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Abstract. Medical errors are now recognized as a major cause of untimely deaths
or other adverse medical outcomes. To reduce the number of medical errors, the
Medical Safety Project at the University of Massachusetts is exploring using a
process programming language to define medical processes, a requirements elicita-
tion framework for specifying important medical properties, and finite-state verifi-
cation tools to evaluate whether the process definitions adhere to these properties.
In this paper, we describe our experiences to date. Although our findings are pre-
liminary, we have found that defining and evaluating processes helps to detect
weaknesses in these processes and leads to improved medical processes definitions.

1 Introduction

It has been estimated that there are approximately 98,000 deaths per year in the United
States resulting from medical errors [7]. The Institute of Medicine (IOM) reported that
many medical errors are caused by faulty processes and conditions that lead people to
make mistakes or fail to prevent them [6]. Although the IOM advocates using more in-
formation technology in order to help improve medical care, it does not indicate what
kinds of technology should be employed.

In the University of Massachusetts Medical Safety Project, software engineering
researchers from the Department of Computer Science have been working with research-
ers and medical practitioners from the University of Massachusetts School of Nursing
and from Baystate Medical Center to evaluate how selected technologies might help re-
duce medical errors. Although it is not possible to totally eliminate mistakes, it is our hy-
pothesis that medical processes can be defined in such a way that mistakes are less likely
to occur.



Medical processes tend to be complex, concurrent, and exception-prone. They
tend to involve multiple practitioners with very different perspectives about the on-going
process. Thus, we are interested in a process language that can capture this complexity
yet still be understandable to a (trained) medical professional. Moreover, the process lan-
guage should be precise enough to support static analysis techniques and to eventually
drive simulations and executions.

To date we have experimented with using the Little-JIL process programming
language [11], the Propel property elucidation system [10], and several finite-state verifi-
cation systems, specifically LTSA [1, 9], SPIN [5], and FLAVERS [4]. In this paper we
report on our experiences using these technologies to define and evaluate a blood trans-
fusion process. Blood transfusion plays a vital process in modern health systems. Al-
though blood transfusion errors are rare, when they do occur, they can result in death and
are among the most serious types of medical errors. Thus, we use blood transfusion as an
example to demonstrate how our approach is effective at improving the safety of medical
processes.

The rest of this paper is organized as follows. Section 2 presents a brief over-
view of the Little-JIL process programming language. Section 3 presents part of the
blood transfusion process as specified using Little-JIL. Section 4 describes how proper-
ties are specified using Propel and the results of our analysis using finite state verifica-
tion. The final section highlights our results and discusses future work.

2 Little-JIL Features

Little-JIL is a visual language for coordinating tasks that are to be executed by either
computation or human agents. A process is defined in Little-JIL using hierarchically de-
composed steps, where a step represents some specified task to be done by the assigned
agent. Steps may also indicate any prerequisites, postrequisites, and exception handling
behavior that should be associated with the step. Non-leaf steps, in addition to the above,
also indicate the order for processing all substeps. The language has precise enough se-
mantics that Little-JIL programs can be executed or can serve as the subject of careful
static analysis.

To help the reader understand the Blood Transfusion process example, we first
give an overview of the semantics and notation of Little-JIL. For a detailed description of
Little-JIL, see the Little-JIL Language Report [11].

Steps: Steps are the basic elements of Little-JIL programs. As shown in Figure
1, each step has a name and a set of badges to represent the control flow, exceptions han-
dled, prerequisites, and postrequisites. Each step need only be defined once, but can be
referenced many times. References are represented by a step with the name of the refer-
enced step, but with no badges. Although not shown in our examples here, steps also can
indicate the resources required, including the agent responsible for step execution.

Step Execution: At run-time, a step can be in one of five states: posted, started,
completed, terminated and retracted as shown in Figure 2. When a step is eligible to be
started, it is moved into the posted state. It is started when the agent assigned to the step
obtains the resources that it requires and begins to do the work. If the step is finished
successfully, it is moved into the completed state and resources are released. If the agent
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fails to complete the work, the step is moved to the terminated state. A step is retracted if
it is withdrawn from an agenda after having been posted but without being started by the
agent. In the analysis phase, we often want to refer to a specific state of a step. To do
this, we append the state name to the name of the step. Thus, “Transfuse_STARTED” re-
fers to the step “Transfuse” when it is in the started state.

Step Sequencing: Every non-leaf step has a sequencing badge, which defines
the order in which its substeps execute. A sequential step indicates that its substeps are to
be executed from left to right and is only successfully completed after one of its substeps
has successfully completed. A parallel step indicates that its substeps are to be executed
asynchronously and that it cannot be successfully completed until all of its substeps suc-
cessfully complete. A choice step allows the agent to dynamically select a substep to
execute among its substeps. A choice step is considered completed only after one of its
substeps have completed. A try step indicates that its substeps are executed from left to
right until one of them has been completed. A try step is successfully completed only if
one of its substeps successfully complete.

Exception Handling: A step in Little-JIL can throw exceptions when aspects
of the step fail. For example, if a prerequisite is not satisfied, it may indicate that an ex-
ception is to be thrown. A thrown exception is handled by a matching exception handler
associated with the parent step of the step that throws the exception or, if no such handler
is found, the exception is rethrown by the parent step.



An exception handler has an associated control-flow badge that indicates how
the step catching the exception executes after the handler finishes. There are four kinds
of control badges:

*  continue: the step catching the exception should continue as if the substep that
throws the exception completed successfully;

e complete: the step catching the exception should be completed;

e rethrow: the step catching the exception should be terminated and the exception
rethrown to the parent of this step;

e restart: the step with the exception handler should be restarted.

Requisites: Each step may have a prerequisite and a postrequisite. Requisites
provide a way to check entry and exit conditions associated with a step. A prerequisite
has to be completed before its associated step is initiated. A postrequisite has to be com-
pleted before its associated step is completed. When a requisite cannot successfully com-
plete, the associated step is terminated and an exception is thrown.

Deadlines: Deadlines determine the time by which a step must be completed.
Deadlines are used to define the maximum time allowed for a certain task. If a step con-
tinues to execute past its stated deadline, an exception is thrown.

Resources and Agents: The interface to a step specifies the resources used by
the step, where agent is a special type of resource. For example, in a medical process, the
agent might be a nurse, doctor, patient, or computer system. Each step must have an
agent; if no agent is declared, the agent is inherited from the parent step.

Diagrams: To facilitating viewing, Little-JIL programs are decomposed into
diagrams, where a diagram usually fits into a single window. Diagrams are usually used
to decompose a Little-JIL program into conceptually meaningful subprocesses.

3 Blood Transfusion Example

We have used Little-JIL to model a real-world blood transfusion process. This
process model consists of 20 Little-JIL diagrams, comprised of about 112 steps. In this
section, we present a few of the Little-JIL blood transfusion diagrams to give the reader
an indication of what the model looks like.

A patient blood transfusion process cannot start unless there is a blood transfu-
sion order from a physician. One order may require that several units of blood be trans-
fused to the patient. Once the required units have been transfused, the process completes.
Figure 3 shows the top diagram of this process.

In the root step, Patient Blood Transfusion Process has a prerequisite step Or-
der Blood. There is a cardinality “+” adjacent to the edge between the Patient Blood
Transfusion Process step and Perform Transfusion Order step, which means that Per-
form Transfusion Order will be done at least once. Since Patient Blood Transfusion
Process is a sequential step, instances of Perform Transfusion Order must be executed
sequentially. Before Perform Transfusion Order starts, the agent (agent assignments are
not shown) must check the form signed by the patient, indicating consent for the blood
transfusion. If the consent form is not signed, a NoPatientConsent exception will be
thrown and then handled by the No Patient Consent exception handler associated with
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Fig. 3. Patient Blood Transfusion Process

the Perform Transfusion Order step. Since this handler is a continue exception handler,
as indicated by the right arrow, after completion of the handler, the process continues the
sequential execution of the Patient Blood Transfusion Process step, meaning that the
“next” instance of the Perform Transfusion Order step may start. If the consent form is
signed, the agent can start to execute Perform Transfusion Order. The Perform Transfu-
sion Order step has four substeps: Prepare Documentation for Blood Pick-up, Pick up
Blood, Blood Unit Transfusion Process, and Follow Through Check. The right arrow se-
quencing badge specifies that these substeps should be executed one by one, from left to
right. Each one of these substeps is a reference to a step defined in another diagram, so
none of these steps are elaborated in this diagram. There is a cardinality “*” adjacent to
the edge between the Perform Transfusion Order step and Blood Unit Transfusion Proc-
ess step, which means that Blood Unit Transfusion Process will be done once per unit of
blood.

Figure 4 shows the diagram that elaborates the Blood Unit Transfusion Process
step. According to clinical research, the most common adverse outcomes during blood
transfusions are caused by a failure to detect that an incorrect unit had been issued at the
bedside [7]. To prevent such common errors, bedside checks are recommended. Thus, in
our process definition, there are two bedside checks, Identify Patient and Product Verifi-
cation. Identify Patient requires that the identity of the patient be established.

The Product Verification step definition, which is shown in Figure 5, requires a
visual comparison of the information on the transfusion tag with the blood product bag.



All identifying information on the blood product, the transfusion tag, and the patient
identification armband must be verified. Thus there are four substeps to be executed:
Verify Product Tag Matched to Product Label, Check Product Expiration Date, Verify
Product Tag Matched to Patient Armband, and Verify Product Type Matched to Patient
Record. Since these verification steps are independent of each other, they can be done in
any order, as indicated by the parallel sequencing badge. If any of these substeps finds a
discrepancy, a FailedProductVerification exception is thrown. This exception is
rethrown to the handler Handle Failed Product Verification associated with the parent of
Product Verification, step Bedside Checks. This exception handler, although not shown
here, would handle this discrepancy according to hospital policy.
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4 Analyzing Processes

Although we have only shown a small part of the Blood Transfusion process, it is easy to
see that it quickly becomes quite complex. The Little-JIL definition tersely describes
complex control flow. This is both a strength and a weakness. It is a strength because
medical professionals can understand the process definitions and help to describe them
and develop improvements to them. Moreover, the process definition can easily be de-
composed into subprocesses (e.g., diagrams) so that one’s focus can be directed to rela-
tively small, coherent aspects of the process. This terseness is a weakness, however, be-
cause it is easy for humans to overlook or misunderstand some of the complex flows
through the system or among subprocesses. This is particularly true when exceptions or
parallel execution can occur [2].

One way to help validate a process is to use analysis techniques to verify that
important policies are not violated by the process definition. These policies can be repre-
sented as formal properties stated in terms of the states of the steps. We then apply finite-
state verification techniques to determine if these properties will always hold on all pos-
sible traces through the process. For example, for the blood transfusion process, patient
identification on the patient’s armband must match the patient information on the tag af-
fixed to the blood product before that unit of blood is transfused. If this property does not
hold for the process definition, the finite-state verification tool will provide a counterex-
ample trace through the system showing where at least one such violation occurs. We
can use this trace to identify and correct the error in the process and then try to reverify
the revised process definition.

In this section we first describe some of the properties that need to be verified
for the Blood Transfusion process and how we represented those properties and then de-
scribe what techniques we used to verify these properties.

4.1 Representing Properties

It is a surprisingly difficult task to determine the properties that should be verified. In the
medical field, policies often exist that are a starting point for these properties. Below are
some example policies often associated with the blood transfusion process:

¢ Patient informed consent must be confirmed prior to each blood trans-
fusion process being initiated.

¢ Patient identification must be verified prior to obtaining a blood speci-
men for a type and cross match.

¢ Patient identification (name/ID number) on the armband must match the
patient identification information on the tag affixed to the blood product
before preparing for infusion.



¢  All blood product infusions must be started within 30 minutes of the ar-
rival of the blood units.

* Blood product must be checked at the patient’s bedside before prepar-
ing for the transfusion.

*  Donor unit number on blood tag must be matched to donor unit number
on blood bag before preparing for blood transfusion.

*  Check that the blood product has not expired must be performed before
preparing for blood transfusion.

*  Vital signs must be obtained and documented at the start of the transfu-
sion.

*  Vital signs must be obtained and documented 15 minutes into the trans-
fusion.

* A physician’s order must be confirmed in order for a blood transfusion
to occur.

* Blood transfusion must be stopped immediately if a reaction is sus-
pected.

* Doctor and Transfusion Services must be notified immediately if a
transfusion is stopped because of a suspected reaction.

Such policies are often vague however and need to be translated into a precise in-
stantiation based on the process that is actually being applied. For example, “confirm pa-
tient consent” must be represented in terms of the consent form that is actually used at
the hospital where the process is being applied. Moreover, who is to do this confirmation
and how is this confirmation documented?

Beyond that, finite-state verification requires a rigorous representation of each prop-
erty. It is rare for English descriptions to describe accurately and unambiguously all the
situations that need to be considered. The Propel system [10] is designed to help users
consider all the situations associated with formulating a property. Propel provides a
question tree that guides the user through the options that should be considered. Figure 6
shows an example of the question tree. After making some initial selections in this ques-
tion tree, the user can continue to select options from the question tree or can choose in-
stead to select options from a template of English phrases, called disciplined natural lan-
guage (DNL), or from a finite-state automaton (FSA) template. Figure 7 shows the
Propel GUI when formulating the DNL and FSA representation of the resulting property.
(Because of space limitations, we have reduced the event names and English description
in this example.)
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Thus, after using Propel, the first policy:

Patient informed consent must be confirmed prior to each blood transfusion process
being initiated.

would be represented by the following DNL representation:

Blood_Transfusion_STARTED cannot occur unless
Confirm_Patient_Consent_COMPLETED has already occurred.

Confirm_Patient_Consent_COMPLETED is not required to occur.
After Confirm_Patient_Consent_COMPLETED occurs, an unlimited number of
occurrences of Confirm_Patient_Consent_COMPLETED and all other events in the

alphabet of this property (except Blood_Transfusion_STARTED) are allowed to
happen before the first subsequent Blood_Transfusion_STARTED occurs.
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After the first subsequent Blood_Transfusion_STARTED occurs, an unlimited
number of other events in the alphabet of this property can occur.

Blood_Transfusion_STARTED cannot occur again until after another Con-
firm_Patient_Consent_COMPLETED occurs. If another Con-
firm_Patient_Consent_COMPLETED occurs, then the restrictions described on the
events following a Confirm_Patient_Consent_COMPLETED would again apply.

The reader might be surprised at how long and detailed the resulting disciplined
natural language is for this one relatively simple property. A careful examination of Fig-
ures 6 and 7, however, shows the number of issues that must be addressed in precisely
specifying such a property. The resulting FSA would be the basis for verifying the proc-
ess definition. Some finite-state verification systems, such as FLAVERS, accept a prop-
erty represented as a FSA. For others, the FSA would need to be translated into their
property representation. For example, for SPIN, the FSA must first be translated into lin-
ear time temporal logic.

4.2 Process Verification

There are several finite-state verification tools that could be used to determine if
the process definition is consistent with a property. To date, we have investigated using
three such tools, SPIN, FLAVERS, LTSA. To facilitate using different tools, we first
translate the Little-JIL process into an intermediate representation, called the Bandera
Intermediate Representation (BIR). BIR was specifically designed to support finite-state
verification and thus was a natural choice [3]. Once we have the BIR representation, we
translate BIR to the internal form required for the particular verifier. Figure 8 depicts this
two-state translation process.

A common problem with finite-state verification is that the size of the state
space that must be explored grows too large. Direct translation of a process usually re-
sults in a model that is too large to be verified. Therefore, we use several optimizations
and abstractions to reduce the size of the model generated. Some of these transformations
have been previously reported [2, 8] and some are currently being investigated. All the
transformations that are used must be shown to be conservative for the property and
process definition. This means that a process will not be reported to be consistent with a
property unless that is indeed the case for the unoptimized version as well. False posi-
tives, violations that do not correspond to any real trace through the system, can be a
problem but are less likely to occur for process descriptions than for detailed designs or
source code.

All the verifiers that we have used have been able to find (the same) errors in
the process and to prove interesting properties about the blood transfusion process. All of
them have some limitations and their translation and optimization process is being im-
proved to address these concerns. FLAVERS is currently best able to handle the larger
problems, but requires more insight about the constraints that must be introduced to
eliminate false positives.
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5. Conclusions and Future Work

We have successfully used Little-JIL to specify a real-world, non-trivial blood transfu-
sion process and verified that the process satisfies some important safety properties. We
have also learned a considerable amount about the strengths and weaknesses in technol-
ogy that we are using.

The Little-JIL process language has been extremely useful in representing the
blood transfusion process. Surprisingly, the medical professionals have become very
adept at understanding the Little-JIL processes. It has turned out to be an excellent me-
dium for describing the blood transfusion process and discussing alternative processes.
The medical professionals have shied away from actually creating the process defini-
tions. Instead they rely on the computer scientists to create the process definitions, al-
though they are quick to point out problems or suggest improvement. As noted, there is
also a tension between the expressiveness of the process language and the analyzability
of the resulting processes. Humans like flexible processes, but such processes are much
more difficult to analyze since they result in more choices and thus more cases to con-
sider.

As might be expected, simply rigorously defining a process uncovers problems
with that process. Often there were disagreements among the medical professionals about
the process definitions. Sometimes this could be attributed to the different roles that
medical professionals have (e.g., the nurse’s view versus the doctor’s view), but some-
times these disagreements revealed a real problem in the underlying process and an op-
portunity for a medical error to occur. In the future we are interested in exploring how
best to decompose (and then compose) the process definitions according to the different
roles.

Property specification also helped improve the process definitions. In consider-
ing a property, it often became clear that the process definition omitted important details.
The medical policies that we had available before trying to define the process were use-
ful, but the extra detailed required to formulate a property resulted in deeper under-
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standing of the problem that eventually was reflected in the process definition. For ex-
ample, considering the details about patient consent for a blood transfusion revealed that
we needed to consider how long a delay could exist between initial consent and the trans-
fusion, how many transfusions could occur with one consent, and what happens if the
patient rescinds consent.

The verification of the process definition did indeed reveal errors in the process.
Some were problems that appeared obvious once they were revealed. The more interest-
ing errors involved exceptions and concurrent behavior that lead to unexpected event or-
derings. We found the verification useful in helping us debug the process definitions (and
the translators). The medical process definitions are ripe for detecting event-ordering
problems. Medical professionals are often involved in multiple parallel activities and
dealing with exceptional conditions upon exceptional conditions. It is a problem domain
that appears well matched with the technology we are applying.

There are many areas of future investigation. This case study has revealed limi-
tations in the process language, the property specification approach, and the verification
tools. For example, all three technologies need to be extended to have better support for
timing constraints. The process language needs better support for visualizing the process.
The property specification framework is still awkward to use, and the verification tools
need much improved, process-specific optimization techniques. The Little-JIL to BIR
translator currently does not support recursion. To handle recursion, we simply unroll the
recursive step up to a given bound, but this might make the verification unsound.

The medical professionals are very interested in evaluating different kinds of
medical processes, not just blood transfusion processes. In addition to improving safety,
they are interested in improving efficiency with respect to turn around and through put.
They would like to see how efficiency is affected by different symptom mixes (e.g. ankle
sprains versus cardiac pain), different resources, different resource allocation strategies,
and different processes. Such evaluations will depend on doing extensive simulations
using real event histories. Finally, in the long term it would be desirable to actually exe-
cute carefully evaluated processes in the clinical setting. These processes could help
medical professionals track and prioritize their numerous tasks.
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