunnel will be used
to limit configuration space exploration to only those configurations for which the robot is partially inside
the tunnel.

Finding Assemblies We regard the width of the tunnel as an indication of difficulty of the motion planning
problem. Consequently, a collision-free placement of the robot inside a narrow area can be viewed as an
assembly. Sampling is used to find a collision-free placement of the robot in such a narrow area. We will
argue that the resulting highly constrained placement of the robot effectively represents a seed point in
configuration space, from which a solution to the disassembly problem can be easily found. The assemblies
decompose the original motion planning problem into a series of disassembly problems.
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Performing Disassembly Once assembled states for the robot have been determined, the resulting dis-
assembly problems can be solved by exploiting the geometric constraints imposed by the environment on
the robot’s motion. Given the assembled state of the robot, the constraints generally will only allow small
incremental motions. Therefore, sampling can be focused in the proximity of the current configuration,
reducing the amount of configuration space to be explored. In addition, the workspace tunnel provides a
general direction for the workspace motion of the robot, resulting in an additional reduction of configuration
space exploration.

3.1 Determining Workspace Connectivity

A robot sweeps out a workspace volume as it moves from its initial to its final configuration. If this
workspace volume were known, the exploration of configuration space could be restricted to the subset
of configurations for which the robot is contained within this volume. Decomposition-based approaches to
motion planning compute an approximation of this workspace volume, called a workspace tunnel [2]. The
exploration of configuration space can then be restricted to those configurations for which the robot par-
tially overlaps with the tunnel. The set of qualifying configurations represents a small subset of the overall
configuration space and consequently exploration can be performed much more efficiently.

The workspace tunnel is computed using a sphere expansion algorithm. The details of this algorithm
are given elsewhere [2]; here, we outline the general idea. The purpose of the sphere expansion algorithm
is to determine a contiguous workspace volume through which the robot might be able to move from its
initial position to its final position. To compute this volume we use a wavefront of free space spheres with
maximum radius. Initially, the largest sphere of free space centered at a reference point of the robot in its
initial position is computed. The radius of this sphere is determined by the distance of the reference point
to the closest obstacle. The surface of the sphere is sampled and maximal spheres of free space centered
at the sample points are determined. If the size of a sphere does not allow the robot to move through it, it
is discarded. The remaining spheres are kept in a priority queue, with the highest priority assigned to the
sphere closest to the final position of the robot. This process is referred to as sphere expansion. Expansion
of the highest-priority sphere is performed until a sphere contains the reference point of the robot in its final
position. Figure 2 shows the resulting free space tunnel.

During sphere expansion, the parent/child relationship of spheres is maintained. The resulting data
structure is a tree of spheres. The root sphere contains the reference point of the robot in its initial position.
The spheres of the tunnel represent a path from the root of the tree to the leave containing the reference point
in the final position of the robot. The line segments connecting the centers of the spheres along the tunnel
are referred to as the spine of the tunnel.

Figure 2: Workspace tunnel computed using sphere expansion, connecting the initial position of the robot
in the bottom, left part of the environment and the final position in the right part.
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The sphere expansion method cannot guarantee that the computed tunnel contains a valid solution to
the planning problem. By exploring multiple tunnels in workspace, however, the probabilistic completeness
of other sampling-based motion planners can be achieved for the planner proposed here. For brevity, we
restrict our discussion to a single tunnel. The extension of the described method to multiple tunnels is
straightforward. It performs a complete exploration of workspace, as described in [21], followed by the
repeated selection of tunnels and an application of the method described here, until a solution has been
found or no unexplored tunnel exists.

3.2 Finding Assemblies

Highly constrained, collision-free placements of the robot are referred to as an assembly. They represent a
placement of the robot inside a narrow passage in the work space. To find assemblies, narrow sections of
the computed tunnel are considered. A section is narrow, if the radius of spheres in this section is below a
threshold. This threshold is a parameter of the proposed approach. It can easily be estimated based on the
geometry of the robot.

To improve the understanding of the workspace around narrow regions, local sphere expansion is per-
formed, starting from the center of spheres in narrow regions of the tunnel. This expansion explores the free
workspace reachable by the robot when affixed to the center of the spheres. To divide the motion planning
problem into disassembly problems, the most difficult regions along the tunnel have to be identified. This
can be accomplished using a watershed algorithm applied to the union of spheres contained in the tunnel
and the additional spheres obtained in the additional exploration [19]. The result will be a set of spheres
representing each narrow passage, labeled by the narrow passage they belong to. Spheres between two ad-
jacent narrow passages are also labeled distinctly, likewise the spheres connecting the initial and the final
position to the first and last narrow passage along the tunnel.

An example of this such a labeling is given in Figure 3. Figure 3 a) shows the initial and final position
of the robot and the environment with a narrow passage. Figure 3 b) illustrates the tunnel computed by
sphere expansion, as described in Section 3.1. The spheres obtained by the local expansion and the labeling
determined by the watershed algorithm are shown in Figure 3 c).

An assembly is found by sampling robot configurations in the proximity of the narrow passage. Uniform
sampling is adequate in this situation, because the entire region has uniform complexity. To generate a
sample inside the narrow passage, a value for the rotational degrees of freedom of the robot is generated
uniformly at random. In addition, a random point on the robot and a random point inside the volume of the
narrow passage are chosen. The translational component of the robot’s configuration is determined such that
these two points coincide.

Since an assembly should represent a highly constrained, collision-free placement of the robot, we
require that the robot reaches across a narrow passage. For any collision-free configuration, we require that
two so-called handle points (see Figure 4) are contained in spheres with different labels outside the narrow
region. An example of such a placement can be seen in Figure 3 d). Collision-free samples that do not fulfill
this criterion are rejected. Sampling ends, if a small number of assemblies have been determined. If no
assembly can be found, a new tunnel has to be computed.

3.3 Performing Disassembly

So far only a very small fraction of the configuration space has been explored by uniform sampling. These
regions correspond to narrow passages along a workspace tunnel connecting the initial and the final goal
configuration. This computational expense was necessary, however, to solve the most difficult parts of
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Figure 3: Decomposition of the motion planning problem based on assemblies: a) the initial and final
position of a robot; b) workspace tunnel connecting the initial and final positions; c) spheres are added to
improve workspace understanding around narrow passages, spheres are labeled as narrow passage and open
region; d) the assembled state of the robot decomposes the motion planning into two subproblems: moving
from the assembled state to the initial and final configurations.

Figure 4: Robots used in the experiment. Left: six degree-of-freedom, L-shaped rigid robot, composed of
two overlapping blocks (0.85m × 0.2m × 0.2m); right: free-flying Mitsubishi PA-10 with 13 degrees of
freedom, total length 1.317 m. Black dots indicate handle points.
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the motion planning problem. The resulting assemblies give us much information about solutions for the
remaining disassembly problems. We will use the configuration of the assembly to bias our sampling scheme
for disassembly. The sampling scheme is motivated by two insights:

1. the translational component of the disassembly motion should be biased to move the robot into an
open regions and out of the narrow passage, and

2. due to the constraints imposed by the environment, only small incremental motions should be at-
tempted.

Pseudo code for the proposed sampling procedure for disassembly is shown in Figure 5. Given a set A of
assembled placements of the robot inside the narrow passage, this procedure builds a roadmap for each of
the a ∈ A. Samples are obtained by small perturbations of milestones already present in the roadmap. This
effectively uses the information represented by the initial assembly and subsequently the entire roadmap to
reduce configuration space exploration by biasing it towards regions likely to contain collision-free place-
ments of the robot. The translational component of the configuration is perturbed with a bias towards the
open regions of workspace represented by the tunnel. This bias exploits workspace information to further re-
duce configuration space exploration, since promising directions for translational motion are sampled more
densely.

DISASSEMBLE (assemblies A, tunnel T )
initialize roadmap R to contain assemblies A
while robot has not left narrow passage
randomly select milestonem from R
randomly select direction d towards open region in T
perturb translation ofm biased by d to obtainm′

perturb rotational components ofm′ to obtainm′′

ifm′′ is collision free
if r ∈ R exists so thatm′′ can be connected to r
insertm′′ and edge (r, m′′) into R

Figure 5: Pseudo code for disassembly; A represents a list of assembled states, T refers to the workspace
tunnel, R designates a roadmap;m, m′, m′′, r are configurations.

By selecting configurations for perturbation uniformly at random the roadmap R, rather than in a biased
fashion as in other approaches [10, 14], we effectively achieve a bias towards promising regions of config-
uration space. This can be seen as follows. Since the configuration space region under consideration rep-
resents a narrow passage, collision-free samples will be rare. Once a collision-free sample has been found,
its neighborhood is likely to contain additional free placements of the robot. This probability increases, as
configurations move away from the assembled state, effectively introducing a bias from constrained regions
towards less constrained regions. This bias is desired in the case of a disassembly task.

An assembly is considered to be disassembled, once the robot has been removed from the narrow section
of the tunnel. Consecutive disassembled configurations along the tunnel are connected using the traditional
PRM framework with uniform sampling [11]. Only samples in the proximity of the relevant section of the
workspace are retained. Consequently, the PRM framework is only applied to a small and open region of
the configuration space.

By concatenating disassembly sequences obtained by the proposed sampling scheme and intermediate
paths obtained using a localized PRM planner, a solution to the initial motion planning problem can be
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determined. A localized PRM planner uses the sampling scheme described in Section 3.2, instead of a
uniform sampling scheme. This restricts the generation of samples to the region of interest by ensuring that
the robot intersects with the relevant workspace region.

4 Experimental Results

We evaluate the performance of the proposed planning method by comparison with four other sampling-
based approaches: a PRM planner with uniform sampling [11], the RRT method [14], a LazyPRM plan-
ner [1], and a single-query version of the aMAPRM method based on medial axis sampling [21]. The PRM
planner with uniform sampling represents a multi-query method and thus the comparison to the proposed
multi-query method has to be seen as a reference point. As we will see, however, two of the single-query
methods are unable to solve some of the experimental scenarios used here.

The experiments are performed with a free-flying, L-shaped rigid-body robot (six degrees of freedom)
and a free-flying Mitsubishi PA-10 manipulator arm (thirteen degrees of freedom), both shown in Figure 4.
The three experimental environments are shown in Figure 6. An example motion is shown in Figure 7. The
implementation of all motion planners is based on the Motion Strategy Library (MSL) [15]. The implemen-
tations of the PRM and RRT planners provided by the MSL library are used in the experiments reported
here. The experimental results are summarized in Table 1. The proposed algorithm, labeled DPRM for
disassembly-based PRM planner, outperforms all other motion planners by several orders of magnitude.
Other authors have also observed significantly reduced planning times for a diffusion-based motion planner
applied to part disassembly problems [6].

Table 1 shows that the roadmap constructed by the disassembly-based PRM planner contains very few
milestones. This implies that the assemblies determined during motion planning effectively capture the
difficulty of the overall motion planning problem. Once the assembly has been generated (assemblies are
milestones in the roadmap), very few additional samples suffice to solve the remainder of the motion plan-
ning problem. Consequently, the efficiency of the proposed planner results from the fact that exploration of
configuration space is focused on finding those assemblies. The information represented by assemblies can
be used to solve the remainder of the motion planning problem with little exploration.

5 Conclusion

We propose to view single-query motion planning problems for non-stationary robots as a sequence of
disassembly tasks. A given motion planning problem is decomposed into a series of sub-problems. This
decomposition is determined using workspace information. Difficult regions, corresponding to narrow pas-
sages in the workspace, are solved efficiently by regarding them as a disassembly task. To solve such a
disassembly task, an assembled (highly constrained) placement of the robot is determined by uniform sam-
pling of a small region of configuration space. The constraints imposed by the environment on the resulting
assembly are used to guide the sampling-based process of disassembly. Using a PRM planner with uniform
sampling, the path segments obtained by the disassembly are connected to yield a solution to the original
motion planning problem.

In the experiments presented, the proposed motion planning approach outperforms other sampling-based
methods by several orders of magnitude. The efficiency of the proposed motion planner results from the ef-
fective use of workspace information to reduce the amount of configuration space that has to be explored
during the planning process. Based on the connectivity information about the workspace and the information
represented by geometric constraints imposed on assemblies by the environment, a very small fraction of
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Figure 6: All experimental environments are bounded by a box (12m× 4.5m× 4.5m ). In the first environ-
ment (board, left) to two parts of the free space are connected by a narrow passage (0.1m× 0.5m× 0.5m).
The second environment (4 boards, middle) has five free space regions connected by narrow passages of the
same size. The third environment (S-tunnel, right) contains three free space regions connected by narrow
passages as before; an S-shaped obstacle is placed in one of the free space regions.
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Robot Workspace Computation Path Planning Total
Environment Ns Ts(s) Planner Nv Ne Nc Tc(s) T (s)

N/A N/A PRM 4201 8400 2859848 586.15 586.15
board N/A N/A RRT no path found after 6 hours

N/A N/A LazyPRM no path found after 6 hours
89 0.53 DPRM 56 107 15105 2.87 3.40

N/A N/A PRM no path found after 6 hours
L-shaped 4 boards N/A N/A RRT no path found after 6 hours
robot N/A N/A LazyPRM no path found after 6 hours

310 2.34 DPRM 271 541 59508 35.94 38.28

N/A N/A PRM no path found after 6 hours
S-tunnel N/A N/A RRT no path found after 6 hours

N/A N/A LazyPRM no path found after 6 hours
1011 4.81 DPRM 103 203 15989 5.37 10.18
N/A N/A PRM 18259 36516 29849130 6962.02 6962.02
N/A N/A RRT 56243 56242 3085118 14473.80 14473.80

board N/A N/A LazyPRM no path found after 6 hours
377 5.75 aMAPRM 333 662 321129 211.85 217.60
86 0.52 DPRM 21 39 2558 2.14 2.66

N/A N/A PRM 18584 37164 4193077 8653.04 8653.04
N/A N/A RRT no path found after 6 hours

PA-10 4 boards N/A N/A LazyPRM no path found after 6 hours
448 7.59 aMAPRM 984 1934 2128272 1615.79 1623.38
435 2.81 DPRM 112 222 11427 15.54 18.35

N/A N/A PRM 27278 54554 5198260 19827.20 19827.20
N/A N/A RRT no path found after 6 hours

S-tunnel N/A N/A LazyPRM no path found after 6 hours
598 10.27 aMAPRM 1300 2560 1667714 1625.73 1636.00
1078 5.38 DPRM 219 433 25600 28.30 33.68

TABLE 1: Comparison of a PRM planner with uniform sampling, an RRT planner, a LazyPRM planner, a single-query aMAPRM
planner, and a disassembly-based PRM planner (DPRM). Ns is the number of spheres generated during sphere expansion, Ts

represents the time to compute the workspace connectivity information; Nv denotes the number of vertices in the roadmap, Ne

refers to the number of edges in the roadmap, Nc specifies the total number of collision checks, and Tc gives the duration of
roadmap construction. All times are averaged over ten runs are are given in seconds. The experiments were performed on a
PentiumIV 3.2GHz PC with 1GB RAM and a 64MB DDR Radeon 300 graphics card.
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Figure 7: Motion of a PA-10 manipulator passing through a narrow passage. The middle image represents
an assembly and the left and right images show intermediate configurations during disassembly into the
open regions on either side of the narrow passage.

the overall configuration space is identified as relevant to the motion planning problem. The reduction of ex-
ploration to a small fraction of the overall configuration space, makes the proposed method computationally
very efficient.
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