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ABSTRACT
Because most application data is dynamically allocated, the mem-
ory manager plays a crucial role in application performance by de-
termining the spatial locality of heap objects. Previous general-
purpose allocators have focused on reducing fragmentation, while
most locality-improving allocators have either focused on improv-
ing the locality of the allocator (not the application) or required in-
formation supplied by the programmer or obtained by profiling. We
present a high-performance memory allocator that builds on pre-
vious allocator designs to achieve low fragmentation while trans-
parently improving application locality. Our allocator, called Vam,
improves page-level locality by managing the heap in page-sized
chunks and aggressively giving up free pages to the virtual mem-
ory manager. By eliminating object headers, using fine-grained
size classes, and by allocating objects using a reap-based algorithm,
Vam improves cache-level locality. Over a range of large footprint
benchmarks, Vam improves application performance by an average
of 4%–8% versus the Lea (Linux) and FreeBSD allocators. When
memory is scarce, Vam improves application performance by up to
2X compared to the FreeBSD allocator, and by over 10X compared
to the Lea allocator. We show that synergy between Vam’s layout
algorithms and the Linux swap clustering algorithm increases its
swap prefetchability, further improving its performance when pag-
ing.

1. Introduction
Explicit memory managers have traditionally focused on address-
ing the problem of fragmentation, discontiguous free chunks of
memory. Reducing fragmentation improves space efficiency and
understandably has received considerable attention by memory man-
ager designers. For example, the widely-used Lea allocator that
forms the basis of the Linux malloc (DLmalloc) was designed
specifically for high performance and low fragmentation [14, 15,
18].
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However, the widely-acknowledged increasing latency gap be-
tween the CPU and the various levels of the memory hierarchy
(caches, RAM, and disk) makes improving data locality a first-level
concern. For most applications, this means improving the locality
of the heap. While applications typically exhibit temporal locality,
spatial locality is dictated by the memory allocator, which deter-
mines where and how to lay out the application’s dynamic data.
This allocator-controlled locality can have a significant impact on
the application’s overall performance.
In this paper, we present a new general-purpose memory allo-

cator called Vam that improves data locality while providing low
fragmentation. Vam improves page-level locality by managing the
heap in page-sized chunks and aggressively giving up free pages to
the virtual memory manager. By eliminating object headers, using
a judicious selection of size classes, and by allocating objects using
a reap-based algorithm [8], Vam improves cache-level locality.
We compare Vam to the low-fragmentation Linux allocator (DL-

malloc) and to the page-level locality-improving FreeBSD alloca-
tor (PHKmalloc) [16], both of which we describe in detail. To our
knowledge, PHKmalloc has not been discussed previously in the
memory management literature. We build on these algorithms, in-
corporating their best features while removing most of their disad-
vantages.
Our experiments on a suite of memory-intensive benchmarks

show that Vam consistently achieves the best performance. Vam
performs on average 8% faster than DLmalloc and 4% faster than
PHKmalloc when there is sufficient physical memory to avoid pag-
ing. When physical memory is scarce, Vam outperforms these al-
locators by over 10X and up to 2X, respectively. We show that part
of this improvement is due to an unintended but fortunate synergy
between Vam and the way Linux manages swap space, which holds
evicted pages on disk. We call this phenomenon swap prefetchabil-
ity and show that it leads to improved performance when paging.

2. Related Work
There has been extensive research on dynamic memory allocation.
In their well-known survey paper, Wilson et al. devote most of
their attention to the question of fragmentation, which they identify
as the most important metric for evaluating memory allocators [24].
Johnstone and Wilson in their subsequent studies evaluate a wide
range of allocation policies using actual C/C++ programs and ar-
gue that fragmentation is near zero, given a good choice of alloca-
tion policy [14, 15]. While they argue that reducing fragmentation
generally improves locality, we show that Vam’s approach is more
effective.
Most previous researchers have attacked the problem of local-

ity in memory allocation either by improving the locality of the
allocator itself or by using extra information such as programmer
hints or profiles to guide placement decisions. Grunwald and Zorn



investigate the locality impact of allocation algorithms by simulat-
ing caches using reference traces [12], and conclude that best-first
search allocation schemes are the primary culprit for poor alloca-
tor locality. Their benchmark suite is highly allocation-intensive,
causing locality effects in the allocator to dominate. Vam’s algo-
rithms focus instead on the effect of allocator data layout decisions
on the application’s overall locality, rather than on locality within
the allocator. Our benchmark suite of memory-intensive programs
is also less allocation-intensive, emphasizing the impact of alloca-
tor layout policies.
Chilimbi et al. describe ccmalloc, a memory allocator that

allows the programmer to help the allocator group objects with
temporal locality [11]. Truong et al. describe a memory alloca-
tor that separates the hot and cold fields of objects into different
cache lines [23]. Both of these approaches improve cache-level
locality but require programmer intervention. Vam’s approach is
largely orthogonal. Its use of the standard malloc interface al-
lows it to be used to improve the locality of unaltered programs.
It should be possible to build custom locality-improving allocators
like ccmalloc on top of Vam, but we do not investigate that pos-
sibility here.
Barrett and Zorn use a profile-based approach which predicts ob-

ject lifetime at allocation time and segregates these short-lived in
the heap [5]. Their system improves locality and space efficiency
while reducing allocation cost, but requires profiling and imposes
runtime overhead. Zorn and Seidl extend this approach by incor-
porating the reference behavior and lifetime prediction gathered
during profiling to guide memory allocation and improve virtual
memory performance [26, 22]. Their method also imposes some
runtime overhead, which may have an adverse effect on the appli-
cation performance. Vam’s approach avoids the need for profiling
and improves application performance both in the presence and ab-
sence of virtual memory paging.

3. General-Purpose Memory Allocators
Vam builds on previous allocator designs to achieve its goals of
high performance and improved application-level locality. The most
influential allocators in its design are DLmalloc, which focuses on
reducing fragmentation, PHKmalloc, which focuses on improving
page-level locality, and reaps, which provide high-speed allocation
and cache-level locality.

3.1 DLmalloc
DLmalloc is a widely-used malloc implementation written by Doug
Lea [18]. It forms the basis of the Linux memory allocator included
in the GNU C library. DLmalloc has been tuned over many years
and is widely considered to be both among the fastest and most
space-efficient allocators [8, 15]. The version we use in this study
is the latest release, version 2.7.2.
DLmalloc is an approximate best-fit allocator with different be-

havior based on object size. Small objects (less than 64 bytes) are
allocated from exact-size quicklists. Requests for a medium-sized
object (between 72 and 504 bytes) and certain other events trig-
ger DLmalloc to coalesce the objects in these quicklists (combin-
ing adjacent free objects) in the hope that this reclaimed space can
be reused for the medium-sized object. For medium-sized objects,
DLmalloc performs immediate coalescing and splitting (breaking
objects into smaller ones) and approximates best-fit. DLmalloc
manages large objects (between 512 and 128K bytes) similarly, but
places these in a group of free lists containing free chunks of a par-
ticular size range. These size ranges are logarithmically spaced and
DLmalloc sorts free chunks within each range by size, so that the
first chunk that fits is the best fit. Very large objects (128KB or
larger) are allocated and freed using mmap.

One notable implementation detail of DLmalloc common to other
allocators is that each object has a header that stores metadata con-
taining the object’s size and status. This metadata is also referred
as boundary tags and simplifies coalescing. Each object header
is an 8-byte chunk placed before the object. This space overhead
can become significant if an application allocates a large number
of small objects. Placing the header next to the object itself also
degrades data locality, because the header is only accessed by the
allocator and not by the application accessing the object [12]. In
other words, the header and the object have different access pat-
terns and frequencies and, if put in the same cache line, may lower
cache line utilization.

3.2 PHKmalloc
The PHKmalloc allocator was designed for the FreeBSD operating
system by Poul-Henning Kamp [16]. As far as we are aware, this
memory allocator has not previously been described in the litera-
ture. We describe the current version here (1.89).
Unlike DLmalloc, which disregards page boundaries, PHKmal-

loc’s design is page-oriented. The central design goal of PHKmal-
loc was to minimize the number of pages accessed by both the ap-
plication and the allocator [16]. The heap is a contiguous space
divided into 4K pages and a table stores the status of these pages
(empty or occupied). Every object on a page is the same size. This
organization allows PHKmalloc to avoid individual object head-
ers by storing metadata such as object size at the start of the page,
which can be located by bitmasking the object’s address. The meta-
data field also contains a bitmap to record the status of each object
(free or allocated). This technique of avoiding per-object headers is
sometimes referred to as a BIBOP-style organization (“Big Bag of
Pages” [13]) and has been employed by many memory managers,
including the Boehm-Demers-Weiser conservative garbage collec-
tor [10] and the Hoard multiprocessor memory allocator [6].
PHKmalloc distinguishes just two object size classes: small (less

than 2KB) and large (2KB or more). Like the BSD 4.2 (Kingsley)
allocator [24], PHKmalloc rounds up small object requests to the
nearest power of two and rounds large object requests up to the
nearest multiple of the page size; the remainder in the last page
is not reused. PHKmalloc keeps pages containing free space in a
doubly-linked list sorted by address order, implementing the policy
known as address-ordered first-fit.
PHKmalloc’s rounding-up of object sizes makes it susceptible to

considerable internal fragmentation (unused space inside of each
chunk) or page-internal fragmentation (unused space at the end of
the last page of a large object) [4]. In practice, the space saved
by eliminating individual object headers is largely offset by this
internal fragmentation.
On the other hand, using coarse size classes dramatically reduces

the number of free lists, allowing the quick reuse of freed chunks
and reducing external fragmentation. In some situations, this can
improve locality, as we show in Section 5.3 and Section 5.5.
A key advantage of PHKmalloc’s page-oriented design is that it

allows the allocator to discard empty pages via the madvise sys-
tem call. In this case, although this page is still mapped from the
kernel, the previously-allocated RAM space may be reclaimed by
the kernel and the contents do not need to be written back to swap.
The underlying physical page can thus be immediately reused. If
the page is touched again, the virtual memory manager will mate-
rialize a demand-zero page.

3.3 Reaps
Reaps are a combination of regions and heaps that extend region
semantics with individual object deletion [8]. A reap consists of a
chunk of memory, a “bump” pointer set to the start of the chunk,



and an associated heap. Allocation in a reap initially consists of
bumping its pointer through the chunk of memory. Reaps add
object headers to every allocated object. These headers contain
metadata that allow the object to be subsequently placed on the
heap. Reaps act like regions (performing pointer-bumping alloca-
tion) until a call to reapFree deletes an individual object. Reaps
place freed objects onto an associated heap. Subsequent allocations
from that reap use memory from the heap until it is exhausted, at
which point it reverts to region mode. Experimental results show
that reaps capture most of the performance of region allocators.

4. Vam
The key design goal for Vam was to enhance application-level lo-
cality at the cache and page level while delivering high performance
over a range of memory sizes. In particular, we wanted its perfor-
mance to exceed that of other fast allocators both when there is
enough physical memory to hold the entire heap and when physi-
cal memory is scarce.
We implemented Vam using Heap Layers, a C++-based infras-

tructure for building high-performance memory managers [7]. Fig-
ure 1 presents an example of Vam’s heap layout. The following is
an overview of Vam’s design, which we explore in detail in the rest
of this section.

Fine-grained size classes: Vam improves cache utilization by us-
ing exact size classes for objects up to 496 bytes in size, thus
eliminating internal fragmentation.

Page-based: Vam uses a page-oriented heap layout similar to PHK-
malloc, but uses a larger number of pages for large objects to
minimize page-internal fragmentation.

No object headers for small objects: Vam reduces cache pollution
by eliminating object headers for all objects under 128 bytes.

Reap allocation: Vam uses a variant of reap allocation in each
page to improve throughput and to enhance cache locality.

Ordered per-size allocation: Vammaintains non-full pages for each
small or medium size sorted in the order in which the pages
become non-full. This ordering improves locality and allows
new objects to fill the free space in the front, increasing the
likelihood that empty pages emerge from the end.

Aggressive discarding of empty pages: Whenever a page is made
empty, Vam gives it back to the virtual memory manager.

Approximate address-ordered first-fit at page-level: Vammain-
tains free pages in sorted order and preferentially allocates
from the front, improving performance when paging by in-
creasing swap prefetchability (Section 5.6).

4.1 Fine-Grained Size Classes
Like DLmalloc, Vam classifies object sizes into four categories:
small (below 128 bytes), medium (between 128 and 496 bytes),
large (between 504 bytes and 32KB), and extremely large (more
than 32KB). These size boundaries are tunable parameters in the
allocator. Each size class has two associated linked lists of blocks,
groups of pages containing objects dedicated to that size class. The
available list contains blocks with free space, while the full list
contains blocks with no remaining space.
To improve cache line utilization, Vam uses much finer size classes

than either DLmalloc or PHKmalloc. For small and medium ob-
jects, each size class is only 8 bytes apart. Fine-grained size classes
eliminate internal fragmentation by providing exact fits for small

and medium object allocation requests, since the C standard re-
quires that all objects returned by malloc be double-word (8-
byte) aligned. Reducing fragmentation for these objects is impor-
tant for improving overall cache utilization because most objects
are small or medium-sized. In our benchmarks, 89.6% of all ob-
jects requested are small and 6.4% are medium-sized.
Nonetheless, using coarser size classes could improve locality

of reference. A wider size range in each size class allows quicker
reuse of free space across these sizes, which could result in im-
proved cache locality and page-level locality. We have observed
this phenomenon in the 253.perlbmk benchmark.
4.2 Large and Extremely Large Objects
Like small and medium objects, large object size classes are only 8
bytes apart and each size class has a dedicated free list. Vam uses a
best-fit algorithm for large objects. It linearly searches the free list
table for the first non-empty list containing a chunk large enough
to satisfy the given size request. If the remaining space is large
enough to hold the smallest large object (i.e., 504 bytes), Vam splits
the chunk and places the remaining space onto the appropriate free
list.
This use of fine-grained size classes for large objects also im-

proves allocator-level locality. Because each size class provides an
exact fit, no search within the size class is needed for a best fit.
This can improve locality because such a search (as in DLmalloc)
may visit several free chunks before it finds a best fit and these free
chunks may be scattered in memory and have poor locality. Vam
only scans the free list table, which is a contiguous space and has
good locality. However, this linear scan may occasionally visit a
large number of table entries and flush caches. It is possible solve
this problem by hierarchically indexing into the table, but we have
not implemented this optimization.
Allocation requests for large objects are rare and often have poor

size locality. For example, applications may allocate large buffers
of varied lengths corresponding to file inputs. Vam collocates large
objects in memory regions shared by all these sizes and aggres-
sively coalesces free chunks in deallocation. This aggressive coa-
lescing reduces fragmentation, and for these large objects, the per-
byte cost for this coalescing is low.
Collocating large objects in large memory regions may have an-

other beneficial impact because it tends to align them randomly.
This alignment may reduce conflict misses. For example, if a pro-
gram accesses some field of one type much more frequently than
the other fields, and if the objects of that type are always regularly
aligned (e.g., at the page boundary), some cache lines may suffer
excessive conflict misses while others may be under-utilized. A
more random alignment can map such hot fields in large objects
more evenly.
Finally, Vam directly allocates extremely large objects from the

kernel via the mmap system call and frees them using munmap.

4.3 Page-Based Heap Management
Vam allocates small and medium-sized objects from page-aligned
blocks similarly to PHKmalloc. A block is one page for small
objects. For medium objects, it is four pages; this reduces page-
internal fragmentation at the end of the block [4]. Each block is
divided into equal-sized chunks. This division makes it impossible
to fragment memory inside a block.
We note that, in principle, segregating objects of different sizes

could harm locality by preventing adjacent allocation of temporally-
local objects of different sizes. This potential cost must be weighed
against the locality and space benefit of eliminating external frag-
mentation. Wilson and others have observed a strong skew towards
a small number of size classes, increasing the odds that temporally-
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Figure 1: An example of Vam’s heap layout (see Section 4).

local objects will be of the same size [14, 24].

4.4 Elimination of Object Headers for Small Objects
Like PHKmalloc, Vam uses the BIBOP technique to eliminate indi-
vidual object headers and locates metadata at the beginning of each
block. Vam uses this approach only for small objects, because the
resulting space savings and locality improvement are most signifi-
cant for small objects. Larger objects each have per-object headers,
simplifying coalescing. To distinguish the two cases, Vam parti-
tions the entire address space into 16MB regions and uses a table
to record the type of objects in each region. Because a one-byte flag
is enough to hold the information for each region, this table is only
256 bytes for a 4GB address space. Although every object deallo-
cation needs to perform a conditional check on the corresponding
entry in this table, these checks have very good locality. Since most
objects do not have headers, this branch is also highly predictable.

4.5 Reap Allocation
Unlike PHKmalloc, Vam does not use per-block bitmaps to track
which objects are free or allocated. Instead, it uses a cheaper pointer-
bumping allocation until the end of the block is reached. It then
reuses objects from a free list for that block. This technique is a
variant of reap allocation [8]. The original reap algorithm adds per-
object headers and employs a full-blown heap implementation to
manage freed objects. Vam instead manages its (headerless) free
objects by threading a linked list through them. Vam’s use of a
single size class per block ensures that this approach does not lead
to external fragmentation. Pointer-bumping also improves cache
locality by maintaining allocation order.

4.6 Ordered Per-Size Allocation
Tominimize misses, Vam preferentially allocates objects from recently-
accessed blocks. It allocates from the first block in the available list

until the block becomes full. It then moves the block to the full list
and uses the next block in the available list, creating one if none ex-
ists. Vam places freed objects onto the appropriate per-block free
list for reuse. When an object is freed to a previously-full block,
Vam moves the block from the full list to the front of the available
list. This page-level ordering ensures that new objects always fill
free space on the page in the front of the available list and increases
the chance that pages near the end become entirely free.
PHKmalloc uses a similar approach, but sorts non-full pages in

increasing address order. We do not use address order because the
sorting operation is costly.

4.7 Aggressive Discarding of Pages
Blocks of small-to-medium objects and regions of large objects are
all multiples of pages. In Vam, a page manager manages these
pages, by recording status information for each page in a page de-
scriptor table and keeping consecutive free pages in a set of free
lists.
Vam uses the madvise call to discard blocks of small and medium

objects whenever they become empty. For large objects, Vam dis-
cards empty pages inside the large object memory region. As de-
scribed above, Vam releases all extremely large objects upon free
by a call to munmap.
This strategy reduces application footprint and can greatly re-

duce paging when under memory pressure. However, aggressive
discarding of pages does add some runtime overhead. Each page
discard requires one system call. When the page is later reused,
there is a cost in reassigning a physical page to the free page in the
kernel (soft page fault handling and page zeroing). In fact, these
overheads are very low in practice, thanks to the efficient imple-
mentation of system calls and soft page handling in the Linux ker-
nel. We would prefer to discard pages only in response to memory



176.gcc 197.parser 253.perlbmk 255.vortex
Execution Time 24s 280s 42s 50s
Instructions 40G 424G 114G 101G
VM Size 130MB 15MB 120MB 65MB

Max Live Size 110MB 10MB 90MB 45MB
Total Allocations 9M 788M 5.4M 1.5M
Alloc. Rate (#/sec) 373K 2813K 129K 30K
Avg. Size (bytes) 52 21 285 471

Table 1: CPU and memory allocation statistics of memory-
intensive CPU2000 benchmarks, run with DLmalloc.

scarcity, but this feature is not supported by the current kernel.

5. Experimental Evaluation
To evaluate the efficacy of Vam’s design, we sought to answer the
following questions:

• Does Vam reduce total application execution time?

• Does Vam increase cache-level locality?

• What is the effect of Vam’s policies on fragmentation?

• Under memory pressure, does Vam reduce paging?

To answer these questions, we use the four memory-intensive ap-
plications from the SPEC CPU2000 benchmark suite [2]: 176.gcc,
197.parser, 253.perlbmk, and 255.vortex. The other benchmarks
in the suite either use very little memory or only allocate mem-
ory at the start of execution [3]. For those applications, the choice
of allocator has essentially no impact. Whenever multiple inputs
were available, we use the reference input that consumes the most
memory. These are scilab.i, ref.in, splitmail.pl 850 5 19 18 1500,
and lendian1.raw, respectively. Table 1 summarizes the benchmark
CPU and memory allocation statistics.
The original 176.gcc and 197.parser applications use custom

memory allocators: 176.gcc uses obstacks and 197.parser uses
a custom allocator called xalloc [8]. The use of custom allocation
means that the original applications make only occasional calls to
malloc. We create versions of these applications that use general-
purpose memory allocators. We can replace 197.parser’s custom
allocator directly because xalloc has the same interface and seman-
tics as mallocand free. This replacement decreases the max-
imum virtual memory requirements of 197.parser from 30MB
to 15MB. The obstack allocator has a different interface and se-
mantics than the general-purpose memory allocator. To replace
it, we use an obstack layer that directly invokes malloc for in-
dividual objects [8]. This layer requires additional metadata and
thus increases 176.gcc’s peak memory usage from 85MB to about
130MB.
We use a Dell Optiplex SX270 as our experimental platform

(3.0GHz Pentium 4, 1GBRAM, 40GB 5400RPM hard drive, Linux
version 2.4.24). The Pentium 4 has an 8KB L1 data cache (64-
byte cache lines, 4-way set-associative) and a 512KB L2 cache
(64-byte cache lines, 8-way set-associative). All memory alloca-
tors are compiled into shared libraries at the highest optimization
level with gcc version 3.2.2 and preloaded into memory before the
applications start using LD PRELOAD.
We measure total execution time using /usr/bin/time, and

measure instructions retired, L1/L2 cache misses, and data TLB
misses using the Pentium 4’s on-chip performance counters. We
use the perfctr patch for Linux and the perfex tool [19] to set the
performance counters according to the manufacturer’s manual [1].

Run Time (normalized)
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176.gcc 197.parser 253.perlbmk 255.vortex GEOMEAN

DLmalloc PHKmalloc Vam Custom

Figure 2: Total execution time, normalized to DLmalloc.

We run each experiment five times and report the median. To min-
imize variance, we perform all experiments with the machine in
single-user mode.

5.1 Total Execution Time
Figure 2 presents total execution time results. Vam consistently
improves application performance over both PHKmalloc and DL-
malloc. Vam’s improvement over PHKmalloc ranges from 1–8%,
and improves over DLmalloc by 1–23%. On average, Vam is 4%
and 8% faster than PHKmalloc and DLmalloc, respectively. The
custom memory allocators in 176.gcc and 197.parser are faster
than the general-purpose ones: the obstack allocator in 176.gcc is
8% faster than DLmalloc and the xalloc allocator in 197.parser
is 23% faster. These allocators improve performance because both
applications are very allocation intensive (see Table 1). In fact,
197.parser is so allocation-intensive that the number of cycles ex-
ecuted by the allocator dictates its performance. We attribute the
difference between this result and that obtained by Berger et al. [8]
(showing a smaller gap between DLmalloc and xalloc) to our use
of shared objects for the allocators, which precludes link-time op-
timizations.

5.2 Cache Locality

L1 Locality
We measure both L1 and L2 cache locality for the different alloca-
tors. Figure 3(a) shows L1 cache misses using different allocators
normalized to DLmalloc. Vam reduces L1 cache misses for two
of the four benchmarks. We attribute this result to Vam’s reduc-
tion of internal fragmentation and elimination of object headers.
Vam significantly increases L1 cache misses for one benchmark,
253.perlbmk. This benchmark allocates from a wide range of
sizes, and Vam’s use of fine-grained size classes causes more cache
traffic than DLmalloc. However, this result is somewhat mislead-
ing: 253.perlbmk’s L1 cache miss rate is very low for all alloca-
tors, and so has very little impact on total execution time.
PHKmalloc increases L1 cache misses in three of the four bench-

marks. We attribute this to the internal fragmentation from PHK-
malloc’s coarse size classes. The only benchmark for which PHK-
malloc reduces L1 cache misses is 197.parser, which primarily
allocates small objects, and the dominant object sizes are 8, 16
and 24 bytes. These objects fit into PHKmalloc’s power-of-two
size classes with little fragmentation, and the lack of object head-
ers leads to efficient cache line utilization both for PHKmalloc and
for Vam.
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Figure 3: Cache-level locality results.

Variant Description
PHK sc size classes every 8 bytes instead of 2x

PHK reap replaces bitmap operations with reap al-
location [8]

PHK sc reap combines PHK sc and PHK reap
Vam small+header adds 8-byte headers to small objects
Vam bitmap replaces reap allocation with bitmap op-

erations for small and medium objects

Table 2: Variants of PHKmalloc and Vam (see Section 5.3).

L2 Locality
Both Vam and PHKmalloc significantly reduce L2 cache misses
over DLmalloc, as Figure 3(b) shows. On average, Vam reduces
L2 cache misses by 39% over DLmalloc. This cache-level locality
improvement is more significant in 253.perlbmk and 255.vortex
than in 176.gcc and 197.parser. For 176.gcc, the obstack allo-
cator produces the fewest cache misses. This result is partially due
to the extra metadata required to simulate obstack semantics. Un-
like L1 locality, the L2 cache performance is strongly correlated to
application run time performance. However, PHKmalloc’s locality
improvement is offset by its excessive number of instructions, par-
ticularly in 197.parser. We also measured data TLB misses, and
these exhibit nearly identical trends, so we do not report them here.
Summary: Vam generally provides better L1 cache locality than
the other allocators. The use of a page-oriented heap layout im-
proves L2 cache locality for both PHKmalloc and Vam, although
Vam’s improvement is somewhat greater.

5.3 Performance of Allocator Variants
To evaluate the effects of Vam’s design decisions, we developed
several variants of both PHKmalloc and Vam, summarized in Ta-
ble 2. These variants let us quantify the impact of the choice of
fine-grained size classes and reap-based allocation. Figures 4 and 5
present the L2 cache misses, instruction counts and run time perfor-
mance of these PHKmalloc and Vam variants. Note that the results
are normalized to their respective original versions, i.e., PHKmal-
loc variants are normalized to PHKmalloc and Vam variants are
normalized to Vam.

Impact of Size Classes and Reaps: PHKmalloc
As Figure 4(a) shows, PHK sc (fine-grained size classes) reduces
cache misses in three of the four benchmarks. The exception is
253.perlbmk, which uses much more different sizes than the other

benchmarks. The coarser size classes in the original PHKmalloc
allows quicker reuse of freed space within each size class, yielding
better cache locality. Although this PHKmalloc variant’s changes
in cache misses do not notably affect the overall run times shown
in Figure 4(c), it greatly improves the space efficiency over the
original allocator and achieves better VM performance when un-
der memory pressure.
PHK reap (replacing bitmap operations with reap allocation) re-

duces instructions executed by 14% for 197.parser and runs 10%
faster than the original PHKmalloc. On average, this variant im-
proves application performance by 3%. However, because this
modification adds extra memory accesses, it also increases L2 cache
misses for most of the benchmarks (except 255.vortex). This in-
crease is the greatest for 253.perlbmk. However, because the abso-
lute number of misses is quite small for 253.perlbmk, these extra
misses do not affect run time.
The PHK sc reap variant, combining the changes in PHK sc and

PHK reap, shows that these improvements are generally comple-
mentary. On average, this variant improves run time performance
by 4%. It notably reduces cache misses in 197.parser and 255.vor-
tex and instructions in 176.gcc and 197.parser.

Impact of Headers and Bitmaps: Vam
Figures 5(a) and 5(c) show that adding headers to the small objects
in Vam results in an average increase in L2 cache misses of 15%
and a 3% increase in run times. The impact of adding headers is the
greatest for 197.parser, increasing run time by 10%. The average
object size in 197.parser is only 21 bytes and the extra headers
substantially increase its working set.
Figure 5(b) shows that the Vam bitmap variant significantly in-

creases the number of instructions executed in 197.parser. On
average, this Vam variant reduces L2 cache misses by 2% and in-
creases the instructions by 2%, resulting in a 2% increase in run
time.
Summary: The use of fine-grained size classes and elimination of
object headers generally improve cache locality and reduce total
runtime. The choice between bitmap operations and reap-like allo-
cation is a trade-off. Vam currently uses reaps, but trading CPU in-
structions for fewer memory accesses during allocation may even-
tually prove more beneficial.

5.4 Fragmentation
We evaluate the effect of allocator design on memory fragmenta-
tion. We define fragmentation as the maximum number of pages
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Figure 4: Comparison of PHKmalloc variants, normalized to the original.
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Figure 6: Fragmentation results.

in use divided by the maximum amount of memory (in pages) re-
quested by the application. In-use pages are those mapped from
the kernel and touched, but not discarded. Pages mapped but never
touched do not have physical space allocated; discarded pages have
their previously-allocated memory reclaimed. This view of appli-
cation memory usage is from the VM manager’s perspective and,
we believe, better reflects the actual resource consumption.
We compare four allocators here: DLmalloc, PHKmalloc, Vam

and the PHK sc variant of PHKmalloc. Figure 6 shows the results.
We were surprised to see that DLmalloc, an allocator known for
low fragmentation, in fact leads to the highest fragmentation on av-
erage. The first reason for this is the space overhead of per-object
headers. More importantly, DLmalloc is unable to distinguish and
discard any free pages it may have. PHKmalloc overcomes both of
these shortcomings. However, its coarse size classes lead to internal

fragmentation that negates its other advantages. Our PHK sc vari-
ant uses fine-grained size classes and on average, yields the lowest
fragmentation. Vam combines these fragmentation-reducing fea-
tures and nearly matches PHK sc’s low fragmentation.

5.5 Performance While Paging
To evaluate the effect of limited physical memory, we launch a pro-
cess that pins down a specified amount of RAM, leaving the desired
amount of available RAM for the benchmark applications.
Figures 7(a) through 7(d) show the run times of the four SPEC

benchmarks under a range of available RAM sizes, using different
memory allocators. The rightmost point of each line shows the run
time of the application with sufficient RAM to run without paging.
As available memory is reduced (moving left), application perfor-
mance degrades. This performance degradation is markedly differ-
ent with different memory allocators, except for 176.gcc, where all
the allocators degrade similarly with reduced RAM. For all other
benchmark applications, Vam delivers the best performance across
a wide range of available RAM.
Recall that for 176.gcc, we needed to add extra metadata to sim-

ulate the obstack semantics with general-purpose allocators. The
original obstack allocator thus performs better than the general-
purpose allocators when RAM is scarce. Nonetheless, all of the
general-purpose allocators similarly preserve the application local-
ity because of the clustered allocations and deallocations in 176.gcc.
The slight difference between these allocators is largely due to their
respective space efficiency, for which the original obstack custom
allocator is the best.
The story is different for the other custom allocator. As Fig-

ure 7(b) shows, 197.parser’s custom allocator (xalloc) requires
substantially more RAM to avoid paging and performs much worse
than the general-purpose allocators as available RAM is reduced.
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Figure 7: Performance using different memory allocators over a range of available RAM sizes.

This poor performance is due to a limitation in xalloc. Unlike the
general-purpose allocators, xalloc can not reuse heap space imme-
diately after objects are freed. Instead, it must wait until consec-
utive objects at the end of the heap are all free, at which point it
reuses memory from after the last object in use. While this strat-
egy is effective when physical memory is ample, under memory
pressure, it degrades performance dramatically.
Figure 7(c) and Figure 7(d) highlight the effectiveness of both

PHKmalloc’s and Vam’s page discarding algorithms. DLmalloc
suffers a 5x slowdown when available physical memory is reduced
to 80MB for 253.perlbmk, while PHKmalloc and Vam suffer the
same slowdown only after just 30MB RAM remains. With both
of those allocators, 253.perlbmk exhibits a more graceful perfor-
mance degradation than when using DLmalloc. For 255.vortex,
Vam performs better than the other two allocators over all avail-
able RAM sizes we tested. DLmalloc required about 6MB more
available RAM to achieve Vam’s performance. Only the page dis-
carding algorithms play a role here: 255.vortex’s average object
size is 471 bytes, so DLmalloc’s 8-byte object headers have little
impact.
We note that, for 253.perlbmk, PHKmalloc degrades perfor-

mance slightly less than Vam when available RAM is less than
60MB. This is, again, because PHKmalloc’s coarse size classes re-
sult in locality improvement for this particular benchmark in some
situations. We also run 253.perlbmk with the PHK sc variant and
the performance degradation curve is then very close to that of Vam

across all memory sizes.

5.6 Page-Level Locality
In this section, we explore the effect of allocator choice on applica-
tion page-level locality in more detail by using an LRU simulator
and page-level reference traces. We first gather application page-
level references into the heap using a tool that intercepts system
memory calls (brk, sbrk, mmap, munmap, and madvise) to
keep track of heap pages currently mapped from the kernel and
traps memory references by page protection. We use the SAD
(Safely-Allowed-Drop) algorithm to reduce the trace to a manage-
able size [17].
We then use run these traces through an LRU simulator to gen-

erate page miss curves that indicate the number of misses (page
faults) that would arise for every possible size of available mem-
ory. While no real system implements LRU, many systems closely
approximate it, including the Linux kernel we use here. Our LRU
simulator is similar to that described by Yang et al. [25]. We use
placeholders in the LRU queue for pages discarded by madvise,
in addition to pages unmapped by munmap/sbrk. These place-
holders allow us to more accurately approximate a real VM system.
We compare the miss curves generated from the simulator with

the actual page faults. The actual page faults are the major (hard)
page faults measured in the experiments we described in Section 5.5.
For two of our benchmarks, 197.parser and 255.vortex, the sim-
ulated miss curves are nearly the same as the actual page faults
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Figure 8: Predicted page miss curves versus actual major (page) faults in a real system with prefetching.

(except for the xalloc custom allocator in 197.parser).
However, for 176.gcc and 253.perlbmk, the actual page faults

are far fewer than the simulated ones, as Figure 8 shows. For
example, for 176.gcc with 40MB of RAM, the simulated faults
are around 40,000 while the actual page faults measured are un-
der 10,000. This inconsistency is due to the swap prefetching used
by the Linux VM manager but not in our simulator. In addition
to swapping in non-resident pages into RAM whenever they are
accessed, the Linux virtual memory manager also speculatively
prefetches adjacent pages on the swap disk. To verify this, we turn
off prefetching in the kernel, and re-run the paging experiments.
The actual number of page faults then closely matches the simu-
lated results for all benchmarks and allocators.

Swap Prefetchability
The effectiveness of prefetching is determined by the locality of
page misses on the swap disk. If page misses require contiguous
pages on the swap disk to be swapped in, prefetching will be ef-
fective. Page allocation on the swap disk is managed by the virtual
memory manager. . The Linux virtual manager attempts to cluster
pages that are adjacent in virtual address space to store them con-
tiguously on disk [9]. For this reason, the application’s locality of
reference affects the effectiveness of prefetching in the kernel when
the system is paging.
We investigate the effect of different allocators on application
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Figure 9: Swap prefetchability: each bar shows simulated
prefetchable misses (top) and non-prefetchable misses (bot-
tom).

locality by measuring this swap prefetchability. We measure this
by quantifying the locality of page misses. We gather those ap-
plication’s page references that would result in a miss for a given
memory size in the LRU simulation. We then feed this page miss
trace to a page miss adjacency calculator. This calculator measures
the minimum distance (in pages) between the current miss and the
previous N misses. The N parameter roughly models the mem-
ory buffer size for prefetching in the VM manager. We set N to
32, meaning that the last 32 prefetches can be buffered. We de-
note page misses that have a minimum distance to the previous 32
misses of no more than 8 pages (the Linux default prefetch size) as
prefetchable misses. The remaining misses are non-prefetchable.
Figure 9 presents our swap prefetchability results for different

allocators with specific memory sizes noted on the figure. For
176.gcc and across all allocators, as many as 90% of the misses
are prefetchable. This prefetchability is due to 176.gcc’s strong lo-
cality in obstack-style memory allocation. The original version of
197.parser (using xalloc) also exhibits this strong locality. How-
ever, this locality is less well preserved in the general-purpose al-
locators, although among these, Vam leads to the greatest prefetch-
ability. With PHKmalloc and Vam, 253.perlbmk has very few
non-prefetchable misses – over 90% of the misses are prefetch-
able. However, it has a large number of non-prefetchable misses
with DLmalloc and only 64% of the misses are prefetchable. This
result demonstrates that 253.perlbmk’s data locality is better pre-
served by PHKmalloc and Vam than by DLmalloc. 255.vortex has
much less prefetchability than the other applications: about 50%
of the misses are non-prefetchable with PHKmalloc and Vam, and
66% with DLmalloc. In fact, 255.vortex’s poor page-level local-
ity is also reflected in the very steep VM performance degradation
curves in Figure 7(d) and simulated miss curves. This occurs either
because 255.vortex’s data locality is instrinsically poor or because
it is not preserved by any of the allocators.
Note that this prefetchability calculation assumes an ideal prefetch-

ing scenario. The real VM manager may not actually be able to
prefetch all the prefetchable misses. Nevertheless, they appear to
reflect observed application performance on a real system. We at-
tribute the improved prefetchability in PHKmalloc and Vam to their
page-oriented design and address-ordered first-fit allocation at the
page level.

6. Conclusions
In this paper, we present Vam, a memory allocator that builds on
previous allocator designs to improve data locality and provide high



performance while reducing fragmentation. We show that, com-
pared to the Linux and FreeBSD allocators and over a suite of
memory-intensive benchmarks, Vam improves application perfor-
mance by an average of 4–8% when memory is plentiful, and by
factors ranging from 2X to over 10Xwhenmemory is scarce. Vam’s
performance degrades gracefully as physical memory becomes scarce
and paging begins. We explore the impact of Vam’s design deci-
sions and find that its fine-grained size classes, reap-like allocation,
and page-oriented design all contribute to its effectiveness. We also
find that a synergy between Vam’s design and the Linux swap space
clustering algorithm leads to improved disk prefetching when pag-
ing.
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