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Abstract

In this paper, we propose an information theoretic framework within which to study the redundancy
present in packet header traces. Qacket level and !ow level models are developed that capture both tem-
poral and spatial correlation present in packet headers, which can be exploited for packet trace compres-
sion. Information theoretic bounds are established for lossless packet header compression. Dependencies
between the potential compression ratio and network parameters, such as the average route length and
average !ow size are derived. Ualuable insights are obtained to guide the design of ef"cient packet trace
compression algorithms.

1 Introduction

The collection of network traces is essential for the engineering and management of todayVs networks,
and for performing research leading to better traf"c models, and network architectures and protocols. The
collection of such traces poses tremendous challenges due to the high speeds of current network links. For
example, the collection of 60 byte packet headers on an O3-PY link can easily generate 600Gbytes of data
in an hour, and even trace collection at a gateway of a university or a company can produce over 30Gbytes
of data in an hour. 3learly, the size of such traces precludes their widespread collection, either over long
periods of time at a single monitoring site , or concurrently at a large set of distributed monitors without the
use of some form of compression.

There exists considerable redundancy in a packet trace collected at a single monitor. Qackets from the
same !ow share the same !ow level information, such as source IQ, destination IQ, port, protocol, etc. In a
packet header trace, this shared !ow level information is recorded multiple times for each packet belonging
to the !ow. In addition, !ows from the same subnet use only a small range of IQ addresses. This applies also
to port number as most of the applications tend to use only one of a small number of port numbers, such as
80 for http, 21 for ftp, etc. This suggests that a compression algorithm that removes this redundancy may be
able to produce substantially smaller traces.

Observations made from measurements also demonstrate considerable redundancy within a network
due to spatial correlation. ! single !ow can pass through several measurement monitors, and the packets
belonging to these !ows will contain almost exactly the same packet header information, such as source IQ
address, destination IQ address, packet size, etc. The time stamps for these packets will differ only by small
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amounts. This suggests the potential for distributed compression to take advantage of this spatial correlation,
resulting in further reduction in trace sizes.

The focus of this paper is to identify and quantify the potential bene"ts of compression described above.
>e focus on two scenarios. The "rst concerns trace collection at a single monitor whereas the second
concerns the simultaneous collection of traces at a multiple monitors distributed throughout a network. >e
propose two traf"c models with which to examine these scenarios, a packet-level and a flow-level model.
Bach of these models the !ow of traf"c through a network (or a single router) as stochastic processes. >e
then compute the entropy rates for these stochastic processes, i.e., the information associated with these
processes per unit time. Given a trace collected over a "nite interval of time, information theory tells us that
the raw trace can be compressed to a "le of size corresponding to the product of the entropy rate and trace
duration. Hence, using these models, we identify the maximum bene"t that can be achieved through lossless
compression in both the single monitor and distributed monitor settings. Dltimately, we combine the two
models into a hybrid model before applying them to "nite duration traces.

The above models focus on the information contained in the N-tuple normally associated with an IQ !ow,
namely that containing the source and destination addresses, source and destination ports, and protocol "eld.
>e also evaluate the remaining "elds of the IQ header to determine their information content. >e then apply
a combined packet-level and !ow-level model, augmented to account for the remaining IQ header "elds to
a set of one hour traces collected at the gateway of a research university to identify the potential bene"ts
of lossless compression. >e "nd it possible to compress these traces to "les that are roughly 1/8 the size
of the original traces. The evaluation of the bene"ts of the Joint compression of traces collected at multiple
sites is more dif"cult as we do not have access to traces collected at a set of monitors. Instead, we consider
several synthetic traces based on topologies obtained through the rocketfuel proJect, ^3_. In this setting, we
observe the potential of distributed loss compression to further reduce the marginally compressed traces at
the individual monitors by a factor inversely proportional to the average !ow path length.

! number of studies have focussed on the development of trace compression algorithms. `oth ^a_, and
^H3_ present !ow-based compression algorithms which produce compressed traces that are approximately
ONb of the size of the raw trace. `oth of these studies focussed on the compression of a trace collected at
a single monitor. There has been little work on the problem of the ef"cient collection of traces at multiple
monitors. One exception is the work on trajectory sampling ^c_ in which information regarding a small
subset of !ows is collected at multiple monitors within the network. This approach records complete packet
header information at only one monitor while recording only the information that changes at the remaining
monitors. 0one of these works have attempted to quantify the potential bene"ts of compression. >e will
discuss each of these in greater detail elsewhere in the paper.

The remainder of the paper is structured as follows. In Section O we present the packet level model.
The section concludes with a discussion of some of the de"ciencies of this model motivating the !ow-level
model, which is presented in Section 3. Section 3 concludes with a motivation and description of a hybrid
packetd!ow model. !s these models focus on the header "elds ordinarily associated with identifying a
!ow, Section P evaluates evaluates the remaining "elds of the IQ header and augments the previous packet-
and !ow-level models to account for them. Section N applies these models to a set of one hour traces and
synthetic networks and Section e discusses the implications of our work to the design of new compression
algorithms. Section c summarizes the paper.
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2 Packet Level Model

In this section we introduce a packet-level trace model with which we determine the gains that can be ob-
tained through the compression of traces collected at a single monitoring point, and more important, through
the distributed compression of traces collected at monitoring points scattered throughout the network, i.e.,
trace compression that accounts for the spatial correlation present in a network. `efore introducing this
model, however, we review key concepts in information theory required by our framework.

2.1 Some Concepts from Information Theory

>e begin by introducing the concepts of entropy and entropy rate and their relation to data compression ^e_.

Definition 1 Shannon entropy. Let X be a discrete random variable that takes values from χ. Let p(x) =
P (X = x), x ∈ χ. The entropy of X is defined by

H(X) = −
∑

x∈χ

p(x) log2 p(x)

0ow consider a stochastic processX = {Xn}∞n=1 where Xn is discrete valued.

Definition 2 Entropy Rate. The entropy rate of a discrete valued stochastic process X is defined by

H(X) = lim
n→∞

H(X1, X2, . . . , Xn)
n

when the limit exists.

The entropy rate represents the information rate conveyed by the stochastic process X . It provides an
achievable lower bound on the number of bits per sample required for lossless compression of the process.
>ith lossless compression, every single bit of data that was originally in the packet header trace remains
after the "le is uncompressed. !ll of the information is completely restored.

Definition 3 Joint Entropy Rate. The joint entropy rate of a collection of many stochastic processes
{X(i)

n }∞n=1, i = 1, 2, ..., N is defined by

H(X(1), X(2), . . . , X(N)) = lim
n→∞

H((X(1)
1 , . . . , X(1)

n ), . . . , (X(n)
1 , . . . , X(N)

n ))
n

(H)

when the limit exists.

The Joint entropy rate represents the information rate conveyed by the Joint stochastic process. It is also an
achievable lower bound on the number of bits required per sample for the Joint lossless compression of all
the processes.

7et us place this in the context of a network monitoring application. 7et Xi be the header of the i-th
packet and M the size of the header. {Xi}∞i=1 is a stochastic process representing packet headers. >e
are interested in quantifying the bene"t gained from compressing a packet header trace gathered from one
network monitor or traces collected at a set of network monitors.
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Definition 4 Marginal Compression Ratio. Given stationary stochastic process {Xi}∞i=1, the marginal
compression ratio is defined as the ratio of the entropy rate and record size,

ρm(X) =
H(X)

M

Suppose that we are collecting traces at several points within the network. >e are interested in quanti-
fying the bene"ts of performing distributed compression on these traces. >e de"ne,

Definition 5 Joint Compression Ratio. Given a collection of N jointly stationary stochastic processes
{X(n)

i }∞i=1, i = 1, 2, . . . , N , the joint compression ratio is defined as the ratio of the joint entropy rate and
the sum of the entropy rates of the individual processes.

ρj(X(1), X(2), . . . , X(N)) =
H(X(1), X(2), . . . , X(N))

∑N
i=1 H(X(i))

.

In the context of network trace compression, the Joint compression ratio quanti"es the potential bene"ts
of performing distributed compression of the traces collected at several point in the network beyond simply
compressing each trace independent of each other. !ccording to Slepian and >olf ^N_, if two discrete alpha-
bet random variables X and Y are Jointly distributed according to some arbitrary probability distribution
p(x, y), thenX can be compressed without having access to Y without losing any compression performance
with respect to the case where X is compressed with access to Y . More formally, without having access to
Y , X can be compressed usingH(X|Y ) bits where

H(X|Y ) =
∑

y

PY (y)
∑

x

PX(x|y) log2 PX(x|y)

The quantity,H(X|Y ) is often interpreted as the uncertainty remaining in the random variableX given
the observation of Y . This is the same compression performance that would be achieved if X were com-
pressed while having access to Y . Hence, distributed compression can achieve the same bene"ts as Joint
compression. The Joint compression ratio re!ects the bene"ts of distributed compression of the traces.

Definition 6 Differential Entropy. Let X be a continuous random variable with a density f(X). The
differential entropy of X is defined by

h(X) = −
∫

S
f(x) log f(x)dx

where S is the support set of the random variable.

In reality, every variable is measured with "nite resolution. >ith a resolution of ∆ = 2−n, i.e., an n-
bit quantization, a continuous random variable X is represented by a discrete random variable X∆. The
following theorem relates the discrete entropy ofX∆ to the differential entropy ofX .

Theorem 1 If the density of f(X) of continuous random variable X is Riemann integrable, the entropy of
an n-bit quantization of X is approximately h(X) + n.
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If X follows an exponential distribution with rate λ, its differential entropy

h(X) = −
∫ ∞

0
λe−λx log2(λe−λx)dx = log2

e

λ

>ith an n-bit quantization, the discrete entropy of X is H(X∆) = log2
e
λ + n. In the following, whenever

there is no confusion, we use the notationH(X) for a continuous random variableX to represent its discrete
entropy H(X∆).

2.2 Packet-level Model

>e model a network as a directed graph G = (V, E), where v ∈ V represents a router in the network and
edge (v1, v2) ∈ E corresponds to a link between routers v1 and v2. 7et F denote a set of packet !ows that
traverse the network. In this section, we make the following assumption on network !ows {f ∈ F}:

• Qackets from !ow f arrive according to a Qoisson process with rate λf . The packet inter-arrival time
is an exponential random variable δf .

• The route of a !ow f is "xed. It is represented by a tuple f = (v(f)
1 , v(f)

2 , . . . , v(f)
lf

), where v(f)
j is the

j-th router traversed by f and lf is the path length. For each node v, let C(v) ⊆ F denote the set of
!ows that pass through it.

• There is no packet loss in the network and packets incur constant delay on each link: let Di,j denote
the delay that the j-th packet incurs while traversing the i-th link, i ∈ E, we assume that Di,j = Di,
∀j.

These assumptions will be relaxed in the following sections and their implications will be studied.

>e model packet arrivals by a continuous time process. However, packet monitoring tools use a high
resolution clock to provide timestamps. For example, packets captured by the Bndace D!G card ^H_ have
a time stamp of 64 bits. The most signi"cant 32 bits represent the number of seconds since midnight,
=anuary Hst, 1970 and the least signi"cant 32 bits form a binary fraction, representing the factional part of
the timestamp in a speci"ed second. Henceforth, we assume all continuous time variables are quantized
with 32 bits and the total length of a quantized raw timestamp is 64 bits.

The behavior of the network is described by the stochastic process {φj = (δj , θj)} where δj is the time
between the arrivals of the j − 1th and the jth packets to the network, and θj is the !ow identi"er (ID) of
the j-th packet. Here {δj} is a sequence of iid exponential random variables with parameter λ =

∑
f∈F λf

quantized using n bits and {θj} is an iid sequence of rvVs with distribution P (θj = f) = λf/
∑

g∈F λg.

For now, we ignore all information associated with each packet header except for the !ow identi"er,
which covers "ve "elds within the T3QdDDQdIQ packet header: the source IQ address, destination IQ address,
source port, destination port, and protocol. >e will observe later (Section P) that the rest of the header
contains little additional information beyond the !ow ID and timestamp associated with the packet. Hence
the additional header information has little effect on the compression ratio.

0ote that the above stochastic process, along with the route information associated with each of the
!ows provides suf"cient information to simulate the network. Suppose that we wish to record a sample path
in a compressed format. From Section O.H we know that we need a number of bits per packet equal toH(φ)
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where

H(φ) = h(δ) + 32 + H(θ) (O)

= log
e

λ
+ 32 −

∑

f∈F

λf

λ
log

λf

λ
(3)

=
∑

f∈F

λf

λ
(log

e

λf
+ 32) (P)

=
∑

f∈F

λf

λ
H(δf ), (N)

where δf is the packet inter-arrival time for a !ow f . From the "rst term in (3), per packet information de-
creases with the aggregate packet rate. This is because a higher packet rate means shorter packet-interarrival
time, and thus the shorter the bit sequence to represent them. The last term in (3) corresponds to the balance
between the rates of all !ows. The more balanced the !ow rates, the longer the bit sequence needed to
represent the !ow ID. In the most balanced case, λf = c,∀f ∈ F , then we needH(θ) = log2

λ
c = log2 |F|

bits for the !ow ID. If there are only several, say m << |F|, high rate !ows dominate in packet rate, we
only need approximately log2 |m| < log2 |F| bits for the !ow ID. Bquation (N) suggests that per-packet
information in an aggregate packet stream equals the average of the per-packet timing information over all
component !ows. The number of bits per unit time needed for compression is then λH(φ). 0ote that this is
for the case of constant link delays. If link delays are random and independent of each other, then it becomes
necessary to add an information term corresponding to the entropy of the quantized version of the delays.

In practice, we do not have access to {φj}. Instead, we can instrument the routers to gather packet
traces. 0ote that each link can be modelled as an MdDd∞ system. Since packet arrivals to the network are
described by a Qoisson process, and network route and delay are "xed, packet arrivals to every router are also
described by Qoisson processes. 7et {φ(v) = (δ(v)

j , θ(v)
j )} denote the inter arrival times and !ow identi"ers

for the stream of packets entering router v. Here {δ(v)
j } is described by an n-bit quantized exponential

distribution with rate λ(v) =
∑

f∈C(v) λf , and P (θ(v) = f) = λf/λ(v) for f ∈ C(v) and zero otherwise.
Similar to the network scenario, in order to describe a packet trace collected at node v we need a number of
bits per packet equal toH(φ(v)) where

H(φ(v)) = h(δ(v)) + 32 + H(θ(v))

= log
e

λ(v)
+ 32 −

∑

f∈C(v)

λf

λ(v)
log

λf

λ(v)

The rate at which information arrives at node v per unit time is then λ(v)H(φ(v)). 0ote that this is true
for the case of constant link delays. In the case that delays on the different links are mutually independent
iid sequences of random variables, it is necessary to introduce a new sequence of random variables at each
monitor to represent the out of order arrival characteristics of the packets. >e will not pursue this in this
paper.

In the absence of compression, each packet requires 168 bits, HGP bits to encode the !ow identi"er and
64 bits for the timestamp. Hence node v generates 168λ(v) bits of uncompressed trace per unit time. The
aggregate rate at which uncompressed trace at the nodes is generated per unit time is 168

∑
v∈V λ(v).
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0ow we can answer the question: what is the maximum bene"t that can be achieved through compres-
siong >e have a marginal compression ratioH

ρm(φ) =
∑

v∈V λ(v)H(φ(v))
168

∑
v∈V λ(v)

=
∑

v∈V {log e
λ(v) + 32 −

∑
f∈C(v)

λf

λ(v) log λf

λ(v) }
168

∑
v∈V λ(v)

The compression ratio ρm(φ) provides a lower bound on what can be achieved through lossless compression
of the original network lossless trace.

>e are also interested in quantifying how well marginal compression comes to achieving the entropy
rate of the network. >e have

ρj(φ) =
λH(φ)∑

v∈V λ(v)H(φ(v))
(e)

where the numerator is the lower bound on Joint compression and the denominator is the lower bound
of marginal compression of each trace separately. The compression ratio ρj shows the bene"t of Joint
compression. !ccording to (N),

λH(φ) =
∑

f∈F
λfH(δf ). (c)

Similarly,
λ(v)H(φ(v)) =

∑

f∈C(v)

λfH(δf ). (Y)

Therefore,

ρj(φ) =
∑

f∈F λfH(δf )
∑

v∈V

∑
f∈C(v) λfH(δf )

=
∑

f∈F λfH(δf )
∑

f∈F lfλfH(δf )
(a)

Bquation (a) indicates as !ow route lengths increase, the gain of Joint compression increases as well.

2.3 Limitation of Packet-Level Model

In the remainder of this section, we examine some of the assumptions underlying the packet-level model.
The packet level model assumes independence between packets. In a real network environment, this is
generally not valid. >e have collected a number of one hour traces from the outgoing gateway at a maJor
research university. In Figure H(a) and H(b), we plot the autocorrelation functions of the source address and
destination address for one of these traces used in Section N. The dotted lines correspond to the 95% con-
"dence interval. The plotted auto-correlation functions in Figure H(a) and Figure H(b) illustrate signi"cant
temporal correlation in the trace. This is true for other "elds of the packet header as well. One explanation
of this temporal correlation is that packets from the same !ow share lots of common information and they
tend to closely spaced in time.

In the packet level model, we assume packets arrive according to Qoisson processes for all the !ows.
Therefore the aggregate packet arrival process is still Qoisson and the inter-arrival times are independent.
If the packet arrival process is not Qoisson, the entropy calculated from the packet level model (O) can no
longer serve as the lower bound for packet trace compression. 7etVs illustrate this by a simple example.
Suppose there are two !ows f1 and f2 traversing one node v. >ithin the measurement time interval [0, T ],

HThis is over all of the traces collected at all of the monitors.
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(a) Source IQ !uto-correlation
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(b) Destination IQ auto-correlation

Figure H: !uto-correlation in Qacket !ddresses

f1 generates K1 packets and f2 generates K2 packets. !s illustrated in Figure O, we denote by {δ1,i}K1
i=1

and {δ2,i}K2
i=1 the packet inter-arrival times for !ow f1 and f2.

Figure O: Interleaved Qacket Stream from Two Flows

!ssume {δ1,i} and {δ2,i} are i.i.d. sequences and are independent with each other. Therefore the entropy
of packet trace of f1 and f2 at node v can be calculated by

H({δ1,i}K1
i=1, {δ2,i}K2

i=1) = K1H(δ1) + K2H(δ2). (HG)

The average per-packet information is
K1

K1 + K2
H(δ1) +

K2

K1 + K2
H(δ2).

On the other hand, the aggregated packet trace can also be described by the sequence {δ1+2,j , θ1+2,j}K1+K2
j=1 ,

where δ1+2,j is the inter-arrival time between the jth and j − 1th packet in the aggregated trace, θ1+2,j is
the !ow id of the jth packet. There is a one-one mapping between the sequence {δ1+2,j , θ1+2,j}K1+K2

j=1 and
the !ow based sequence {{δ1,i}K1

i=1, {δ2,i}K2
i=1}. Therefore,

H({δ1+2,j , θ1+2,j}K1+K2
j=1 ) = H({δ1,i}K1

i=1, {δ2,i}K2
i=1). (HH)

Qacket level model (O) will calculate the entropy H(δ1+2) and H(θ1+2) according to the marginal dis-
tribution of δ1+2 and θ1+2. For general packet arrival pattern within a !ow, it is no longer true that
{δ1+2,j , θ1+2,j}K1+K2

j=1 are independent, therefore

(K1 + K2)(H(δ1+2) + H(θ1+2)) > H({δ1+2,j , θ1+2,j}K1+K2
j=1 ), (HO)
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together with (HG) and (HH), we have

H(δ1+2) + H(θ1+2) >
K1

K1 + K2
H(δ1) +

K2

K1 + K2
H(δ2). (H3)

That is to say the per-packet information calculated by the packet-level model in (O) is larger than the real
average per-packet information. In this case, the packet level model is no longer suitable to describe the
information content in an aggregated packet trace. Instead, flow-based model, e.g. {δ1,i}K1

i=1 and {δ2,i}K2
i=1,

can be employed to characterize packet traces.

3 Flow Level Model

3.1 Network Flow Model

In this section we introduce a flow-based model that addresses the problems described at the end of the
preceding section. !s before, we represent the network as a directed graph G = (V, E). !ssume that !ows
arrive to the network according to a Qoisson process with rate Λ. 7et Θj ∈ F be the id of the j-th !ow that
arrives to the network. !s in the packet level model, the route of a !ow f ∈ F is "xed, and is represented by
a tuple f = (v(f)

1 , v(f)
2 , . . . , v(f)

lf
), where v(f)

j is the j-th router traversed by f and lf is the path length. For
each node v, letC(v) ⊆ F denote the set of !ows that pass through it. >hen !ow j comes in, it generatesKj

packets. Qackets within !ow j arrive according to some point process with independent inter-arrival times
{δj,i}

Kj

i=2, where δj,i is the inter-arrival time between the i − 1th and ith packet of !ow j. It is assumed that
the "rst packet arrives at the same time as the !ow. !s before, we assume the system uses 32 bits to quantize
both the !ow and packet inter-arrival time and the total length of a uncompressed timestamp is 64. The
behavior of packet arrivals in the network is described by the stochastic process {(∆j , Θj , Kj , {δj,i}

Kj

i=2)}.
>e are interested in determining the minimum number of bits required to represent each !ow. If we assume
{∆j}, {Θj} and {Kj} are all mutually independent i.i.d. sequences, on average we need a number of bits
per !ow equal to H(Φ) where

H(Φ) = H(Θ) + h(∆) + 32 + H(K) + E[(K − 1)(h(δ) + 32)]. (HP)

If we further assumeKj is independent of {δj,i}, we have

H(Φ) = H(Θ) + h(∆) + 32 + H(K) + (E[K] − 1)(E[h(δ)] + 32). (HN)

The per-!ow information consists of two parts: one part is timing information about the !ow arrival
and !ow ID, which is shared by all packets in the !owh the other part consists of all the packet inter-arrival
information, which grows linearly with the number of packets within the !ow if we assume packet inter-
arrivals are independent. (note: If packet inter-arrival times are not independent, this part can be further
compressed by exploiting the correlation.) The information rate per unit time is then ΛH(Φ).

In practice, traces are collected at individual nodes. 3onsider a node v in the network. Since !ows arrive
to the network according to a Qoisson process and the delay between any two nodes in the network is con-
stant, !ows arrive to node v according to a Qoisson process with rate Λ(v) = Λ×P (Θ ∈ C(v)). The behav-

ior of packet arrivals at node v can be described by the stochastic process {(∆(v)
j , Θ(v)

j , K(v)
j , {δ(v)

j,i }
K

(v)
j

i=2 }),
where {∆(v)

j } is the sequence of inter-!ow-arrival time at node v that follows exponential distribution with
rate Λ(v), {Θ(v)

j } is an i.i.d. sequence of !ow ids seen by v, {K(v)
j } is an i.i.d, sequence of integer valued
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random variables that denote the number of packets in the jth !ow passing through v and {δ(v)
j,i }

K
(v)
j

i=2 is the
inter-arrival time of packets within !ow j. >e need a number of bits per !ow equal to H(Φ(v)) where

H(Φ(v)) = H(Θ(v)) + h(∆(v)) + 32 + H(K(v)) + E[(K(v) − 1)(h(δ(v)
f ) + 32)] (He)

If we further assumeK(v) is independent of {δ(v)
f,i }, we have

H(Φ(v)) = H(Θ(v)) + h(∆(v)) + 32 + H(K(v)) + (E[K(v)] − 1)E[h(δ(v)
f ) + 32] (Hc)

The information rate per unit time is then Λ(v)H(Φ(v)) at node v. In the absence of compression, each !ow
requires on average (104 + 64)E[K(v)] + 64 bits with 104 bits to encode the !ow identi"er and 64 bits for
timestamps of both packet inter-arrivals within a !ow and !ow inter-arrival.

0ow we can answer the question: what is the maximum bene"t that can be achieved through compres-
siong From Φ(v), we have a marginal compression ratio

ρ(Φ(v)) =
H(Φ(v))

168 ∗ E[K(v)] + 64
(HY)

=
H(Θ(v)) + h(∆(v)) + 32 + H(K(v))

168 ∗ E[K(v)] + 64

+
(E[K(v)] − 1)E[h(δ(v)

f ) + 32]
168 ∗ E[K(v)] + 64

(Ha)

The compression ratio ρ(Φ(v)) provides a lower bound on what can be achieved through lossless compres-
sion of the raw network trace. From (Ha), the compression ratio at node v is a function of the average !ow
size E[K(v)] of all !ows traversing that node. Since the information in !ow ID Θ(v) and !ow arrival ∆(v)

is shared by all packets in the !ow, the larger the average !ow size E[K(v)], the smaller the per-packet
share, therefore the smaller the compression ratio. >hen E[K(v)] is large, the compression ratio is bounded

from below by
E[h(δ

(v)
f )]+32

168 , which is an indication of how compressible the packet inter-arrival time is in
average. (0ote: in this model, we assume packet inter-arrival time within a !ow is independent with its !ow
size. >hen this assumption is not true, a tighter bound can be derived to explore the correlation.)

>e are also interested in quantifying how well marginal compression comes to achieving the entropy
rate of the network. >e have

ρj(Φ) =
ΛH(Φ)∑

v∈V Λ(v)H(Φ(v))
(OG)

where the numerator is the lower bound on Joint compression and the denominator is the lower bound of
marginal compression of each trace separately. The Joint compression ratio ρj shows the bene"t of Joint
compression.

>e apply !ow-based model to an one hour trace collected at the outgoing link of a maJor research
university connecting to a commercial service provider on =uly OO, OGGP starting at Ga:3G!M local time.
There are 5, 465, 323 !ows and 57, 976, 722 packets in the trace. !s we donVt have information about the
!ow length and packets arrival process of !ows that starts or ends outside of the traces, the following results
consider only 5, 325, 879 !ows that starts and ends within an hour. These !ows corresponds to 34, 370, 698
packets. Flow-based model shows that we need an average of 212.8 bits to describe a !ow and can achieve.
a marginal compression ratio ρm = 0.1853.
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!lthough the !ow-based model captures temporal correlation present in a trace, it cannot deal with !ows
that start or end outside of the trace. In the case of our one hour traces, these long !ows account for more
than 40%, of all packets in the traces. In the next section, we introduce a hybrid !ow-packet model that
accounts for both short !ows and long !ows that cross boundary of traces.

3.2 Hybrid Flow-Packet Model

In the packet-level model, we assume persistent !ows, i.e., !ows are always active and keep generating
packets according to Qoisson process. In the !ow-based model, !ows are finite in duration and generate a
"nite number of packets according to some !ow size distribution. In reality, every !ow is "niteh at the same
time, however, any packet trace is also "nite. In a "nite packet trace, any !ow which is active throughout the
duration of the trace appears infinite. Those long !ows can account for a large portion of packets in a trace
depending on the length of the trace. It is important to incorporate those !ows in our model and characterize
their information content. In this section, we develop a hybrid model, which captures persistent !ows using
the packet-level model and captures those "nite transient !ows using the !ow-based model.

!gain, we represent the network as a directed graph G = (V, E). Qackets are generated by two types of
!ows: persistent !ows Fp and transient !ows Ft. Qackets from a persistent !ow fi ∈ Fp arrive according
to a Qoisson process with rate λfi . The aggregate packet arrival from all persistent !ows is still a Qoisson
process with rate λ =

∑
fi∈Fp

λfi . !ssociated with each packet from persistent !ows is a !ow id θ with

P (θ = fi) = λfi
λ . Similar to (O), the number of bits required to represent a packet from persistent !ows can

be calculated as
H(φ) = log

e

λ
+ 32 −

∑

fi∈Fp

P (θ = fi) log P (θ = fi) (OH)

The number of bits per unit time needed for compression is then λH(φ).

Transient !ows arrive to the network according to a Qoisson process with rate Λ and let {Θj ∈ Ft, j =
1, 2, · · · } be an i.i.d sequence of random variables that denote the !ow ids of transient !ows. ! transient
!ow j generates Kj packets, the packet inter-arrival time within !ow j is {δj,i}

Kj

i=2. Similar to (HN), the
number of bits required to represent a transient !ow can be calculated as:

H(Φ) =
∑

fj∈Ft

P (Θ = fj) log P (Θ = fj) + log
e

Λ
+ 32 + H(K) + (E[K] − 1)(E[h(δ)] + 32). (OO)

The information rate per unit time is then ΛH(Φ).

Overall, the number of bits per unit time to describe a network with both persistent and transient !ows
can be calculated as:

H(Φ) = λH(φ) + ΛH(Φ), (O3)

where H(φ) and H(Φ) can be calculated as in equation (OH) and (OO) respectively.

In the absence of compression, each packet requires 104 + 64 bits, HGP bits for the !ow identi"er and
64 bits for the timestamp and each !ow in average requires (104 + 64) ∗ E[K] + 64 bits with 104 bits to
encode the !ow identi"er and 64 bits for timestamps of both packet arrivals within a !ow and !ow arrivals.
Hence, node v generate 168λ(v) + (168E[K] + 64)Λ(v) bits per unit time. >ith marginal compression, we
have a marginal compression ratio

ρm =
λ(v)H(φ(v)) + Λ(v)H(Φ(v))

168λ(v) + (168E[K] + 64)Λ(v)
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>e are also interested in quantifying how well marginal compression comes to achieving the entropy rate of
the network. Similar to !ow-based model, we have

ρj =
ΛH(Φ) + λH(φ)∑

v∈V (Λ(v)H(Φ(v)) + λ(v)H(φ(v)))

where the numerator is the lower bound on Joint compression and the denominator is the lower bound
of marginal compression of each trace separately. The compression ratio ρj shows the bene"t of Joint
compression.

4 The IP Packet Header

So far, we only studied the information content of packet headerVs time stamp and the !ow IDΘ (or θ), which
corresponds to the N-tuple consisting of the source address, destination address, source and destination port
numbers, and the protocol "eld. There are other "elds in the IQ header. Fig 3 shows all the "elds in an IQ
header as de"ned in ^HG_.
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Figure 3: Format of IQ Header

In this section we focus on the additional information conveyed by the remaining "elds of the IQ header.
>e do not consider the contents of the T3QdDDQ header, leaving this for future work, with the exception of
the port "eld, which is needed to characterize the !ow ID. The discussion below is based on our analysis of
an one hour trace collected at the outgoing link of a maJor research university connecting to a commercial
service provider on =uly 22, 2004, starting at 09 : 30!M local time.

>e examine each of the "elds in the IQ header in turn.

• Version: The current version of IQ is Uersion P. Hence, this "eld is always set to four and conveys no
information.

• IHL: This "eld, the IQ Header 7ength, refers to the number of 3O bit words forming the header. This
is typically "ve as is the case in our one hour trace and all other traces that we have examined. Hence
it conveys no information.

• TOS: This is the Type of Service "eld, which is now known as Differentiated Services 3ode Qoint
(DS3Q). It is usually set to zero. the analysis of our trace indicates that the value of the TOS "eld is
zero more than 99.2% ofthe time. In what follows, we will assume that it conveys no information as
H(TOS) ≈ 0 for this and other traces.

• Size of Datagram(total len): This "elds refers to combined length of the header and the data in
bytes. >e can "nd practical distribution from real trace analysis and characterize the entropy with
H(l).
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• Identification (IPID): This is a He-bit number, which together with the source address uniquely
identi"es this packet. Modern versions of 7inux randomly set the IPID "eld for the "rst packet of
a !ow and then increments it for each successive packet. On the other hand, >indows, uses a global
counter that is incremented each time a packet is sent out, regardless of the !ow that it belongs to.
Hence, the contents of this "eld contains information regarding other activities at the senderh in the
case of 7inux, the value for the "rst packet of a !ow and in the case of >indows, the "rst IQID value
along with the increments between packets of a !ow. 7et If be a r.v that denotes the "rst IQID value
of a !ow f and df denotes the difference of IQID value between two consecutive packets. Hence
{If} is an i.i.d. sequence of rvVs with uniform distribution over 64i value space and {df} is and i.i.d.
sequence of rvVs where we can have practical distribution from real trace analysis. >e have

H(IPID) = H(I) +
∑

f

Kf ∗ H(df ), (OP)

whereKf is the number of packets within !ow f .

• Flag: This "eld indicates whether the datagram is fragmented or not. The analysis of our trace
indicates that this is typically set to G. Hence, it contains little information and we ignore it for now.
H(Flag) ≈ 0 for this and other traces.

• Fragment: >hen the datagram is fragmented, his "eld indicates the position within the datagram
that the fragment belongs. The analysis of our trace indicates that this value is typically set to G. it
contains little information and we ignore it for now. H(Frag) ≈ 0 for this and other traces.

• TTL: This is the Time To 7ive "eld, which indicates the remaining number of hops dlinks that the
packet may be routed over before it is removed from the network. Different Operating systems set
the initial TT7 differently. They choose values from {64, 128, 256}. Once a packet is in the network,
each router decrements the TT7 "eld by one. For a !ow, it is determined by the "rst packet and
remains unchanged afterwards. 7et Tf be a r.v that denotes the "rst TT7 value of a !ow f . Hence
{Tf} is an i.i.d. sequence of rvVs where we can "nd out practical distribution from real trace analysis.
>e denote the entropy in the TT7 "eld asH(T ).

• Protocol: This "eld indicates the type of transport packet being carried. Our trace analysis indicates
this to be primarily T3Q, DDQ, and some control protocols which accounts for more than 99.8% of the
total traf"c. This holds for all the traces we have examined. Once determined for a !ow, it remains
unchanged.

• Checksum: The header checksum corresponds to the HVs complement of the remaining "elds of the
IQ header. Qackets with an invalid checksum are discarded by all nodes in an IQ network. Hence it is
totally dependent on other "elds. Hence, let checksum denotes the "eld of checksum and contains
no information beyond what is carried by the other "elds.

• Options: This "eld indicates whether IQ options are in effect. The analysis of our trace (Section N)
indicates that it is never used. Hence in our evaluation we will assume that it carries no information.

!s described above, the only ones that convey any information are the TT7 "eld, because they re!ect the
operating system that generated the packets, the IQID "eld, because it can re!ect the activity of the end host
sending the packets, and the packet length "eld. TT7 "eld and the initial value of IQID "eld are shared by all
packets in a !ow. They only need to be recorded once per !ow. For packets from a persistent !ow, we ignore
the overhead introduced by these two "elds. On the other hand, we do have to record the increment in IQID
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start time packets transient persistent original size predicted size ρm

!ows !ows (Gb) (Gb)
OGGP-Gc-OO Ga:3G Nc,ace,cOO N,3ON,Yca H3a,PPP H.YNN G.OcPe G.HPYG
OGGP-Ga-OO HG:GG 3Yc,cee,HYe 3P,YeY,Yac H,HYN,NPO HO.PGa H.cOO G.H3YY
OGGP-Ga-O3 GH:GG PGY,ecc,PGe 3O,OON,PNY H,PYO,3cH H3.Gcc H.NGG G.HHPc
OGGP-Ga-O3 H3:GG P3Y,HPP,caP Oc,eNY,P3Y NYG,YOc HP.GOG H.NOY G.HGaG
OGGP-Ga-ON HG:GG 3HY,OcY,eOG NO,3Ga,eYG H,PHO,3eH HG.HYP H.cOe G.HeaP
OGGP-Ga-Oe GH:GG 3NY,3YG,NaO Pa,Ycc,cHH H,Oae,YOG HH.PeY H.N3O G.H33e
OGGP-Ga-Oe H3:GG 3cP,HHO,POY 33,ePH,HHc H,HP3,cac HH.acH H.eNY G.H3YN
OGGP-Ga-Oa HG:GG 3Ye,aea,OaG 3G,NH3,cGc H,PG3,e3G HO.3Y3 H.PHc G.HHPP
OGGP-HG-GN HG:GG POe,NNO,OYO Oe,aOe,ePc NeN,PNa H3.ePa H.PYe G.HGYa
OGGP-HG-Ge GH:GG POO,NYa,Y3G ea,PN3,POH H,YcN,OPO H3.NOO O.3GH G.HcGO
OGGP-HG-Ge H3:GG PYG,ON3,OOG ee,Y3a,3eN H,c3c,YO3 HN.3eY O.GNc G.H33Y
OGGP-HG-Gc HG:GG PGc,OPc,O3O 3e,eOG,eYH H,OPN,HG3 H3.G3H H.YH3 G.H3aH
OGGP-HG-GY GH:GG PHe,Hae,eNG 3O,YHY,3c3 H,NGa,ePN H3.3HY H.NOY G.HHPY
OGGP-HG-GY H3:GG PHO,HOa,aaY Oe,GHe,OOO NPe,3PG H3.HYY H.P33 G.HGYc
OGGP-HG-Ga HG:GG O3H,HHH,eHY 3c,aY3,eOO H,GON,NNc c.3aN H.OPY G.HeYY
OGGP-HG-HG GH:GG O3H,3Oc,GeY 3O,HaN,GGP Y3c,GcG c.PGO G.aYc G.H333

Table H: Marginal 3ompression Ratio over Real Traces

"eld and the packet length for each individual packet, no matter it is from a persistent !ow or a transient
!ow. Hence, the rate at which real information is generated in a network with persistent and transient !ows
is given by

H(S) = λ(H(φ)+H(lp)+H(dp))+Λ(H(Φ)+H(T )+H(I)+E[K]H(lt)+(E[K]−1)H(dt)), (ON)

where λ is the aggregate packet arrival rate for all persistent !ows,H(φ) characterizes the packet timing and
!ow ID information and can be calculated according to (O), lp and dp denotes the packet length and IQID
increment of packets from persistent !ows respectively, Λ is the arrival rate of transient !ows, H(Φ) char-
acterizes timing and !ow ID information for all the packets within a !ow and can be calculated according
to (HN), T and I denotes the TT7 value and initial IQID value of a transient !ow, and lt and dt denotes the
packet length and IQID increment of packets from transient !ows,

5 Empirical Results on Real Packet Traces

In this section we apply the hybrid model to several one hour traces taken at a maJor university gateway, >e
gathered one hour traces taken at different times of the day (Ham, HGam, Hpm) over a period from Sept OO,
OGGP to Oct O3, OGGP. In table H, we list the statistics of some of these traces and the marginal compression
ratios predicted by our hybrid model.

>e observe from Table H the potential to compress the raw trace to a size that is around HHb∼Hcb of
its original size.

0ow we want answer the question: what is the bene"t of Joint compressiong >e apply the hybrid
model to several pop-level topologies obtained from the Rocketfuel QroJect ^3_. Detailed descriptions of the
topologies that we use can be found in ^P_. Dnfortunately, the Rocketfuel proJect is concerned only with
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nodes links persistent transient persistent !ow transient !ow averge ρj

!ows !ows packets rate packets rate path length
3C> 33 HGc OH YGN HY3,Gca.Y Pec,YcG.c 3.ceOc G.OOPH
Tele G HG 3P O ca HNG,GOO.Y Nea,cGP.Y H.eOae G.eHYO
Tele B P3 HGc OY HGcc OaN,3Oa.H NPc,acP.O e.GHcO G.HN3P

Table O: =oint 3ompression Ratio

obtaining topoloical information but not workload information. >e generate a workload in the following
way. ! persistent !ow is generated between any pair of nodes with probability p. Qackets within a !ow are
generated according to a Qoisson process with an arrival rate generated using the methods in ^Y_. For each
node v ∈ V , we pick two random numbers Ov, Qv ∈ [0, 1]. Furthermore, for each node pair (vi, vj), we
pick a random number Z(vi,vj) ∈ [0, 1]. For vi and vj with Buclidean distance l, the traf"c rate between vi

and vj is

αOviQvjZ(vi,vj)e
−l/2L

where α is a scale parameter and L is the largest Buclidean distance among all pairs of nodes. The values
of Ov and Qv model the degree to which a node generates or attracts traf"c. The distance l models traf"c
locality. This model, on average, generates larger traf"c rates between close pairs of nodes than distant pairs
of nodes. Similarly, we generate transient !ows between any pair of nodes according to a Qoisson process
with an arrival rate generated using the methods in ^Y_. The distribution of !ow sizes and packet inter arrival
times within a !ow are taken from the one hour trace collected at the outgoing link of a maJor research
university connecting to a commercial service provider on =uly OO, OGGP starting at Ga:3G!M local time.

In table O, we describe three topologies, 3able and >ireless (3C>), the main IQ backbone of German
Telekom (Tele G), and 3olt Telekom Burope (Tele B). >e also describe in the table the workload pro-
duced using the method described above. In addition, we list the Joint compression ratio. 0ote that this
describes the additional bene"t of Joint compression over marginal compression. >e "nd in all cases that
ρj is approximately equal to the inverse of the average !ow path length. This is a reasonable result as Joint
compression mainly captures redundancy caused by duplicate records for the same packet at different nodes
in the network.

6 Implications, Lessons, and Applications

In previous sections, we have established models to study the information content in packet headers. !p-
plication of these models to hour-long traces shows the potential of reducing the size of a raw trace from a
single site to 1/6 of the original size and, in the case of a collection of distributed traces by an additional
factor of 1/6 to 1/2. In this section, we discuss several packet trace compression principles obtained from
our models. Guidelines are presented which either have been adopted in previously proposed compression
schemes or can be followed in new packet trace compression algorithms to achieve a better compression
ratio. The fact that packet headers are highly compressible can also be exploited in other ways, such as
online packet header compression for communication over low bandwidth channels and to discover hidden
communication through covert channels that exploit unused "elds in packet headers and timing information
of packets. >e will brie!y discuss these two applications towards the end of this section. 7ast, the Section
concludes with a discussion of the model assumptions, speci"cally focussing on those that can be relaxed.
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6.1 Guidelines for Packet Trace Compression

6.1.1 Exploiting Information Structure

! naive way to do packet trace compression is to use generic data compression tools. Gzip ^O_ can achieve
a marginal compression ratio around 2 when applied to our packet traces. This is far below the result
predicted by our previous study. Qacket header traces are highly structured data streamsh their structure
should be accounted for during compression.

Brute-force vs. By-field Since a packet header consists of several "elds, and many "elds are either constant
or are described by highly skewed distributions (consequentially exhibiting low entropy), one can divide a
packet trace into multiple traces, each corresponding to a single "eld. Data compression tools, such as gzip,
bzipO, etc., can be used to compress these "eld traces. To further exploit correlation among different "elds,
e.g., the N-tuple de"ning a T3Q !ow, one can place multiple "elds into one trace, and then compress it using
algorithms which can handle long symbols. This procedure can be conducted online if the compression
algorithm only scans the data sequence once, such as gzip, dynamic huffman coding ^Hc_.

Packet-based vs. Flow-based Qackets from the same !ow share considerable information in addition to the
tuple de"ning the !ow. However, packets from different !ows are interleaved in a packet trace. Hence there
is less commonality between successive packets in a trace. In order to exploit the information redundancy
within a !ow, packet header compression algorithms can reorganize packets into !ows and conduct !ow
based compression. Two previous works have investigated !ow-based packet header recording and com-
pression. The authors of ^a_ represent packet header traces as a series of flow records and packet records.
The information shared by all packets from the same !ow is only recorded once in a !ow record. The
per-packet records are maintained to store unique information of each packet. !ll per-packet records from
the same !ow stored together. This technique has been shown, ^a_, to produce a marginal compression ra-
tio of between 1/3 and 1/4 can be achieved. However this approach requires greater storage than generic
compression because of the need to identify !ows and classify packets.

!nother work ^H3_ also adopted the idea of !ow-based compression. !gain, !ow information is stored
once for each !ow. Dnlike the previous work, packets are not reshuf!ed. Instead, a !ow id is stored in each
packet header as a pointer to the !ow information. >ith a "xed time resolution of a micro-second, the author
proposed to use a variable number of bits to store the packet inter-arrival time: 16 bits if the inter-arrival time
is smaller than 215µsh 32 bits if the inter-arrival time is smaller than 231µsh and 96 bits otherwise. Qacket
timing information can be further compressed if optimal codes, e.g., Huffman code, are applied on packet
inter-arrival time to achieve the entropy bound as calculated in Section 3.

!nother maJor saving comes from the observation that many "elds of a packet header are predictable
given the previous packet header within the same !ow, (in other words, a new packet header in a !ow brings
little new information). It is argued that, for a T3Q !ow, only the !ow id (4 bytes) and inter-arrival time (2
bytes) is necessary to represent a in-sequence T3Q packet (8 bytes time stamp k 40 bytes T3QdIQ header).
This easily leads to a compression factor of 8. 0ow the !ow id takes a maJor portion of a compressed packet
header. It can be further compressed since the !ow size distribution is skewed in the Internet. Intuitively,
assigning shorter !ow ids to elephant !ows will reduce the average !ow id length for all the packets. >e
can even get rid of !ow id in each packet header if we place all of the packet headers from the same !ow
together. This complies with our !ow based model in Section 3, where !ow id doesnVt appear in a packet
header information content. It comes, however, at the cost of packet reshuf!ing, which is very memory
intensive because one has to store all the packets from all active !ows. The memory requirement of packet
reshuf!ing can be reduced by only storing the compressed headers in memory and the !ow temporal locality
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which will be explained in the following section.

6.1.2 Exploiting Temporal Locality

DsersV connections are inherently transient. 0etwork !ows come and go and packets within a !ow are
closely spaced in time. This results in temporal locality in packet headers which can be explored both by
packet based compression and !ow based compression.

For packet based by-"eld compression, the compression ratio is bounded by the entropy of each "eld.
Given a packet trace with duration T , we can use Huffman coding to construct a optimal code book C for
the whole trace Trace(0, T ). !lternatively, we can construct a Huffman code book C1 for the "rst half of
the trace Trace(0, T

2 ) and another code book C2 for the second half of the trace Trace(T
2 , T ). >e than use

C1 to compress Trace(0, T
2 ) and C2 to compress Trace(T

2 , T ). Since C1 is optimized for Trace(0, T
2 ),

Trace(0, T
2 ) is better compressed by C1 than by C. Similarly, Trace(T

2 , T ) is better compressed with C2

than C. Therefore the whole trace Trace(0, T ) can be better compressed by using C1 and C2 than Just C.
On the other hand, we have to store two code books C1 and C2 instead of one C. In general, one can divide
a packet trace ef"ciently according to time and compress them separately to explore the temporal locality in
packet headers.

Temporal locality is more important for !ow-based compression. Given a long trace, a large number of
!ows and their packets have to be stored in the memory. ! long bit sequence has to be used to represent
a !ow id. Since most !ows are transient, if we only count active !ows within a time window, the smaller
the window size, the smaller the number active !ows. Bquivalently, if we divide a long trace into multiple
shorter traces according to time, we can reduce the memory requirement and use shorter bit sequences to
represent !ow ids. Similar to the argument in the previous paragraph, we can also do better in compressing
!ow id. On the other hand, time window will chop one !ow, either longer than the time window or happens
to cross one boundary of a time window, into multiple !ows. The consequence is that the !ow size (measured
in packets) seen by the !ow-based compression algorithm is now smaller than their original size. Ideally,
the more packets in a !ow, the higher the gain of !ow-based compression. Too small a time window will
degrade the performance of !ow based compression. To illustrate, assume we have to use F bits to represent
the !ow information, B bits (in average) to record per-packet information, the total length of a !ow f with
N packets is F + NB bits, the per-packet !ow information overhead is F

N . 7etVs say due to a small time
window, the !ow is chopped equally into m smaller !ows {f1, · · · , fm}. Then we have to use F bits to
represent !ow information for each !ow fi which consists of N

m packets. The per-packet !ow information
overhead is m times higher than the previous case. The total bits needed to represent {f1, · · · , fm} is
mF + NB. The in!ation in the compressed length for the !ow is ρI = mF+NB

F+NB . If N
m >> F

B , i.e., each
time window still have a large number of packets from the same !ow, the in!ation ratio ρI is close to 1.
The choice of appropriate window size depends on the !ow size distribution measured both in time and in
packets.

6.1.3 Exploiting Spatial Correlation

! distributed network measurement system collects traces from multiple network links to characterize net-
work wide phenomena. Qacket header traces can be compressed individually using the previously discussed
principles. 0etwork !ows crossing multiple network monitors introduce information redundancy between
packet traces collected at these monitors. The focus of this section is on how to exploit the spatial correlation
present in packet traces to Jointly compress them.
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>e observed that the Joint compression ratio is roughly equal to the average path length. This obser-
vation was based on the assumptions that delays are constant and that packets for a given !ow always take
the same route through the network. However, these assumptions are generally not true in real network
environment. Flow routes can change over time (albeit infrequently) and packets incur random delay on
network links. To capture the route changes, the network behavior should include the information of where
a particular packet appears. In other words, each monitor should at least record in some way the identities
of all packets that it observes. To deal with random link delays, we have to store timing information of each
packet on each monitor. The Jointly compressed trace must contain the identity and timing information for
each packet on each monitoring point. In an individually compressed !ow-based trace at a monitor, !ow id
and inter-arrival time corresponds to most of the information associated with a packet. One may draw the
conclusion that in a realistic network environment Joint packet trace compression is not necessary. However,
this is not true for the following reasons:

H. Flow routes change infrequently. >e donVt have to record packet ID at all monitors all the time. How
to exploit the stability of network routes in Joint compression of distributed packet traces deserves
more study.

O. !re packet inter-arrival time on multiple links correlatedg How can we exploit this spatial correlation
to compress packet timing information.

3. So far we have focused on packet header trace compression. Some monitoring applications, especially
network security related applications, require that packet payload information be recorded. Dnlike
headers, payloads donVt change inside the network. Furthermore, they dominate the trace dominate
header in size. =oint compression of full packet trace is de"nitely desirable.

Implementation of Joint packet trace compression is much more complicated than individual packet trace
compression. The maJor dif"culty comes from how to correlate distributed traces. One option is to send
all packet traces to a single service facility and compress them Jointly in a centralized way. In Figure P, all
network monitors send their packet traces to a common packet trace storageE. In order to reduce bandwidth
consumption in sending the original packet traces, packet traces can be compressed individually before the
transmission. !nother option is to Jointly compress packet traces along their way to the common storage.
For example in Figure P, A "rst sends its trace to Bh B compresses its own trace Jointly with AVs trace,
then sends the compressed trace to E. How to optimally organize the routing and compression of packet
traces is a trade off between the processing power and network connectivity on all monitors. Distributed
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DTraceB
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TraceC
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Figure P: =oint Qacket Trace 3ompression

data compression ^e_ aims at compressing correlated sources in a distributed way and achieving the gain
of Joint compression. How to compress packet traces without exchanging packet headers remains to be a
challenging problem. It may also be possible to borrow ideas from trajectory sampling ^c_to design Joint
compression algorithms.
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6.2 Other Applications

6.2.1 Packet Header Compression to Improve Link Efficiency

Qacket header compression is not only important for passive network monitoring. It has also been used to
improve link ef"ciency in various network environment. For network applications, such as remote login,
Uoice over IQ, network games, etc, the payload of IQ packet is small. Transmitting IQ headers incur a
large overhead. Qacket header compression is especially important when those applications run over low
bandwidth and high bit error rate links, such as dial-up connection and wireless channels. !s shown in
Figure N, packet headers can be compressed at the sender side of the link and uncompressed by the receiver.
Header compression improves the ef"ciency of those expensive links. Several packet header compression

header payload
compress decompress

Sender Receiver
expensive link

header
header

payload
payload

Figure N: Header 3ompression to Improve 7ink Bf"ciency

standards have been developed within IBTF (^HH_, ^HO_, ^HP_ and ^He_) for different type of links and different
applications. The models and principles developed in this paper may prove useful to guide the design of
packet header compression schemes for new network environments and new applications.

6.2.2 Covert Channels Established using Packet Headers

! covert channel is de"ned to be a communication channel that can be exploited by a user to transfer infor-
mation in a manner that violates a systemVs security policy. 3overt channels in the Internet pose a big threat
to network security ^HN_. Several schemes have been proposed to establish an embedded communications
channel utilizing T3QdIQ packet headers. Some schemes take unuseddunchecked "elds in packet headers to
transmit data. Some schemes use timing between packets to convey information. Our information theoretic
study in packet traces, both on packet timing and individual packet "elds, can be used to detect covert chan-
nels built on packet headers: a signi"cant increase in the entropy of packet headers suggests that they are
being manipulated to hide communications.

7 Conclusions and Future Work

Dsing an information theoretic approach, we systematically study the information redundancy in packet
headers. `oth packet-level and !ow-level models are developed to explore the temporal and spatial cor-
relation of packet traces collected from distributed network monitors. >e carefully study the information
content in all "elds of an IQ header, including the timestamp, the !ow Id de"ned by the N-tuple, TT7 "eld
and IQID "eld, etc. Bmpirical data from an access link of a maJor university are feed into the proposed
models to demonstrate the potential gain of conducting marginal and Joint compression on packet traces.
Uarious results obtained from our information theoretic study serve as lower bounds on the compression
ratios which can be achieved by lossless compression algorithms. More importantly, our analytical models
help us identify the maJor sources of information redundancy in packet header traces. Several important
principles are obtained to guide the design of ef"cient packet trace compression algorithms.
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Future work can be pursued the several directions. One immediate application of our study is to de-
velop both marginal and Joint packet compression algorithms according to the proposed guidelines. Their
ef"ciency can be evaluated by comparing their compression ratios on real packet traces with those predicted
by our models. In our models, we make several assumptions, such independency assumptions, on packet
headers and their "elds. The implication of violation of those assumptions on both analytical models and
algorithm design deserves further study. How to extend our packet header models to study other emerging
applications, such as covert channels, is another interesting direction to pursue.
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