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Abstract. This paper suggests how an appropriately designed and architected process
definition language can be an effective aid to the rapid generation of simulations, which
are, in turn, capable of providing important insights. The paper describes how the
features of the Little-JIL process definition language helped in the rapid generation of
simulations that shed important new light on the effectiveness of various collusion
strategies in influencing the outcomes of various auction approaches. The paper
describes how Little-JII.’s approach to modular reuse and its separation of process
concerns both turn out to be of particular value in supporting rapid prototyping. The
simulation results obtained are themselves interesting, as the paper also suggests that the
auction idiom is highly relevant to resource allocation in software development. Thus,
the insights gained into the efficacy of various collusion approaches have particular
relevance to software process research.

1. Introduction

There is currently considerable interest in using process definitions as the basis for important
decisions about such matters as resource allocation, coordination of agents, and procedural issues.
Because of the importance of such matters, technologies that are effective in supporting the
precise, clear, and complete definition of processes seem to have broad and important
applicability. Further, it seems particularly important to evaluate such process definitions
carefully to be sure that they are correct and effective, which can then become the basis for their
systematic, iterative improvement. We have long argued that software processes development has
a close parallel to application software development [1jo87, 1jo97]. This parallelism suggests that
tools and techniques used in the latter should be expected to be applicable also to the evaluation of
processes. From this analogy we know that there are two major types of approaches to evaluation,
namely static and dynamic analysis. In earlier papers we have described our work in the static
analysis of processes [cobleighOO]. This work has shown that static analysis can be an effective
approach to identifying defects in processes. This paper addresses a dynamic analysis approach,
namely simulation.

Simulation seems to be a particularly useful approach to the evaluation of processes. Process
simulations can support the quantitative determination of flow times for executions of processes,
the impacts of making certain resource allocation decisions, and the projected behavior of
processes under various hypothesized loading conditions. Various authors have previously
appreciated this, and have already begun to investigate technologies that support process
simulation, and the effectiveness of these technologies [kellner98]. While we agree with the value
of this approach, our own work has increasingly demonstrated that it is often difficult to determine
just which simulations best provide desired insights. Indeed, our work suggests that one set of
simulation runs often raises as many questions as it answers, and inevitably leads to the desire and
need for many subsequent sets of different simulation runs. Thus, because it is often the case that
the analyst is unclear about the exact process that she/he wants to study, we have found that it is



helpful to be able to rapidly create prototype simulations as a key support for the process of rapid
exploration of the questions that arise as simulation runs suggest further sequences of elaborative
simulations of processes. In grappling with the problem of how best to support the need for rapid
process simulation generation, we have concluded that the appropriate process language
architecture and execution tools are very important in this task.

We note that this observation itself mirrors similar observations that have been made by
developers of simulations in application software domains. Simulations have been shown to be
valuable in providing precise answers and insights when the questions and issues are narrowly
drawn. Getting the questions appropriately narrowed down, however, can take considerable effort,
often in the form of evaluation of sequences of preliminary simulations. Thus the value of being
able to create simulations rapidly has been previously understood [thuente99]. This points to the
value of flexible simulation generation aids, such as the one that we will describe in this paper.

While our work seems to support the value of automated process simulation capabilities, it
has also shown that simulation generators can lead to simulations that are largely interpreted, and
consequently inconveniently slow. Our work has demonstrated that, while it is helpful to have
rapid simulation generators to help identify the precise simulation that can provide results of great
interest, once the simulation has been identified, it seems important to then code the simulation in
a compilable language in order to assure that massive quantities of simulations needed for
reliability of results, can be executed in acceptably short amounts of time.

All of the above has reinforced in our minds the desirability of an executable design language
for processes. In our work we used our Little-JIL process definition language to specify
simulation designs. Our Juliette interpreter was used to run these preliminary simulations,
emphasizing the value of an executable design. After suitable preliminary simulations, we then
moved on to the need to run massive amounts of simulations, at which time we used the Little-JIL
designs as the basis for facilitated coding of the desired simulations in Java.

In this paper we describe our work, emphasizing the value of an executable process definition
language, but also emphasizing how the particular separation of concerns in our language greatly
facilitated the rapid generation of preliminary simulations, thereby expediting the definition of the
massive simulations that eventually yielded the process analysis results that we sought.

2. Related Work

Simulation has long been used as a powerful tool for analyzing software performance in wide
range of application areas. Simulation of software processes has also received a lot of attention
over the last twenty years, during which time a wide variety of simulation approaches have been
suggested and explored. Kellner et al. [kellner99] provides a nice overall picture of the work in
software process simulation, focusing primarily on the diversity of approaches to process
simulation, addressing the different issues, and suitability of various approaches to dealing with
them. In particular, [kellner99] talks about eight different simulation approaches and language
categories including state based process modeling, discrete event simulation and system dynamics.
[Chritie99] Shows how simulation can be of benefit in supporting software process improvement
in the context of such approaches as the Capability Maturity Model (CMM). [Scacchi99] provides
some experience-based insights into the effectiveness of knowledge based simulation (KBS) and
discrete event simulation (DES) of processes. [Lakey03] presents the need and usefulness of
combining both discrete event and system dynamics approaches to simulation while simulating
software processes.



Although researchers have not looked at issues related to rapid simulation prototyping for
software processes, the need has been established in other system simulation domains. For
example, [thuente99] discusses the usefulness of rapid simulation and software prototyping for the
architectural design of embedded multiprocessor systems.

There is a huge literature studying auctions from the various perspectives of Economics,
Management Science, Operations Research and Computer Science. Economists mainly look at the
auction mechanism from the game theoretic perspective and try to identify optimum price
determination that maximizes the utility of the seller and/or the bidder. They also try to reason
about the behaviors of the bidders and their impact on the outcome of the auctions. Although
most of these analyses are based on probabilistic models, a small but influential trend has been to
study market mechanisms through laboratory experiments using discrete event simulation. The
work described here is in that spirit.

Computer Scientists and Management Scientists have looked at different variations of
auctioning mechanisms for multiple items [BydeOl,Sandholm99,Rothkopf98]. Their primary
objective has been to devise auctions that are efficient in the determination of the optimal winner.
Other researchers in computer science have looked into the capturing of auction processes with
rigorous process language and statically analyzing the auctions to verify correctness and
completeness [Cobleigh00].

Identifying vulnerabilities in auctions is a very important issue for better auction designs
[KlempO1]. Some recent work attempts to identify collusive behavior of bidders by analyzing
bidding patterns [bajari02, Aoyagi02]. These efforts, however, are few in number and limited in
scope. Stochastic analyses usually fall short of providing a good picture of the outcome of an
auction in a setting where there is the possibility of dynamic behaviors of bidders, and where the
opportunity for collusion is present. Researchers have opted for empirical study based upon
simulation of auction processes with actual human bidders [isaac81, isaac84, isaac85].

3. Our Approach

The vehicle for our exploration of the value of a suitable executable process design language and
architecture was our Little-JIL process definition language [wise98]. One of the key architectural
features of Little-JIL is its separation of concerns [cassO0]. In particular, the most noticeable
feature of a Little-JIL process definition is its visual depiction of the agent coordination aspect of a
process (to be described in more detail shortly). Equally important, however, are the definitions of
agents and their behaviors, and artifacts and their flows. Neither of these process concerns is
explicitly represented pictorially in Little-JIL. While this makes them less immediately
noticeable, they are no less important. Of particular importance for this research is the fact that
these concerns are separately defined, and separately modifiable.

To understand the importance of the separation of these concerns to the need for rapid
prototype generation, we employed Little-JIL as a vehicle for the study of processes in the domain
of auctions. An auction is a form of price negotiation that is usually a highly decentralized
activity. Participants in auctions are essentially distributed agents coordinated to achieve a goal.
There is a large literature addressing the enormous variety of different kinds of auctions. Indeed
there are probably at least thousands of different kinds of auctions [klemp99], all of which have
somewhat different characteristics. The different kinds of auctions have been devised in a



continuing attempt to find the most efficient ways to arrive at an accurate determination of the fair
value of a commodity.

It is important to also note, however, that much of the diversity in types of auctions, and the
continued lively investigation of auctions, is aimed at understanding the effects of various kinds of
collusions among bidders. While there is a considerable amount known about how various
different auction strategies may be vulnerable to, or resistant to, different forms of bidder
collusions, much more needs to be known. We believe that simulations of various kinds of
collusive activities operating in the context of different kinds of auctions have the potential to
yield these important understandings.

Our research entailed the use of Little-JIL as a vehicle for supporting the rapid generation and
execution of simulations of the different ways in which different auctions responded to bidder
collusions. As will be seen, the Little-JIL architecture proved to be particularly useful in this
work, as the pictorial coordination concern proved to be effective in defining the different auction
processes clearly, precisely, and completely, while the agent definition concern, independently
defined (in this case using Java), proved quite effective in defining different collusion strategies.
Our Juliette process interpreter, drawing upon the combined coordination and agent definitions,
supported the simulation of the different auctions.

It is worth noting here that the selection of auction processes for this research is far from
irrelevant to software process concerns. We believe that the auction idiom, and indeed the auction
vehicle itself, especially as elaborated using notions of agent collusion, are quite relevant to
software development process concerns. We note, for example, that a significant aspect of the
software development process involves the allocation of resources or agents to the various
development tasks. The effective determination of the most effective allocation of agents (e.g.
designers, programmers, testers) might well be modeled, and indeed carried out, as an auction,
where the bidders are software engineers bidding for specific tasks. Communications among these
agents should be expected, as is the case of collusive bidders in an auction process, although
communication among software developers is generally useful in arriving at effective task
assignment, in contrast to the situation in auctions. Thus, our focus on auctions is more than
simply illustrative of our ideas about process language architecture, but also seems relevant to the
development of superior software development agent allocation strategies.

3.1 The Little-JIL process language

Little-JIL is a process definition language [Cass00, Wise98] that, along with its interpreter Juliette
[cass99], supports specification, execution, and analysis of processes involving multiple agents. In
this work, we used Little-JIL to capture and simulate auction processes and agent interactions. As
noted above, the most immediately noticeable aspect of a Little-JIL process program is the visual
depiction of the coordination specification of the process. This component of the Little-JIL
process program looks initially somewhat like a task decomposition graph, in which processes are
decomposed hierarchically into steps. The steps are connected to each other with edges that
represent both control flow and artifact flow. Each step contains a specification of the type of
agent needed in order to perform the task associated with that step. Thus, for example, in the
context of an auction, the agents would be entities such as the auctioneer, the bidders, as well as,
potentially, the manager setting up collusion amongst the bidders. The collection of steps assigned
to an agent defines the interface that the agent must satisfy to participate in the process. It is



important to note that the coordination specification includes a description of the external view
and observable behavior of such agents. But a specification of how the agents themselves perform
their tasks (their internal behaviors) is NOT a part of the coordination specification. The behaviors
of agents are defined in a separate specification component of the Little-JIL language. More will
be said about this shortly. But it is important to note that Little-JIL enforces this sharp separation
of concerns, separating the internal specification of how agents carry out their work, from the
specification of how they coordinate with each other in the context of carrying out the overall
process. In particular, the definition of a particular specific auction is defined separately from the
definition of how the bidders might collude with each other.

The central construct of a Little-JIL process is a step. Steps are organized into a hierarchical
tree-like structure. The leaves of the tree represent the smallest specified units of work, each of
which is assigned to an agent that has characteristics consistent with those defined as part of the
definition of the step. The tree structure defines how the work of these agents will be coordinated.
In particular, the agent assigned responsibility for executing a parent node is responsible for
coordinating the activities of the agents assigned to execute all of the parent’s children.
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Fig. 1a. A Little-JIL step construct. Fig. 1b.: Control flow and handler badges

Figure 1 shows the graphical representation of a Little-JIL step with its different badges and
possible connections to other steps. The interface badge is a circle on the top of the step name that
connects a step to its parent. The interface badge represents the specification of any and all
artifacts that are either required for, or generated by, the step’s execution. Of greater importance
for the work described in this paper, the interface badge also represents the specification of any
and all resources needed in order to support the execution of the step. Chief among these resources
is the single resource designated as the step’s execution agent. Below the circle is the step name.
A step may also include pre-requisite and/or post-requisite badges, which are representations of
steps that need to be executed before and/or after (respectively) this step for the proper
performance of the step’s execution. Inside the central black box of the step structure, there are
three more badges. On the left is the control flow badge, which specifies the order in which the
child substeps of this step are to be executed. A child of a step is connected to the parent by an
edge emanating from the parent and terminating at the child. Artifact flows between the parent
and child are indicated by annotations on this edge.



On the right of the step bar is an X sign, which represents the exception handler capabilities of
the step. Attached to this badge by exception edges are any and all handlers defined to deal with
exceptions that may occur in any of the descendants of this step. Each handler is itself a step, and
is annotated to indicate the type of exception that it handles. Here too, artifact flow between the
parent and the exception handler step is represented by annotations on the edge connecting them.
This edge also bears an annotation indicating the type of exception handled.

In the middle of the step bar is a “lightning sign” (not shown in Fig. 1), which represents the
message handling capabilities of the step. Attached to this badge by message handling edges are
any and all handlers defined to deal with messages that may emanate from any step in the process
definition. The message handling capability is quite similar to the exception handling capability,
but, while exception handlers respond only to exceptions thrown from within their substep
structure (a scoped capability), message handlers can respond to message thrown from anywhere
(an unscoped capability). If there are no child steps, message handlers, or exception handlers, the
corresponding badges are not depicted in the step bar.

One of the important features of the language is its ability to define control flow. There are
four different non-leaf step kinds, namely “sequential”, “parallel”, “try”” and “choice”. Children of
a “sequential” step are executed one after another from left to right. Children of a “parallel” step
can be executed in any order, including in parallel, depending on when the agents actually pick up,
and begin execution of, the work assigned in those steps. A “try” step attempts to execute its
children one by one starting from the leftmost one and considers itself completed as soon as one of
the children successfully completes. Finally a “choice™ step allows only one of its children to
execute, with the choice of which child being made by the agent assigned to execute the step.

The pre-requisites and post requisites associated with each step act essentially as guards,
defining conditions that need to hold true for a step to begin execution or to complete successfully.
Exceptions and handlers are control flow constructs that augment the step kinds. The exceptions
and exceptions handlers work in a manner that is similar in principle to the way in which they
work in well known contemporary application programming languages. Exceptions indicate an
exceptional condition or error in the process execution flow, and handlers are used to recover
from, or fix, the consequences of those situations. When an exception is thrown by a step, it is
passed up the tree hierarchy until a matching handler is found. There are control flow semantics
involved with handler steps to indicate how the program flow will continue once a raised
exception has been handled by the defined handler. Figure 1b shows four different types of
continuation semantics for handlers. With these semantics, a process definer can specify whether a
step will continue execution, successfully complete, restart execution at the beginning, or rethrow
the exception for a higher level parent step to handle.

As noted above, a complete Little-JIL process definition also contains definitions of artifacts
and resources to complement this coordination definition. Artifacts are entities such as data items,
files, or access mechanisms, that are passed between parent and child steps. They provide
information required for execution of a step and can be used to carry results of the step execution
back to the parent. Again, as noted above, the artifact definition, indeed the specification of the
type model used to support artifact definition, is a separate concern in Little-JIL, and is orthogonal
to the coordination definition.

In an analogous way, the resource (and thus agent) definition is also separate from, and
orthogonal to, the Little-JIL coordination definition. Specifically, the implementations of the
agents that are assigned to steps are orthogonal to the coordination definition. How an agent
carries out a particular task is independent of the coordination dictated by the process. Of course,



however, the outcome of a process is influenced by the behaviors of the agents, which are, in turn,
specified within the resource model. Consequently, the outcome of a process is similarly affected
by the way in which specific resources are bound as agents to the various individual process steps
at various points during process execution.

3.2 Auction Processes

We opted to investigate different auction processes and combinations of different bidder behaviors
in a potentially collusive environment. In the course of our investigations of how these behaviors
affected auction outcomes, we wound up modeling many different types of auctions, including
open-cry or ascending bid (English) auctions, double auctions, first-price sealed-bid auctions and
finally repeated sealed-bid auctions. Space does not permit us to describe the all the details of
these different types of auctions. The interested reader can find these details in [milgrom82]. But
it is important to sketch out some of their salient properties as this helps us to explain how certain
properties of Little-JIL. were particularly useful in supporting the rapid creation of prototypes of
auctions of these types.

In an ascending-bid (English) auction, the auction type that is most commonly depicted in
movies and novels, the price is successively raised by the auctioneer until only one bidder
remains, and that bidder wins the object paying the final price that was bid. = A Little-JIL
coordination definition of this type of auction is depicted in Figure 2.

A double auction differs from an English auction in that both buyers and sellers submit bids in
parallel. The auctioneer opens this bidding, and then periodically closes the bidding, completing a
“round”. At the end of a round, the auctioneer identifies matches between the bids of buyers and
sellers, finalizing the sale of items so matched. Figure 3 shows a Little-JIL coordination definition
that describes such a double auction process. As you can see “double auction” is a parallel activity
between running the auction and checking to make sure that the auctioneer has not called a stop to
the auction. The step “run double auction” has a pre-requisite step “check auction close” that
identifies whether the next round should be placed or not.
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The important point to note here is that there are some common activities in these auction
processes. For example, the auctioneer closes the auction after a predefined time period. Placing of
bids is common to all the auctions. The auctioneer needs to decide on a winner by processing the
bids. Because of this, one should expect that there ought to be process modules from one auction
definition that are reusable, and reused in other auction process definitions. Little-JIL encourages
and supports such reuse, as can be seen by examining these process coordination definitions. For
example, the “accept one bid” module of the double auction process is taken “as-is” from our
ascending-bid/open-cry auction process.

Examples of more extensive successful reuse can be seen in additional auction process
definitions. Our work continued with the definition of sealed bid auctions. In a first-price sealed-
bid auction, each bidder independently submits a single bid without knowing others' bids, and the
object is sold to the bidder with the highest bid. The bidder pays his price (first price) to get the
object. Auction of this type are currently very common and popular.

A repeated sealed bid auction is an important variant of this type of auction. It is a series of
sealed bid auctions where auctioneer announces the results of the auction after every round, and
then initiates a new auction for new batch of goods or services that are essentially identical to
those just sold. Governments and large corporations carry out much of their procurement
activities through exactly this kind of repeated sealed-bid auctions. Because of the enormous
economic importance of such auctions, they have been the subject of much analysis, much of
which has focused on their resistance, or vulnerability, to certain kinds of bidder collusion. The
bidders, after receiving the announcement of the outcome of a round, can potentially attempt to
collude or decide on their bids individually. In either case, the bidders place their bids and
auctioneer collects the bids, processes them to identify the winner and announces the winner
before initializing the new round.
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Fig. 4. A repeated sealed-bid auction process

Figure 4 shows the Little-JIL coordination definition of a repeated sealed bid auction. Most
immediately, it is important to note that it reuses the entire definition of a single-round sealed bid
auction, in a striking demonstration of reuse. The single round sealed bid auction, in turn, reuses
some steps from the open cry auction definitions.

There are other features of Little-JIL that foster reuse and rapid prototyping, but they require
familiarity with other features of the language that we address now. Specifically, it is important to
note that some edges are annotated with cardinality symbols, for example the agent+ notation on
the edge from the “accept one bid” step to the “place bid” step. This notation represents the
resource bounded cardinality feature of Little-JIL process descriptions. The child step of an edge
containing such a notation is instantiated once for each of the agents available as an agent at the
time of instantiation of that step. Thus, for example, if we specify that the agent for a bidding
step must be collusive, then one step will be created for every bidder whose agent behavior (as
defined in the resource factor of the Little-JIL process definition) is defined to be collusive. A
bidding step will be instantiated only for the collusive bidders and each of them will be given the
task of bidding in that step. In contrast, if a step’s agent specification specifies only bidders, then
that step will be instantiated for all bidders, both collusive and non collusive. If an edge is
annotated with °?°, then that step will execute only if an agent satisfying the requested
characteristics is available. Thus, the step may or may not execute at all. For example, a collusion
step connected to its parent by an edge annotated with a “?” will get executed only if there exists
collusive bidders in that auction round.



One net effect of these properties of Little-JIL is that a given fixed auction process can be
executed, and evaluated, against a variety of different bidder collusion scenarios very
straightforwardly. Indeed, the coordination definition may not need to be changed at all in order
to evaluate the resistance of a particular auction to a variety of collusive threats.

Conversely, it is correspondingly straightforward to evaluate the relative resistances of
various auctions to a fixed collusive threat. Because the code for defining how agents will collude
with each other is contained entirely in the agent definition factor of Little-JIL, it is also highly
reusable across the range of different auction processes. In our work, we have been able to plug in
the agent code written to support one auction process, and use it to support a completely different
one, with minimal changes, or indeed no changes at all, to the agent code. Thus, Little-JIL’s
separation of concerns allows us to quickly change an overall auction process, by changing either
the auction or the agent behavior, but then reusing the other part with little or no change. This has
enabled us to create and evaluate a wide range of auction processes very rapidly.

3.3 Modeling Collusions

We have already noted that agent behaviors, such as collusions in an auction, are defined in Little-
JIL as part of the agent definition factor of the language. Thus, the repeated sealed bid auction
shown in Figure 4 does not explicitly show the collusive behavior. It is expected that these
behaviors may best be defined in other languages, specifically those that are more strongly
algorithmic or computational. On the other hand, there is no reason why agent behaviors cannot
be defined as Little-JIL. coordination, using the power and convenience of the Little-JIL
coordination language itself. Thus, as an example, Figure 5 shows one possible definition of
auction bidder collusive behavior, which we have used in many of our simulations.
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The collusion protocol presented here describes the scenario where each collusive bidder

registers with a collusion manager. While registering, the bidders submit their valuation for the
auctioned object to the collusion manager. The manager then sets up the collusion by sending a



collusion plan back to the registered bidders. The plan includes what each of the bidders should
bid in that round. It is important to note that we indeed used Little-JIL to define a number of
collusions in our preliminary auction research, as the language’s encouragement and support of
reuse facilitated the rapid creation of prototype auctions that differed from each other only in
modest perturbations of collusive behavior.

Thus, for example, the strategy used by the collusion manager to decide on the instructed bid
can, in the case of the collusion shown in Figure 5, be made independent of both the auction
process and the overall collusion strategy itself. This allows us to quickly create a new prototype
for a different type of collusion while running the same auction and using bidders who intend to
collude in the same way.

4. Experiences and Challenges

4.1 Auction Results

After a few iterations aimed at identifying the simulation that seemed to be most promising for
investigation, we zoomed into an intensive and detailed examination of the repeated sealed bid
auction where bidders have the opportunity to collude. We ran several experiments using our
process simulation vehicle. Our aim in the experiments was to see how the number of collusive
bidders impacts the outcome of an auction. We were also interested in investigating the dynamics
of multiple colluding rings operating in a repeated auction environment. We developed automated
agents with bidding strategies based on game theoretic models. We allowed for changes of
behavior amongst the bidders. A non-collusive bidder can become collusive and join a ring after a
few rounds of auction based on the history information made available to the bidder. We modeled
our bidders as risk neutral agents placing their bids according to a pareto-optimal bid producing a
Nash equilibrium [Vickrey61]. The bidders were made increasingly complex in later experiments.
The bidding strategy was primarily modeled as a decision problem influenced by a lot of factors
and parameters. If there are multiple colluding rings present, we allowed colluding bidders to
switch rings under certain conditions. As noted earlier, we modeled the collusion with
communication amongst the bidders through a center, the collusion manager. The center’s role as
to decide on the profit sharing mechanism of the colluding bidders and instruct participating
bidders to bid according to the prescribed strategy. Here we present a very brief, but
representative, summary of our experimental results to demonstrate the usefulness of such a
simulation study. A more detailed discussion about the modeling of the bidding strategy and the
results of different experiments we performed is to be presented in subsequent papers.

In this experiment, we used a fixed number of ten non-collusive bidders participating in the
auction. However, after a fixed number of rounds, we updated bidder behavior and made a non-
collusive bidder collusive. As the auction progressed through subsequent rounds, more and more
bidders became collusive. Our object was to identify whether the collusive ring needs to achieve
some kind of threshold size in a sealed-bid auction in order to consistently be successful in rigging
the auction. We observed that with a specific auction model and bidder behaviors, the collusion
starts to take over when around 70% of the bidders participate in the collusion. In another
experiment, we have been investigating the conditions under which one dominant colluding ring
drives other rings out of competition. The initial results have shown some interesting trends. We
will present the details of our experiment setup and evaluations in subsequent papers.



4.2 Simulation experience

The process definition and execution framework supported by Little-JIL and Juliette facilitate our
efforts, and enabled us to execute hundreds of cycles of process definition, execution, evaluation,
and evolution in a very short space of time. The simulations we developed often provided
intriguing results, causing us to feel the need for validation. Thus, one of our early activities
entailed the generation of some large scale simulation outputs that could be verified against
analytic results. The validation of these early simulation results encouraged us to go on to
simulations that entailed complex, yet realistic, collusions that are not amenable to analytic
verification. These simulations seem to add to the body of knowledge about the effectiveness of
various collusions against particular auctions.

In order to obtain these results, we felt it was necessary to perform massive amounts of
simulation runs of various configurations of colluding bidders, against the auction processes that
we had decided to study. It was not initially obvious, however, which type of auction, and what
type of collusion, was worth this evaluation through massive quantities of simulation runs. We felt
that there was a need for the flexibility of rapid changes of process, collusion and bidder strategies
necessary in order to identify the specific auctions, collusions, and bidder behaviors that were
likely to be of most interest and value in auction research. The factoring of process coordination,
agent assignments and actual agent behavior that we leveraged out of the Litlle-JIL/Juliette
framework supported the separation of concerns in a process language framework that enabled the
considerable amount of exploration of this sort that we found to be needed.

Once the specific simulations that needed to be evaluated through massive experimentation
became clear as the result of a considerable period of this preliminary evaluation, the drawbacks of
an interpreted language became apparent. The auctions that we wanted to simulate extensively
entailed ten or more bidders, with the process itself consisting of more than eighty steps for every
auction round. Dozens of auction rounds were necessary.

As Little-JIL is an interpreted language, executing processes with Juliette is naturally far
slower than would be the execution of the same processes programmed in a compiled language.
Moreover, Juliette was designed to support distributed process execution. This distributive support
is accomplished through a lot of remote method invocations (rmi) which incurs large network
communication time, which in turn makes the executed process slow. With real humans in the
loop for placing the bids from distributed terminals, the simulator created with this infrastructure
can be sufficient to produce realistic results. However, if one wants to focus on producing massive
simulation results in a short period of time through automated agents, automated process
execution falls short of providing that level of efficiency. In our experiments with ten bidders,
each round of sealed-bid auction took about two to three minutes to finish depending on the
number of bidders colluding. More colluding bidders result in an increased number of total steps
for that auction round. In an experiment where the number of collusive bidders increases with
time, the execution time for each auction also rose sharply. Toward the end of a thirty round
experiment, each auction cycle took up to six minutes on average to finish. However, we did not
intend to produce massive simulation with the distributed process execution framework of Little-
JIL/Juliette. At this point, we used our process definition as the architecture of the intended
simulation engine and rapidly coded out the simulator in a compiled language, Java. The beauty of
this switching was the ability to reuse a lot of agent code. As agents were a separate concern in our
process language and were written in Java in the Little-JIL/Juliette framework, it was easy to plug
in the agent code in later simulations.



4.3 Process language experience

We have gathered some important insights regarding process programming in general and Little-
JIL/Juliette framework, in particular, while implementing this simulation infrastructure. We have
used Little-JIL as an executable design language to create a meta-model infrastructure to build
simulators.

Little-JIL provided us with rich process notations to depict the architecture of the simulation
hiding unnecessary details. We were able to capture the behaviors of a range of auction processes
quite accurately, with relatively little effort being put into creation of the different processes. For
example, Little-JIL’s concurrency control features were particularly useful. Note that, in the
auction process shown in Figure 4, get bids is a parallel (non-leaf) step that describes the situation
of all the potential bidders placing their bids, and the auctioneer collecting the bids with the collect
bids step, simultaneously. Little-JIL also helps to describe certain steps succinctly. The agent
bounded cardinality in receive announcement and place bid steps succinctly, yet effectively,
selects for instantiation steps executed only by agents available to carry out the work. Specifying
different attributes of the agents allowed us to assure the selection of the agent appropriate to
perform any particular task at any particular process execution instance.

We note (in passing, only to save space) that Little-JIL also incorporates timing semantics.
The place bid step of Figure 4 has a clock face in its interface. This indicates that the step has to be
completed by the agent within a specified period of time. Otherwise it will be retracted and a
deadline expired exception will be thrown. The inclusion of timing semantics in the language
supports the definition and evaluation of an even richer collection of auction processes.

Juliette, the Little-JIL interpreter, takes a little-JIL process and executes it in a way that is
assured to be completely consistent with the Little-JIL. semantics, through the use of finite state
machine semantics that are used to define Little-JIL and also drive Juliette. Juliette, moreover,
deals with a resource manager that is the repository of all resources (and, therefore agents) that are
available for participation in the execution of the process. Thus, Juliette has the ability to acquire
resources required to complete each step (agents etc) incrementally, and in real time, as the
process execution proceeds. Juliette also manages the numerous data that flows from step to step
throughout the process.

One shortcoming of the Little-JIL coordination language is the absence of semantics to
support specification of artifact flow between sibling steps. As noted above, artifact flow in Little-
JIL is defined to take place between parent and child. But this posed a continuous problem in our
auction processes, as it complicated the representation of how bids flow from bidder to auctioneer,
and how results flow from auctioneer to bidder. New versions of Little-JIL incorporate features
that would alleviate this problem, and these features are clearly necessary to facilitate research of
the type that we have been describing.

5 Concluding Remarks

Little-JIL, a rigorous process language, has been used to define a wide range of processes. Static
analyzers have been applied successfully to reason about processes defined by this language. In
this paper we have utilized the factored nature of the Little-JIL. language, its separation of
concerns, and its flexible execution environment, to develop a simulation framework to perform



dynamic analysis of a specific type of distributed process, auctions and collusions in auctions. We
demonstrated the utility of an executable process language in providing support for rapid
simulation prototyping. We have also presented our case for the need of quick simulation
development for identifying the right focus that needs further investigation. Our findings pointed
out the issues important for process based simulation development. We investigated a number of
simulations and finally zoomed into reasoning about auction outcomes in a repeated sealed-bid
auction scenario with the presence of collusive bidders.

Although auctions have been extensively studied analytically in Economics and Operation
Research areas, there are certain characteristics of auctions that are difficult to analyze
analytically. Researchers have used laboratory experiments with small numbers of human bidders
to study some such characteristics [isaac81, isaac84, isaac85]. In our study, we utilized the
theoretical findings of auction researchers to model automated bidders to run large numbers of
auction simulations with varied parameters. We have found that in a repeated sealed-bid auction
with risk neutral bidders, there seems to be a certain threshold governing a collusion's
effectiveness in the auction. We also identified the effect of collusion when multiple rings of
differing size are present in an auction. These insights should help us better understand the
effectiveness of collusion in auctions and in turn, allow us to design better auction processes that
are resistant to collusive behavior.

The demonstration of auction analysis through simulation indicates the clear potential for
dynamic analysis of software processes. Auction processes are economic activities used widely for
efficient resource allocation. This type of resource allocation and task assignment are, however,
also common activities in software development processes. Like an auction environment with
collusion, side communication amongst agents in a software process and bidding for work is not
uncommon at all. However, the exact software process to study may require iterative prototyping
of the process simulation. It is therefore our contention that there is a lot of merit in using flexible
process language to produce executable simulation designs through rapid prototyping.
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