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A Probabilistic Upper Bound on
Differential Entropy

Joseph DeStefano, Qifeng Lu and Erik Learned-Miller

Abstract—The differential entropy is a quantity employed
ubiquitously in communications, statistical learning, physics, and
many other fields. We present, to our knowledge, the first
non-trivial probabilistic upper bound on the entropy of an
unknown one-dimensional distribution, given the support of the
distribution and a sample from that distribution. The bound is
completely general in that it does not depend in any way on the
form of the unknown distribution (among other things, it does
not require that the distribution have a density). Our bound uses
previous distribution-free bounds on the cumulative distribution
function of a random variable given a sample of that variable.
We provide a simple, fast, and intuitive algorithm for computing
the entropy bound from a sample.

I. INTRODUCTION

Let X be a one-dimensional random variable with dis-
tribution F(x) and support [yL,yR]. For our purposes, the
distribution need not have a density. However, if a density
exists, we will refer to it as f (x).
If a density exists, Shannon’s differential entropy of X is

defined to be

H(X) = −
Z !

−!
f (x) log f (x) dx. (1)

If there are discontinuities in the distribution function F(x),
then no density exists and the entropy is −!.
It is well known [2] that the entropy of a distribution

with support [yL,yR] is at most log(yR − yL), which is the
entropy of the distribution that is uniform over the support.
Given a sample of size n from an unknown distribution with
this support, we cannot rule out with certainty the possibility
that this sample came from the uniform distribution over this
interval. Thus, we cannot hope to improve a deterministic
upper bound on the entropy over such an interval when nothing
more is known about the distribution.
However, given a sample from an unknown distribution, we

can say that it is unlikely to have come from a distribution with
entropy greater than some value. In this paper, we formalize
this notion and give a specific, probabilistic upper bound
for the entropy of an unknown distribution using both the
support of the distribution and a sample of this distribution.
To our knowledge, this is the first non-trivial upper bound
on differential entropy which incorporates information from a
sample and can be applied to any one-dimensional probability
distribution.
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Fig. 1. This figure shows a typical empirical cumulative distribution (blue).
The red stars, which we call pegs, show us the probabilistic bounds provided
by Equation 2 on the true cumulative. The green curve shows a possibility for
the true cumulative distribution that satisfies the constraints of Equation 2.

II. THE BOUND

Given n samples,1 x1 through xn, from an unknown dis-
tribution F(x), we seek a bound for the entropy of F . Our
approach will primarily be concerned with the order statistics2
of that sample, y1 through yn. We assume that the distribution
has finite support and that we know this support. For ease
of exposition, we label the left support y0 and the right
support yn+1 making the support values act like additional
order statistics of the sample. But this is done merely for
notational convenience and does not imply in any way that
these are real samples of the random variable.
We start with a bound due to Dvoretzky, Kiefer, and

Wolfowitz [4] on the supremum of the distance between the
empirical n-sample cumulative, Fn(x), and the true distribu-
tion:

P(sup
x
|F(x)−Fn(x)| > ") ≤ 2e−2n"2 ≡ #. (2)

Thus, with probability at least #, the true cumulative does
not differ from the empirical cumulative by more than ". This

1We will assume for the remainder of the paper that n ≥ 3, as this will
simplify certain analyses.
2The order statistics y1,y2, ...,yn of a sample x1,x2, ...,xn are simply the

values in the sample arranged in non-decreasing order. Hence, y1 is the
minimum sample value, y2 the next largest value, and so on.



2

is a distribution-free bound. That is, it is valid for any one-
dimensional probability distribution. For background on such
bounds and their uses, see [3].
There is a family of cumulative distribution curves C which

fit the constraints of this bound, and with probability at least
#, the true cumulative must be one of these curves. If we
can find the curve in C with maximum entropy and compute
its entropy, then we have confidence at least # that the true
entropy is less than or equal to the entropy of this maximum
entropy distribution.
Figure 1 shows the relationship between the empirical

cumulative and the bounds provided by (2). The piecewise
constant blue curve is the empirical cumulative distribution
based on the sample. The red stars show the upper and lower
bounds on the true cumulative for some particular ". The green
curve shows one possibility for the true cumulative distribution
that satisfies the probabilisitic constraints of Equation 2. Our
goal is to find, of all cumulative distributions which satisfy
these constraints the one with the greatest entropy, and then
to calculate the entropy of this maximum entropy distribution.
Note that in figure 1, as in all the figures presented, a very

small sample size is used to keep the figures legible. As can
be seen from equation 3, below, this results in a loose bound.
In practice, a larger value for n drives the bound much closer
to the emirical cumulative (with " tending to zero), with a
corresponding improvement in the resulting entropy bound.
For a desired confidence level #, we can compute a corre-

sponding " from Eq. 2 that meets that level:

"=

√

−
ln 1−#2
2n

. (3)

We conclude that with probability #, the true distribution lies
within this " of the empirical distribution at all x.

A. Pegs
The points ui = (yi, i

n+1+") (resp. li = (yi, i
n+1−")) describe

a piecewise linear function Fu (resp., Fl) marking the proba-
bilistic upper (resp., lower) boundary of the true cumulative
F . We call these points the upper (lower) pegs, and note that
we clip them to the range [0,1]. Also, our knowledge of the
support of the distribution allows us to take u0 = l0 = (y0,0)
and un+1 = ln+1 = (yn+1,1).
The largest of the entropies of all distributions that fall

within " of the empirical cumulative (i.e., entirely between Fu
and Fl) provides our desired upper bound on the entropy of
the true distribution, again with probability #. The distribution
that achieves this entropy we call FM .
To illustrate what such a distribution looks like, one can

imagine a loose string threaded between each pair of pegs
placed at the ui and li, as in Figure 2. When the ends are
pulled tight, the string traces out a distribution which, as we
show below, has the greatest possible entropy of all such
distributions. Since this distribution turns out to be piecewise
linear, its entropy, which again is the probability-# bound on
the true entropy, is easily computed.
It is interesting to note that extreme values of " correspond

to the empirical distribution itself (" = 0), and to the naı̈ve
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Fig. 2. Pulling tight the ends of a loose string (the green line) threaded
through the pegs will cause the string to trace out the maximum-entropy
distribution that satisfies the bound (2).
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Fig. 3. This figure shows the maximum entropy cumulative distribution which
fits the constraints of the Dvoretzky-Kiefer-Wolfowitz inequality for the given
empirical cumulative distribution. Notice that the cumulative is piecewise
linear, implying a piecewise constant density function. With probability at
least #, the true cumulative distribution F has entropy less than or equal to
this maximum entropy distribution.

entropy estimate of log(yn−y1) ("= 1), so in some sense our
algorithm produces a bound between these two extremes.

III. THE STRING-TIGHTENING ALGORITHM
We first develop several properties of FM that provide the

basis for our algorithm, which we call the string-tightening
algorithm.
Lemma 1: FM is linear between consecutive order statistics.
Proof: Although the true distribution may have dis-

continuities, the entropy of any such distibution is −!. We
therefore can restrict our search for FM to those distributions
with densities.
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First we must show that the bound (2) allows FM to be
linear. That is, we must show that the curve between two
consecutive order statistics is not restricted by the bound so
that it cannot be linear. To do this, it suffices to show that the
bound " is always larger than the step size 1n in the cumulative
distribution. The bound is minimum when #= 0, so we have

" ≥

√

−
ln 1−02
2n

≈ .5887√
n

>
1
n
,∀n≥ 3.

Given that it can be linear, we next show that it must be
linear between consecutive order statistics. The proof is by
contradiction. Suppose that between two consecutive order
statistics, yi and yi+1, FM is not linear.
Note that the entropy function is separable into integrals

over the region of interest [yi,yi+1] and the remainder of the
real line [yi,yi+1]:

H(FM) = −
Z yi+1

yi
fM(x) log fM(x)dx

−
Z

[yi,yi+1]
fM(x) log fM(x)dx.

Because of this separability, conditioned on specific values
for fM(yi) and fM(yi+1), fM must maximize each of the terms
above separately.
Let F be the set of all monotonic non-decreasing functions

over [yi,yi+1] such that if f ∈ F , then f (yi) = fM(yi) and
f (yi+1) = fM(yi+1). Also, let C = fM(yi+1)− fM(yi). Then

argmax
f∈F

−
Z yi+1

yi
f (x) log f (x)dx (4)

= argmax
f∈F

−
Z yi+1

yi
f (x) [log f (x)− log(C)]dx (5)

= argmax
f∈F

−
Z yi+1

yi
f (x) log

f (x)
C

dx (6)

= argmax
f∈F

−
Z yi+1

yi

f (x)
C

log
f (x)
C

dx. (7)

.
The last expression is just the entropy of the distribution

g(x) = f (x)
C , which is a properly normalized probability dis-

tribution over [yi,yi+1]. It is well-known [2] that g(x) must
be uniform to maximize entropy over a finite interval. This
in turn, implies that f (x) must be uniform to maximize
(4). Hence, if FM is not linear between yi and yi+1 then it
cannot be the entropy maximizing distribution, contradicting
our assumption.
Thus FM is piecewise linear, with any “bends”, or changes

in slope, occuring only at the sample points. Intuitively, as
the string is tightened, it is clear that these slope changes can
occur only at the pegs, which we formalize here.
Lemma 2: An increase (decrease) in slope of FM can occur

only at the upper (lower) peg of a sample.
Proof: By contradiction. Suppose that there are two

connected segments of FM , (yi−1,a) − (yi,b) and (yi,b) −
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Fig. 4. The upper and lower candidate pegs define a wedge. The first
subsequent pair of pegs that are both on one side of the wedge determine
whether FM must bend down at the lower candidate, or bend up at the upper
candidate.

(yi+1,c), with ui > b and b below the segment (yi−1,a)−
(yi+1,c) (i.e., the slope increases at (yi,b)). Then there is
an interval [yi − $,yi + $], $ > 0 where the line segment
FM(yi− $)−FM(yi + $) lies entirely between Fl and Fu. The
argument of lemma 1 shows that this segment maximizes the
entropy on [yi−$,yi+$], and thus FM , being maximal, cannot
pass through (yi,b), contradicting the assumption. A similar
argument applies for a decrease in slope.
Thus FM is completely described by the sequence of pegs

that it touches, which we call the knot points. The string-
tightening algorithm is a left-to-right search for knot points,
starting with the known first knot, l0, as follows.
Given a knot K (except the last knot, un+1), we define a

reachable peg as any peg P to the right of K for which the
segment KP is contained between Fl and Fu. The candidate
upper (lower) peg is the rightmost upper (lower) reachable peg
(i.e., the one with highest index). Lemma 2 ensures that one
of these two candidates must be the next knot to follow K.
If the upper candidate is un+1, it is added as the final knot.
Otherwise, to determine which is the knot, consider all the
pegs to the right of the two candidates. As shown in figure 4,
the rays from the knot to the upper and lower candidate pegs
define a wedge, and for each sample yi to the right of the
candidates, neither of the pair of pegs ui or li can lie within
that wedge (by the definition of the candidates as the rightmost
such pegs).3 Since un+1 = ln+1, there must be a at least one
pair of pegs that are both on one side of the wedge. Let j be the
smallest index of all such pairs. If l j is above the wedge, then
the slope of FM must increase after passing the upper candidate
in order to pass between l j and u j; thus by Lemma 2 the
candidate upper peg is the next knot. Otherwise, the candidate
lower peg is the next knot.

3In general, the upper and lower candidates can have different indices, i.e.,
one of them may be further “right” than the other.
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Fig. 5. Bound (2) is too loose near the edges.

This process is repeated until the final knot, un+1 is added.
The segments connecting the knots form FM . Its entropy,
which is our probability-# bound on the entropy of the true
distribution F , is easily computed from the spacings of the
knots and the slopes of the segments between them, since fM
is piecewise constant. Writing the knot Ki as (ai,bi), we have

HM = −%(bi+1−bi) log
bi+1−bi
ai+1−ai

. (8)

IV. A TIGHTER BOUND
The bound on the distribution provided by (2) allows for

the same degree of uncertainty at all points. Intuitively, it
seems we should be able to bound the distribution more tightly
near the ends of the support than in the middle. For empirical
support of this intuition, we generated 10000 experiments with
100 samples each from a known distribution, and recorded
which of the order statistics were outside the bound (2) for
#= 0.95. The histogram of this data in figure 5 clearly shows
that the bound provided by (2) is not as tight as it could be
near the ends of the distribution: One would expect that a
bound that was as tight as possible everywhere would miss
equally often at all points.
To tighten the bound, we use the fact that for samples

xi from a distribution F(x), the values F(xi) are uniformly
distributed on [0,1] [5]. Therefore the value of F(yi) has the
same distribution as the i-th order statistic of a uniformly
distributed sample, i.e., it is beta distributed with paramters
i and n− i+ 1 [1]. Its mean is i

n+1 , or Fn(yi). One could, in
principle, determine intervals (ai,bi) such that

P(∀i F(yi) ∈ (ai,bi)) = # (9)

for a given #, and for which

∀i P(F(yi) /∈ (ai,bi)) = Q

for some constant Q. Using these as the pegs (i.e., taking li = ai
and ui = bi) would then flatten out the histogram.
Given the combinatoric nature of the joint distribution of

order statistics, an exact computation of these bounds is
likely to be intractable. We instead determine useful intervals
empirically by choosing a value of Q, selecting bounds based

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. Empirically generated bounds are tighter than those given by the
bound (2). The jagged line is one of the many possible cumulatives that
satisfy the bounds.

on the beta distribution of each order statistic, and verifying
that the fraction of a large number randomly generated samples
that fall entirely within those bounds is at least #.
Were the order statistics independent, one would have to

choose an interval that gave P(F(yi) ∈ (ai,bi)) = #
1
n in order

to satisfy equation (9). However, since they are strongly
dependent, a much smaller value will suffice. We found that
using intervals such that P(F(yi) ∈ (ai,bi)) = 0.999 produced
an effective probability #= 0.97 that all the order statistics are
within their intervals simultaneously. The nature of the beta-
distributions of each statistic results in these intervals being
very narrow near the edges, and very close to " (from (2))
near the middle. Figure 6 shows this bound as the curved
lines, with the straight lines giving the bound given by ".4

V. DISCUSSION
We have shown how distribution-free bounds on the cu-

mulative distributions of unknown one-dimensional probabil-
ity densities can be used to give sample-based probabilistic
bounds on the entropies of distributions with known support.
As an alternative to providing the support of the distribution,
one can provide bounds on the mean log probability density
of the tails of a distribution, and still provide similar bounds.
We leave this topic to future work.
We have provided a simple algorithm to compute this bound

exactly from samples taken from the unknown distribution. A
by-product of the algorithm is an explicit representation of
FM , the distribution that achieves the computed bound. The
simple form of FM makes it convenient for use in resampling
applications.
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