
1

Triage: An Architecture for Wireless Microservers
Nilanjan Banerjee Jacob Sorber Mark D. Corner Sami Rollins † Deepak Ganesan

Department of Computer Science †Department of Computer Science
University of Massachusetts, Amherst, MA Mount Holyoke College, South Hadley, MA

{nilanb, sorber, mcorner, dganesan}@cs.umass.edu srollins@mtholyoke.edu

Abstract—
The ease of deployment of wireless and mobile systems is

pushing the network edge far from powered infrastructures.
A primary challenge in building untethered systems is of-
fering properties, such as scalability and security, normally
provided by a powered server. Microservers are battery-
powered in-network nodes that play the same role as a tra-
ditional server: processing data from clients, aggregating
data, and providing responses to queries. Providing these
services can be extremely energy intensive; however, it is
crucial that the microserver remain energy efficient, as in-
creased energy consumption translates into a larger battery
or shorter lifetime.
This paper presents Triage, a tiered hardware and

software architecture for microservers. Triage reduces
the energy usage of a microserver by combining a high-
power resource-rich platform and a low-power resource-
constrained platform. The low-power platform can remain
always-on to receive, buffer, and filter requests from the net-
work while the high-power platform remains in a power sav-
ing mode. To maximize the amount of time the high-power
platform remains in a power saving mode, the low-power
platform delays execution of requests, caches recent results,
and performs tasks locally when possible. We evaluate three
services: storage, network routing, and query processing. In
a medium-scale video sensor network, our system achieves a
battery lifetime five times longer than a current, non-tiered
design.

I. INTRODUCTION

The ease of deployment of wireless and mobile sys-
tems is pushing the network edge far from powered infras-
tructures. Untethered, multi-hop networks support a wide
range of applications from wildlife habitat monitoring [23]
and security surveillance [21], to space exploration and
disaster management [7]. Such applications require the
development of highly efficient, long-lived, and low-cost
mobile and wireless systems.
A primary challenge in building untethered systems is

offering properties, such as scalability, security, and pri-
vacy, normally provided by a powered server. A fully au-
tonomous system must rely on in-network components to
provide the computation and storage required to support

future applications. Moreover, such a system must pro-
vide network-wide coordination to ensure energy-efficient
communication and operation.
Hierarchical network architectures, such as the exam-

ple shown in Figure 1, promise to balance functionality
and efficiency in wireless systems. A hierarchical system
combines both resource-constrained small devices, such as
Motes [27] with resource-rich microservers. A sensor net-
work, for instance, can incorporate a mix of large nodes to
perform advanced processing and storage and small nodes
for expanding coverage. Similarly, a combination of small
and large devices in mobile networks can yield significant
benefits over using only one of the two devices [7].

!"#$%&'$('$

!"#$%&'$('$

!"#$%&'"(
)*+%#,%

-'.*#(
)*+%#,%

-'/,0&'#+(
)*+%#,%

)*+%#,(
1#.*
2',*3*%%(
4'+5

Fig. 1. Microserver Deployment

Energy efficiency is a concern for smaller nodes; how-
ever it is even more critical for microservers. Providing
services with sufficient computational, networking, and
storage resources can be extremely energy intensive. Cur-
rently, increasing the lifetime of a microserver requires a
larger battery or intrusive solar arrays [23]. The contrast
of capabilities and energy consumption found in small and
large nodes highlights the inherent tension between suffi-
cient functionality and lifetime.
The goal of this work is to balance functionality and

lifetime of microservers by introducing a new architecture,

2

Triage. Triage reduces the energy usage of a microserver
by employing a tiered hardware architecture supported
by intelligent software control. By combining a high-
power resource-rich platform and a low-power resource-
constrained platform we yield a single, tiered device which
leverages the advantages of both. The low-power tier, or
tier-0, can remain always-on ensuring responsiveness at
minimal energy cost. The high-power tier, or tier-1, can
remain in a power saving mode until its resources are re-
quired for a given service. The software architecture lever-
ages the fact that tier-0 can offer the same services that
tier-1 offers and determines how to efficiently utilize the
resources available across the tiers to reduce total energy
usage.
Triage employs three key techniques to reduce energy

usage. First, Triage amortizes the energy and latency costs
of waking tier-1 by delaying the execution of tasks that
require tier-1 resources. Second, it reduces the amount of
work tier-1 must perform by caching recent results at tier-0
and servicing external requests from the cache when pos-
sible. Third, it offloads work from tier-1 by using tier-0
to provide services that require only the resources avail-
able at tier-0. For each service the microserver provides,
tier-0 runs a surrogate that receives requests for the ser-
vice and determines where the request should be executed.
Triage inserts and optimizes delayed requests in a log that
it also uses as a cache to provide low-latency responses.
A dispatcher monitors the log and determines when it is
necessary to wake tier-1.
Triage provides a general mechanism for building mi-

croservers suitable for many untethered applications, in-
cluding sensor applications, mobile networking, and per-
vasive computing. To support development, we have cre-
ated a working prototype that targets the common func-
tionality required in such scenarios, including storage,
routing, and query processing. We provide three surro-
gates that implement this common functionality and com-
mon insights necessary to construct a larger library of sur-
rogates.
We also show the results of a medium scale deployment

of a multi-hop, video sensor network involving six low-
power camera nodes, 24 routing nodes, and two Triage
microservers. In this scenario Triage reduces the mi-
croservers’ energy consumption over a current design by
80%, translating into five times the battery lifetime, or an
energy source one-fifth the size. We also present several
other experiments that highlight the specific advantages of
Triage and discuss areas for future improvement.

II. TIERED HARDWARE

Generally, platforms with more resources (e.g., process-
ing and memory) can complete tasks more quickly as well
as complete more resource intensive tasks. However, re-
sources come at the cost of greater power requirements.
The Triage tiered hardware platform addresses this di-
chotomy by combining two or more tightly coupled but
independently operating embedded subsystems, as shown
in Figure 2. The upper tier is strictly more capable and
power-hungry than lower tier. This means that any task
the lower-tier system can do the higher-tier system can
also perform. Some hardware platforms such as Tur-
ducken [34], and the PASTA sensor node [32] employ a
similar hierarchical structure, but are not focused on build-
ing an energy efficient microserver platform.

)"'$*+,-./&0&1'2

)&#,06* 2',*3*%%7*8#,9:;<

)"'$*3,-./&0&1'2

)&#,06* 2',*3*%%7*8#,9:;<

=0&&*,9
:#88$+'"0&'#+(

=$% 205*$>(:#+&,#3

Fig. 2. A Tiered Hardware Platform

In Triage, the two tiers are tightly coupled and directly
communicate over a wired link. This enables the lower tier
to trigger the wake-up of the higher tier when necessary.
Also, while the higher tier is not in use it can be shutdown,
suspended, or hibernated to save power. This technique
is effective for a platform containing subsystems that are
separated in power consumption and capabilities by an or-
der of magnitude or more. Compared to scaling methods,
such as DVFS [15], this tiered approach provides a much
greater range of useful power states.
One advantage of this technique is that constructing the

hardware is straightforward. All that is necessary is to
connect together available, low-power, hardware platforms
that have the right capabilities. For a long-lived embedded
microserver, there are two well-optimized, commercially
available, hardware platforms that provide the right mix of
power consumption and resources: the Stargate [36] and
the TelosB mote [26]. The Stargate is similar to the inter-
nal components of a PDA. It contains a 32-bit, 400MHz

3

PXA255 XScale processor, 64 MB of RAM, 32 MB of in-
ternal flash, and a slot for a WiFi card. It draws between
300 and 1800 mW of power, roughly one-tenth the power
of currently available laptops. This platform is well suited
to a wide range of query processing tasks, including im-
age processing, encryption, and storage management. The
TelosB mote is a third-generation sensor platform, con-
taining an 8-bit, 8 MHz microcontroller, 10kB of RAM,
1 MB of external flash, and an 802.15.4 radio. The TelosB
consumes between 20 and 120 mW of power, less than
one-tenth the power of the Stargate. This platform works
well for always-on operation, simple packet processing,
and providing low-latency responses.
While exact technology trends are difficult to predict,

we expect that embedded platforms will continue to fol-
low the trends found in general computing systems: they
will become more efficient, contain more resources, and
cost less than current components. However, we also ex-
pect that platforms with order-of-magnitude differences
in storage and computational resources, will continue to
have order-of-magnitude differences in power consump-
tion. This is the fundamental property that the Triage
microserver is based upon, not the particular components
found in our current choice of tiers.

III. SOFTWARE ARCHITECTURE

The goal of Triage is to support energy-efficient utiliza-
tion of a tiered hardware platform. Our design focuses on
a platform with two tiers; tier-0 is a very low-power plat-
form and tier-1 is a more capable and higher-power plat-
form. Triage keeps tier-1 in a low-power state whenever
possible by using tier-0 to delay execution of requests, ser-
vice requests using cached results, and route tasks to the
most appropriate tier. The locus of control is centered in
tier-0 which remains in an always-on mode, maintaining
high availability, and receiving requests from client nodes.
Figure 3 illustrates the components of the software ar-

chitecture. Tier-0 virtualizes resources available on tier-1
using a collection of surrogates. While the primary soft-
ware component for each service is deployed on tier-1,
tier-0 surrogates may respond to requests that can be pro-
cessed locally. However, if a request requires the physical
resources of tier-1, the surrogate must insert the request
into a log maintained in the local storage of tier-0. A dis-
patcher monitors the log and decides when to wake the
tier-1 system and dispatch pending requests.

A. Surrogates

Surrogates are small software modules running on tier-0
which provide a network service such as storage or rout-
ing. Because tier-0 does not have the resources to exe-

Storage
System

Surrogate

Query
Processing
Surrogate

Network Requests

Log

Wakeup Control

Tier-0 Subsystem (eg. TelosB Mote)

Tier-1 Subsystem (eg. PXA)

Routing
Surrogate

Dispatcher

Fig. 3. Microserver Software Architecture

cute every request, surrogates also virtualize the resources
available at tier-1. For each request, the surrogate may
provide the requested service using local resources or de-
lay execution of the request until the tier-1 resources are
available.
When a surrogate receives a request, it first determines

whether it can execute the request using local resources.
Because the surrogate runs on a low-power platform, it is
limited in its ability to dynamically analyze the resource
requirements of every request. For example, encryption
can be done on either platform; however, the length of
the encryption and the algorithm used determines where
it should be completed—in general this type of dynamic
analysis is known to be difficult. Therefore, our current
model uses a static set of rules for determining where re-
quests should be processed.
Surrogates rely on the following set of guidelines for re-

quest execution rules: (1) execute requests for information
already cached at tier-0; (2) execute requests that require a
small amount of processing on tier-0, for example a query
that only involves metadata; (3) execute requests that re-
quire only tier-0 resources, for example requests to route
packets destined for receivers reachable by the tier-0 radio;
and (4) dispatch any other request to tier-1. It is the job of
the developer to specify how the surrogate determines the
complexity and requirements of a request; for example, a
surrogate may infer this information by the type of the re-
quest.

B. Delayed Request Log

Tier-0 keeps a log that contains requests that must be
dispatched to tier-1. If a surrogate determines that a re-

4

quest should not be executed at tier-0, it writes it into the
log. Each log entry contains an identifier for the tier-1 ser-
vice that will execute the request, relevant request parame-
ters, and any data accompanying the request. For instance,
a routing request would contain an identifier for a tier-1
routing service, the address of the receiver, and the data
packet itself.
Efficient management of the log is key to extending the

lifetime of the system. When the log fills, tier-0 has no
choice but to wake tier-1 and play the log. By reducing
the size of the log using cancellation optimizations, tier-0
can defer wakeup of tier-1 and increase overall system life-
time. For example, if the log contains a database insertion
and a new insertion overwrites it, the original insertion can
be removed from the log.
The log can also be used as a mechanism to virtualize re-

sources available at tier-1, thus enabling the system to keep
tier-1 in a low-power state longer. Surrogates running on
tier-0 can use space in the log as a cache in order to service
requests locally that would otherwise require tier-1. This
functionality is particularly useful in storage applications;
a read closely following a write to the same data can be
serviced from the cache. In order to maximize the amount
of cached data, Triage does not erase the tier-0 log when
a batch of requests is played at tier-1. Instead, the previ-
ously committed log entries and cached results are lazily
overwritten by new requests using an LRU eviction policy.

C. Dispatcher

A separate operating system service, the dispatcher, pe-
riodically inspects the log to determine if it needs to wake
tier-1. There are two cases when the dispatcher must wake
tier-1 and dispatch outstanding requests. The first case
occurs when the log becomes full. In this case, the dis-
patcher is automatically invoked by the log storage system;
it wakes tier-1 and dispatches each outstanding request to
the appropriate service. The second case occurs when a
request contains an expired quality of service constraint.
Depending on the storage available at tier-0 and the ar-

rival rate of requests, some requests may be deferred for
unacceptably long periods of time. To support time sensi-
tive applications, the dispatcher will wake tier-1 if it dis-
covers a request that contains a quality of service con-
straint that has expired. Surrogates can write constraints
into the log along with the description of the resource re-
quest.
Currently, Triage supports one constraint: a maximum

queuing time, which is the maximum amount of time that
Triage will delay execution for a particular request. While
the maximum queuing time does not provide a comple-
tion deadline, it provides sufficient guarantees for the ap-

plications we envision. Generally, the queuing time at
tier-0 is the dominant factor in the response time of the
server—tier-0 may delay tasks for up to several minutes,
a delay much larger than the processing time for most
tasks. Moreover, nothing in our design precludes further
enhancements for greater realtime control by predicting
task execution time.

D. Surrogate Composition

Many applications require the functionality of several
surrogates. For instance, a client may query the mi-
croserver for information, and request that the results of
the query be sent to another node. This requires a com-
bination of a storage surrogate as well as a routing surro-
gate. To enable applications to compose the functionality
of several surrogates, we provide a surrogate composition
mechanism.
The composition is analogous to the design of microker-

nel operating systems [1]: surrogates communicate with
one another using communication primitives provided by
the operating system. However, in this case there is no user
application space, all services running on the microserver
are surrogates, and a composition of surrogates is created
by deploying a new surrogate that utilizes the others.
Two types of inter-surrogate communications are nec-

essary. The first is a direct function-call, or event based
mechanism. The second is a delayed parameter passing
mechanism based on the concept of a Future [19]. To un-
derstand the necessity of this mechanism, consider a query
processing surrogate that receives a request for all images
fitting some description. The query processing surrogate
can simply decompose the request into two subrequests, a
storage read request and a network routing request, and in-
sert each request into the log. However, the network rout-
ing request must include the data which is returned from
the storage read. This occurs when the data arrives at tier-0
or when Triage wakes tier-1.
To enable this scenario, a surrogate writes a future into

the log (e.g., a read request) which acts as a placeholder
for the result. Another surrogate (e.g., the network routing
surrogate) references the pending result by using a claim.
When tier-1 reads this sequence of operations from the log,
it interprets the future and claim from each subrequest, and
completes the entire request. Alternatively, if the data ar-
rives at tier-0 before Triage wakes tier-1, the future can
be fulfilled immediately, and the claim can be completed
without waking tier-1.

IV. EXAMPLE SURROGATES

The most common, and basic, functions found in servers
for sensor networking, mobile networking, and pervasive

5

computing are routing, storage, and query processing. To
this end we present three example surrogates: a storage
system surrogate, a network routing surrogate, and a query
processing surrogate. As untethered networks mature, this
library of surrogates will be expanded, enhanced, and fur-
ther optimized.
The storage surrogate receives requests for the tier-1

storage system and serves data from the cache when possi-
ble. The routing surrogate also receives requests destined
for tier-1. However, it provides additional functionality
by accepting requests to route data over the tier-0 radio.
Finally, the query processing surrogate provides complex
processing, such as image processing, and also relies on
other surrogates to access and deliver stored data. This
demonstrates the use of Triage’s Future-based composition
method.

A. Storage System Surrogate

The storage surrogate enables efficient in-network stor-
age applications [11] by using delayed execution and
caching to amortize the energy cost of performing read and
write operations on the tier-1 storage system. It provides a
simplified file system interface and employs batching and
log optimization to reduce the frequency with which tier-1
is woken. In addition, it maintains a log of recent opera-
tions and will service requests from this cache when pos-
sible.
Because Triage aggressively suspends or powers down

tier-1, the full storage system is typically unavailable. Tier-
0 maintains a log of recent write requests, read requests,
metadata updates, and also a cache of recently read results.
The use of logging is similar to a Log Structured File Sys-
tem [30] and the split of the log and full storage system is
similar to those found in distributed file systems such as
Coda [31].
When a remote node sends a write request to the mi-

croserver, it logs the request and data. Read and delete
requests are logged in the same way. However, for each
read request, the system consults a log index to determine
whether or not it can provide the data immediately from
the log. If it cannot, the read is delayed until the next time
Triage wakes tier-1.
As with each of the surrogates, a client can provide a

maximum queuing delay parameter. In the case of reads,
this guarantees that the read request will be delayed no
longer than the given amount of time. If a read request
does not provide this parameter, Triage defers the request
until its log fills or until the timeliness constraint of another
task forces tier-1 to be woken. For writes, any maximum
queuing delay parameter can be ignored. Even though
tier-0 does not immediately commit updates to the tier-1

=0&"?'+6

:#88'&

:0"?*

=0&"?'+6

<+"#88'&&*.(
2,'&*

@*0.(@*A$*%& @*0.(:0"?*

:#88'&&*.(
2,'&*

B3.*%& 1*C*%&

B3.*%& 1*C*%&

Fig. 4. Storage System Log Management

storage system, the system still provides write-read con-
sistency since the written data still exists in the log. Any
subsequent reads on the same data will be fulfilled by pre-
vious writes in the log.
For each request, the surrogate attempts to optimize the

log. A write or delete request for a particular file cancels
any previously logged writes for the same file. The results
of read requests and recently committed writes remain in
the log and serve as a cache for future requests.
This data cache is managed using an approximation of

the least recently used eviction policy. For writes, the time
of use is considered to be when the microserver received
the request—writes can be considered completed when
Triage writes them to its stable storage. For reads, the
choice is less clear: we could chose the time that the read
request arrives, or the time it is completed by the system.
Without a clear disadvantage, we chose that latter, as it is
more convenient for avoiding fragmentation issues. To see
why, refer to the process demonstrated in Figure 4, which
shows the surrogate’s logical view of the log—data from
other surrogates may be interspersed with storage system
data. During the batching phase, the log accumulates read
requests along with uncommitted writes. During the com-
mit phase the dispatcher wakes tier-1 and commits all of
the writes. Read results from tier-1 are passed to the surro-
gate, which writes them into the log. We chose the simpler
policy that favors these reads as most recent. Read results
are therefore written into the cache immediately preceding
the most recent batch of writes. As space becomes scarce,

6

the oldest part of the cache is the first to be overwritten by
new requests.

B. Network Routing Surrogate

The network routing surrogate enables efficient routing
by delaying execution of tier-1 routing requests and exe-
cuting routing requests locally, using the tier-0 radio, when
possible. A key benefit to using a tiered architecture is
the availability of multiple network interfaces each with
varying bandwidth, range, latency, reliability, and protocol
features. Wireless radios found in less powerful tiers gen-
erally have a lower bitrate, shorter range, and simpler com-
munications stacks. For example, variants of the 802.15.4
standard deliver data rates up to 200 kbps and operate with
a few tens of milli-watts of power. More powerful tiers in-
corporate higher bitrate radios capable of providing more
advanced software protocol stacks such as TCP/IP, using
network interfaces such asWiFi, GPRS, andWiMax; how-
ever, their power draw is much higher.
We have designed a network surrogate to operate in a

static, multi-hop wireless network. An example network
is shown in Figure 5. The surrogate can operate on each
packet in twomodes: minimum energy orminimum latency
routing. Minimum energy routing is most appropriate for
bulk transfers, whereas minimum latency routing is most
appropriate for small messages, such as metadata updates,
route maintenance, and other management functions.
When a packet arrives at the surrogate, it examines the

destination address, consults its routing table, and com-
putes the best radio to use in order to achieve minimum
cost with respect to either latency or energy. The surro-
gate’s routing table contains a route and hop count for each
destination in the network. The latency to route over the
tier-1 interface is computed using an estimated average of
the bandwidth of tier-1, the time to wake tier-1, and the
time to transfer relevant data from tier-0 to tier-1. The la-
tency to route over the tier-0 interface is computed using
an estimated per-hop bandwidth and the number of hops
required to reach the destination. The per-hop latency for
the radios on tier-0 and tier-1 were measured using a sep-
arate experiment described in the evaluation section. Note
that routing using tier-0 does not incur the tier-1 start-up
and transfer time, but does incur the latency of additional
hops. The energy cost to route over the tier-1 interface is
computed using the estimated energy cost to wake tier-1
plus the estimated energy cost to transfer the data using
the tier-1 interface. The energy cost to route over the tier-0
interface is computed using the estimated energy cost to
transfer the data over each hop from the source to the des-
tination. Again, note that tier-0 will incur an energy cost
for each node along the path but will not incur the cost of

waking tier-1. The per-hop transmit and receive energy for
tier-0 and tier-1 radios were measured using experiments
which involved sending different amounts of data across
a hop using both the radios . Due to the greater efficien-
cies (bytes/joule) of the tier-1 radio, and the inefficiencies
of multi-hop routing, the tier-0 radio is only more efficient
for routing relatively small amounts of data—our evalua-
tion section explores this issue in detail.

! "

!"#$%&'$()"*'+#,-'./0-&&12

!"#$%/'$()"*'+#,-'./0-&3-42

5 6 7

8

Fig. 5. Multi-hop network example. The latency to transfer
data from node A to any node in the network using either
radio can be computed from the radio bandwidth, multi-hop
delays, number of hops, and the time to wake the necessary
tier. The required energy can be computed from the number
of hops, the energy cost of that radio, and the energy to wake
the tier.

If the surrogate decides to route a packet using the tier-0
interface, it immediately sends the packet. If not, it inserts
the packet into the log. The packet may also be accompa-
nied by a maximum queuing time constraint. The packet
will remain in the log until the log fills or until the maxi-
mum queuing time for a logged request has been reached.
When tier-1 is woken, logged packets will be passed up
and sent via the tier-1 network interface.

C. Query Processing Surrogate

The query processing surrogate enables efficient data
processing by amortizing the cost of performing queries
at tier-1, reducing the number of queries that tier-1 must
process, and reducing the cost of sending relevant data to
remote nodes. Performing computation on the microserver
can conserve energy [5], particularly in multi-hop net-
works [11], or systems with large amounts of in-network
data and relatively infrequent queries. The query process-
ing surrogate executes queries over the data it has cached
and delays processing of queries that require resources
only available on tier-1.
The query processing surrogate provides a database-

style query interface for data stored on the microserver.
Clients may use simple queries, such as retrieve all images
from the last ten seconds, or more complex queries, such as

7

Fig. 6. Prototype Triage System

retrieve all images that contain 2 or more objects and are
from a particular geographic region. The query process-
ing surrogate uses the other surrogates to create a complex
combination of resources, including processing, routing,
and storage. Tier-1 can execute any query since it has ac-
cess to the powerful radio, the primary storage system, and
a powerful processor. However, tier-0 can perform only
simple queries. For example, any query that can be per-
formed using simple comparisons of cached metadata can
be performed at the tier-0 system. It is also possible for the
surrogate to decompose a query into its component opera-
tions, for example a file system read and a network routing
request.
If the tier-0 surrogate determines that it cannot execute a

query, it inserts it into the log. If the surrogate has decom-
posed the query, it will use the method described in Sec-
tion III-D to insert a file system read and a network route
request into the log. Each request will be accompanied by
metadata tagging the request as part of a single query. As
described previously, the query may be accompanied by
a maximum queuing time and will remain in the log until
the log fills or until some request forces a wake of tier-1.
When the tier-1 system processes the log, it will compose
related entries, perform any necessary processing on the
data, and forward the result to the client.

V. IMPLEMENTATION

In order to evaluate our approach we have implemented
a working prototype of our Triage architecture shown in
Figure 6. This prototype, built using off-the-shelf hard-
ware , consists of a dispatcher and three surrogates.

A. Prototype Hardware

We built our prototype on a hardware platform consist-
ing of a slightly modified Crossbow Stargate (tier-1) [36]
and a TelosB mote (tier-0) [26]. These hardware platforms
were chosen because they handle the range of workloads
that we have targeted, are separated in power consump-

tion by more than an order-of-magnitude (20mW-120mW
and 300mW-1800mW), are easily programmable, and are
well supported. The Stargate platform runs Linux, making
available a broad range of software tools and services. Re-
call that the Stargate contains a 32-bit, 400MHz PXA255
XScale processor, 64 MB of RAM, 32 MB of internal
flash, and a WiFi interface. The TelosB mote contains an
8-bit, 8 MHz microcontroller, 10kB of RAM, 1 MB of ex-
ternal flash, and an 802.15.4 radio.
We made only minor modifications to the hardware in-

cluding adding a control interface to allow the TelosB to
wake the Stargate. Currently, the two platforms are pow-
ered by independent batteries, and we are working on
a small interface board to link them to the same power
source. This use of decoupled, commodity hardware also
allows us to rapidly change the tiers to include new plat-
forms. A previous prototype used a MicaZ mote [27], and
minimal changes were needed to support the new hard-
ware.
One limitation of our current implementation is the

transfer speed from the TelosB mote to the Stargate. The
two devices communicate over a USB line which is limited
to 230 kbps. However, data needs to be read from the flash
and then transfered over the USB which increases the to-
tal time required for the transfer. As a result, transferring
1024 KB of batched work along with protocol overhead
takes more than 150 seconds and wastes a great deal of
energy while blocked on serial I/O. Even with this limita-
tion, the current prototype shows extremely high gains in
energy efficiency.
There are several methods for putting the Stargate (tier-

1) into a low-power state. It can be suspended (mem-
ory refreshed), hibernated (memory written to flash), or
shutdown (memory not saved). The choice between these
states depends on the length of time tier-1 is expected to be
in the low-power state, and we consider this issue orthog-
onal to our work. When suspended, the Stargate draws
roughly 160mW of power as compared to other PXA-
based platforms that draw less than 40mW in suspension.
This overhead unfortunately makes suspension far too ex-
pensive to use. Regardless, Triage is designed to keep tier-
1 in a low-power state as much as possible, and except for
heavy workloads, full shutdown is a better option.

B. Surrogates, Log, and Dispatcher

As part of this prototype, we implemented a dispatcher
and three surrogates: multi-network routing, storage, and
query processing. Each of these system components were
implemented according to the design described previously
and are fully described in Section IV.
Surrogate queues are stored and managed on the

8

TelosB’s flash storage using a custom designed file system.
We investigated using standard mote file systems, such as
Matchbox [12]; however, Matchbox does not work on the
TelosB’s flash necessitating a new flash file system. The
new file system supports writes, random reads and delete
operations. Due to the large erase units of flash storage,
we implemented a garbage collector which scans a sector
and swaps the used blocks and writes them contiguously
into another reserved sector. Subsequently the old sector is
deleted. The garbage collector is invoked when the number
of dirty blocks exceeds a threshold value. The file system
also maintains a cache of directory entries of the recently
accessed files. An evaluation of the file system reveals a
read throughput of 30 KB/sec and a write throughput of
20 KB/sec. The garbage collector takes on an average 4.5
seconds to clean a sector.
We implemented these components as TinyOS modules

written in nesC [13]. The routing, storage, and query pro-
cessing surrogates comprise 350, 1100, and 250 lines of
nesC code respectively, and the file system and dispatcher
consist of roughly 1600 and 750 lines of code each 1. We
also implemented an execution engine which runs on the
Stargate and executes tasks when they are received from
the mote.

VI. EVALUATION

Our goal in evaluating Triage is to answer the following
questions:

• Does Triage improve overall energy efficiency for bat-
tery powered microservers?

• To what extent do delayed execution, caching, and task
routing improve efficiency?

• What impact do quality of service constraints have on
potential gains?

• What are the main inefficiencies of the Triage system?

We designed several experiments in order to answer
these questions. Our first experiment looks at the overall
energy efficiency gains of the Triage system in a medium-
scale deployment. Additionally, we present the results of
several more focused experiments that look at the impact
of each of the techniques that Triage employed.

A. Methodology

In each experiment, we measure the power consumed
by the system using the setup shown in Figure 7. Current

1The source code for Triage can be downloaded from the following
URL : http://www.prisms.cs.umass.edu/hpm/triage.tar.gz

!"#$%&'()*#
+,-+.

/0

12()3(24

56789:4)7
1;<<=>

?4=9@A7
B924

14)C(=DE1A
F(G4
'9H2)9=

/0

-6789:4)7
1;<<=>

Fig. 7. Experimental Setup

draw is measured using an NI-DAQCard-6036E to record
the voltage drop across 1Ω sense resistors. Since both plat-
forms do not yet share a common power supply, individ-
ual power consumptions for the mote and the Stargate are
measured separately and the results are added to calculate
the total power consumption of the system. Each experi-
ment was run for 30 minutes.
In evaluating Triage, we compare three different ap-

proaches: NIC, TRIAGE BATCH, and TRIAGE. The NIC
approach uses tier-0 as a network interface that wakes tier-
1 upon arrival of every request. This is a popular approach
used in many current microserver applications. The sec-
ond approach (TRIAGE BATCH) uses tier-0 to delay the
execution of incoming requests until either the flash stor-
age fills or the maximum queuing delay constraint requires
tier-1 to wake up and respond to the pending requests. The
third approach (TRIAGE) is the full Triage implementa-
tion, which uses delayed execution, caching, and execution
decisions in order to amortize the cost of waking tier-1.
We conducted experiments on a medium-scale wire-

less video sensor network. The network comprises data
producers, which send data to a microserver for process-
ing, and data consumers, which request data from a mi-
croserver. We use Cyclops2C cameras as data produc-
ers [28]. These cameras, mounted on MicaZ motes, peri-
odically capture and send 1 KB (8-bit pixel) gray-scale im-
ages to the storage surrogate running on the microserver.
Due to limited availability of the Cyclops2C cameras, we
simulate additional cameras with MicaZ motes that send
random images to the microserver. The data stored and
produced by the microserver is then consumed by a PC,
which periodically injects queries destined for the query
processing surrogate of the microserver. Triage uses the

9

1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

Data Arrival Rate at the Microserver (bytes/sec)

Av
er

ag
e

Po
w

er
 C

on
su

m
ed

 (m
W

) TRIAGE_BATCH
NIC
TRIAGE

Fig. 8. Microserver power consumption is shown with respect
to inbound data rate from a medium-scale video sensor de-
ployment. Delayed execution, caching, and execution deci-
sions in Triage result in a 2.5-5X reduction in power con-
sumption.

network routing surrogate to send responses to the data
consumers. All of the nodes communicate over a multi-
hop 802.15.4 network, with the exception of microservers
which may also use 802.11b radios to more efficiently
route packets.

B. Overall Energy Efficiency

Our primary goal is to improve energy efficiency for
battery-powered microservers. To evaluate this, we per-
form an experiment that compares the overall power con-
sumption of NIC, TRIAGE BATCH, and TRIAGE, in
a medium-scale deployment running multiple services.
Our deployment spans the second floor of the Computer
Science building at the University of Massachusetts at
Amherst. It features two microservers, two additional Star-
gates serving as 802.11 routers, a 24-node multi-hop mote
network, 2 data consumers (PCs), and 6 data producers
(cameras).
In this experiment we vary the rate that the cameras send

image data to the microservers. Queries are injected into
the network at a constant rate of every 180 seconds with
a 100 second maximum queuing delay. Each query re-
quests a single image taken T seconds ago, where T is se-
lected from an exponential distribution with a mean of 100.
While this does not represent a particular application, it
does generally represent applications in which newer data
is more valuable to the user than older data. The results
are routed over either the 802.11b between microservers,
or over the 802.15.4 network, based on minimum energy
routing.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

Data Streamed to the Microserver (bytes/sec)

Av
er

ag
e

Po
w

er
 C

on
su

m
ed

 (m
W

) TRIAGE_BATCH

NIC

Region 1

Region 2

Fig. 9. Power consumption is shown with respect to the rate
that data is streamed to the microserver. Delaying task exe-
cution to amortize wake up cost results in a 3.5X reduction
in power consumption.

The results, shown in Figure 8, show a 2-2.5X reduction
in power draw by only delaying execution, and a 2.5-5X
reduction using the full Triage system. By delaying exe-
cution, caching results, and executing tasks on the most ap-
propriate tier, Triage is able to reduce the amount of work
performed on tier-1 and amortize the cost of waking tier-1
over many tasks. Our remaining experiments show how
each of the techniques used by Triage impact efficiency,
and finally identify the inefficiencies in the system in or-
der to motivate future improvements.

C. Delayed Execution

In the next experiment we examine the benefits of de-
laying task execution in order to amortize the wakeup cost
of tier-1. We vary the rate at which images are streamed
from 3 cameras to a microserver for storage. There are no
queries involved in this experiment. Since our focus is on
delayed execution, no quality of service constraints were
used, and we only compare the NIC and TRIAGE BATCH
approaches. The effect of quality of service constraints is
shown in a later experiment.
Figure 9 shows our results for data rates up to 8KB/sec,

which is the maximum rate at which images can be re-
ceived and batched on the TelosB platform(tier-0). The
results for the NIC approach show two distinct behaviors
which are identified by rectangular boxes in the figure. The
first is seen at low data rates as tier-0 wakes tier-1 with
every packet received. The high cost of waking tier-1 re-
sults in a steep rise in power consumption as the packet
frequency increases. Very quickly, however, the time re-
quired to wake tier-1 (10-15s) precludes sleeping tier-1

10

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

Av
er

ag
e

Po
w

er
 C

on
su

m
ed

 (m
W

)

Queueing Deadline on Queries (seconds)

TRIAGE
TRIAGE_BATCH
NIC

Region 1

Region 2

Fig. 10. Average power consumption is shown with respect
to maximum queuing time assigned to the queries. Short
queuing time requirements limit the efficiency gains that
can be achieved using Triage; however, applications that
can tolerate a 60 second execution delay achieve an 85%
reduction in microserver power consumption from the NIC
approach.

which must remain awake in order to handle the more fre-
quent requests. This behavior corresponds to the second
region on the figure, in which power consumption slowly
saturates to the maximum power consumption of the entire
system.
In contrast, the results from using delayed execution

show a more reasonable increase in power consumption
as images arrive more frequently. In this experiment de-
laying the execution of tasks amortizes the wakeup cost of
tier-1 resulting in, on average, a 3.5X power savings.

D. Quality of Service Constraints

The power savings seen from delaying execution are
limited by the presence of quality of service constraints
in the system. In this experiment we consider the effect of
these constraints. We fix the rate at which data is sent to
the microserver at 1KB/sec and set queries to arrive every
100 seconds over the mote network. The answers to the
queries can be routed back to the client over either of the
802.11b or 802.15.4 networks depending on which radio
is more energy-efficient to use. We vary the max queuing
delay of the queries from 0 to 800 seconds. Queries are
distributed such that they can be answered from tier-0’s
cache 50% of the time.
The results of this experiment are shown in Figure 10.

The NIC approach shows almost constant behavior regard-
less of the constraints. This is a result of the 1KB/sec data
rate, which requires tier-1 to remain on to execute the re-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

Probability of Hit in the Cache

Av
er

ag
e

Po
w

er
 C

on
su

m
ed

 (m
W

) TRIAGE
TRIAGE_BATCH
NIC

Fig. 11. Average power consumption is shown with respect
to the hit rate of queries in tier-0’s cache. In applications
exhibiting high locality, Triage achieves a 2X improvement
over using delayed execution alone.

quests. The other two approaches show more interesting
behavior. Both the results for the TRIAGE BATCH and
the TRIAGE systems can be broadly divided into two dis-
tinct regions (shown as rectangular boxes in the figure).
When the max queuing delay is small, (Region 1), tier-1
is required to be on more frequently and reduces the po-
tential for batching. However, with a max queuing time of
60 seconds, TRIAGE achieves a 3.5X reduction in power
consumption. The second region of the graph, (Region
2), shows nearly constant power consumption for both
TRIAGE BATCH and TRIAGE, as queries can be delayed
and the cost to wake tier-1 and store incoming images be-
gins to dominate the total power draw.

E. Surrogate Caching

In addition to quality of service constraints, cache per-
formance also affects the efficiency of the system. In this
experiment we examine how system power consumption
varies with respect to cache hit rate. As in the previous
experiment, the data rate is fixed at 1 KB/sec, Queries ar-
rive every 180 seconds, and each query has a maximum
queuing delay of 100 seconds. Throughout this experiment
we vary the locality of query request accesses, in order to
achieve the desired hit rate.
The results of the experiment, shown in Figure 11, em-

phasize the importance of caching in the Triage system.
If queries exhibit high locality the full TRIAGE approach
achieves an additional 2X improvement over using delayed
execution alone. Note that as the hit rate approaches 1, the
wake up cost incurred by incoming images begins to dom-
inate the cost of cache misses, resulting in a nearly con-

11

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

Percentage of Tasks Executed on Tier1

Av
er

ag
e

Po
w

er
 C

on
su

m
ed

 (m
W

) TRIAGE
TRIAGE_BATCH
NIC

Fig. 12. Average power consumption is shown with respect
to percentage of queries that must be answered by tier-1.
Triage is able to route simple queries for execution on tier-
0, resulting in a potential 2X efficiency improvement over
using only delayed execution.

stant power consumption from 0.8 to 1.0. It is important
to note that as in any caching system, the size of the flash
available on tier-0, and the caching strategy itself, must be
tuned to the intended workload—our experiments demon-
strate some of the potential gains.

F. Task Execution

In addition to quality of service constraints, and
caching, we also want to examine the benefits of executing
tasks on the appropriate tier of the system. For this ex-
periment we send two types of queries: 1) simple queries
which can be executed on either tier (e.g. retrieve the im-
age at camera A with timestamp T), and 2) more complex
queries that involve more complex processing (e.g. re-
trieve all images from time T1 to time T2 which contain
more than 5 objects). Again data arrives at the microserver
at a constant rate of 1 KB/sec. Queries arrive at a fixed rate
and have a maximum queuing time of 100 seconds. We
vary the percentage of complex queries in the experiment.
The results of this experiment, shown in Figure 12,

demonstrate the power savings due to executing tasks on
the most appropriate tier. In this experiment our system
draws 50% less power draw than delayed execution alone.
The trends seen in this set of results, are very similar to the
previous experiment. This is not surprising since caching
is an implicit form of executing read requests on the ap-
propriate tier based on where the desired data is located.
To demonstrate the network routing surrogates task ex-

ecution decisions, we performed experiments on Triage’s
minimum latency routing mode. We first determine the la-

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Amount of Data (KB)

La
te

nc
y

(s
ec

on
ds

)

802.11b
802.15.4
TRIAGE

Fig. 13. The incurred latency is shown with respect to the
amount of data requested for the 802.11b and 802.15.4 ra-
dios. Triage uses the crossover point (20 KB) to determine
which radio is most efficient to use.

tency to transfer data across a single hop of the 802.15.4
radio. We found that the latency incurred in transfering
data using the mote radio varies linearly with the num-
ber of hops for our multi-hop routing protocol. Thus, in
the general scenario, Triage uses the per hop latency mea-
sure and multiplies it with the number of hops to determine
which radio should be used.
To validate this, we constructed a 4-hop 802.15.4 net-

work and compared its latency with a single hop 802.11b
network. The setup is same as that shown in Figure 5. We
vary the amount of data requested and measure the time
required to transfer the data over the two networks. We
determine the crossover point of the two radios and use it
in the microserver to determine when one radio is more
efficient to use over the other.
The results of the experiment is shown in Figure 13. Al-

though the 802.11b radio on the Stargate has a much higher
bitrate, the requests incur a startup cost before they can
be executed. We find that the crossover point for the two
curves is around 20 KB of data. Triage uses the mote radio
below the crossover point and the 802.11b radio above it
and hence achieves better latency performance over the en-
tire range as compared to the two radios separately. Note
that as the number of hops in the mote network increases
the crossover point shifts to the left of the curve.

G. System Limitations

Our final goal is to identify the limitations and ineffi-
ciencies in our current implementation of the Triage sys-
tem in order to direct future improvements. To do this,

12

0

100

200

300

400

500

600

700
A

ve
ra

ge
 P

ow
er

 C
on

su
m

ed
 (m

W
) Stargate/Processing

Stargate/USB Transfer
Stargate/Bootup
Telosb/Batching

 2KB/sec 4KB/sec 8KB/sec

Fig. 14. This figure shows how each activity of the Triage sys-
tem contributes to the total system power consumption at
various data rates. Wakeup and data transfer costs are the
dominant sources of inefficiency in the system, especially
at high data rates.

we examine how individual system activities contribute to
Triage’s average power consumption from the first exper-
iment, shown in Figure 8. We show a per-activity com-
parison in Figure 14 for data rates of 2KB/s, 4KB/s, and
8KB/s.
Our main observation from this comparison is that the

power required to boot the Stargate and transfer pending
tasks between tiers is the greatest limiting factor in the en-
ergy efficiency of the Triage system. We plan to address
this problem in a future hardware platform using more ef-
ficient transfer mechanisms. This promises to even further
improve the already significant efficiency gains achieved
by Triage.

VII. RELATED WORK

The design and implementation of Triage draws from
several related research areas, which we survey here.

A. Microservers and Clustering

Several sensor network systems utilize a subset of
the participating nodes as aggregaters, central processing
nodes, or gateways [14]. This work can be classified into
algorithms for networks of homogeneous devices and al-
gorithms for networks of heterogeneous devices. In ho-
mogeneous systems such as Heed [38], LEACH [16], and
the system proposed by Bandyopadhyay and Coyle [4], the
leader, or clusterhead, rotates among nodes in the network.
The goal is to distribute the extra energy drain incurred
by the leader. In heterogeneous systems, larger, more
powerful nodes called microservers herd other smaller
nodes [35]. Our work focuses on the latter scenario and
addresses the need for a power-aware software architec-

ture to reduce the energy drain on the resource-rich nodes.

B. Disconnected Systems

Triage is similar to many mobile systems in that parts of
the system can become disconnected when suspended, hi-
bernated, or powered down. Several mobile systems have
addressed disconnection and lack of availability between
participating nodes. Examples include file systems such
as Coda [31] and Ficus [29], databases such as Bayou [9]
and DBmate [25], remote execution systems, such as Spec-
tra [10] and Chroma [3], and general toolkits such as
Rover [18]. Many of the techniques found in these sys-
tems, such as logging and caching, strongly influenced our
design. In particular, we used the queued RPC mecha-
nism from Rover as a basic building block. However,
Triage differs from traditional mobile systems. First, with
Triage there is a new element of control: the “client” (the
less powerful system) can directly control when connec-
tions and disconnections occur to the “server” (the more
powerful system). Second, the less powerful system is
more resource-constrained than a typical mobile laptop—
our lowest tier only contains 10kB of program memory.
Additionally, we have integrated the competing concerns
of quality of service and energy in our design criteria.

C. File Systems

Logging file systems have been proposed both for hard
disk drives, such as the Log-Structured File System [30],
as well as flash memory, such as ELF [8], JFFS2 [37], and
Matchbox [12]. In our prototype, tier-0 uses a custom file
system and tier-1 uses JFFS2. However, any efficient flash
file system will work. Our contribution lies in the distribu-
tion of the file system over two connected devices.

D. Energy Management

Reducing the power consumption of mobile devices
has been the subject of much research. Approaches in-
clude scaling the CPU voltage and frequency [15], man-
aging wireless interface usage [2], turning off banks of
RAM [17], or employing microsleep [20, 6]. In a larger
device, such as a Stargate, these techniques still do not en-
able a power mode comparable to a mote device. Our ar-
chitecture is designed to support devices that can operate
at power levels separated by an order of magnitude.
Papathanasiou and Scott made an observation similar to

ours: batching work, or increasing idle periods, leads to
greater energy efficiency [24]. However, the goal of the
their work was to increase burstiness in laptop disk drives.
The Wake-on-Wireless project (WoW) [33] proposes a

hierarchy of devices for PDAs, including a low-power re-
ceiver that can wake the PDA. Our goal is similar to WoW,

13

to reduce power consumption in battery powered devices.
But, we have placed a large amount of functionality in the
lowest tier. Our tier-0 system is capable of actually exe-
cuting some tasks without waking tier-1.

E. Sensor Platforms

Recently, many embedded sensor platforms have
emerged. These platforms span a broad spectrum of power
requirements and functionality. A popular instance of sen-
sor platforms is the family of motes. These nodes are com-
mercially available, widely used, and include the Cross-
bow MicaZ and Mica2Dot as well as the Telos node. All
of these nodes consume peak power between 10-120mW
and are tuned to be highly power efficient.
There are also several more capable but still very power-

efficient sensor nodes such as the Yale XYZ [22]. This
node has dynamic frequency scaling capability and can op-
erate between 2MHz and 56MHz with a power consump-
tion of up to 3x greater than the mote at comparable clock
speeds. Such intermediate platforms can be used as clus-
terheads in applications that have moderate computation
requirements.
Our architecture targets resource-rich but power ef-

ficient sensor platforms that combine two processing
elements—one small and one large. Two instances of such
architectures are currently commercially available. The
Stargate platform [36] has been used with a mote, but this
has been to provide a gateway to other mote nodes, not
to optimize the energy efficiency of the platform. The
PASTA node is an architecture that combines a trip-wire
board with a DSP processor together with a PXA proces-
sor [32]. Other instances of such dual processor systems
have been suggested in the literature although they are not
commercially available.

VIII. CONCLUSION

This paper presents the design, implementation, and
evaluation of Triage, a system that reduces the energy con-
sumption of an untethered microserver. We detail the de-
sign of a hardware architecture that uses off-the shelf hard-
ware to provide a range of energy consumption modes.
Additionally, we present the design of a software architec-
ture that uses delayed execution, caching, and local task
completion to amortize the cost of servicing requests us-
ing a high-power platform. We show the results of ex-
periments conducted on a medium-scale wireless network
deployment that bears a 5x reduction in energy consump-
tion.

REFERENCES
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-

nian, and M. Young. Mach: a new kernel foundation for unix
development. In Proceedings of Summer Usenix, pages 93–113,
July 1986.

[2] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning wire-
less network power management. In Proceedings of the 9th ACM
International Conference on Mobile Computing and Networking
(MobiCom’03), San Diego, CA, September 2003.

[3] R. K. Balan, J. P. Sousa, and M. Satyanarayanan. Tactics-based
remote execution for mobile computing. In Proceedings of The
First International Conference on Mobile Systems, Applications,
and Services (MobiSys ’03), San Francisco, CA, May 2003.

[4] S. Bandyopadhyay and E. J. Coyle. An energy efficient hierar-
chical clustering algorithm for wireless sensor networks. In Pro-
ceedings of IEEE Infocom, San Francisco, CA, March 2003.

[5] K. Barr and K. Asanovic. Energy aware lossless data compres-
sion. In The First International Conference on Mobile Systems,
Applications, and Services (Mobisys), pages 231–244, San Fran-
cisco, CA, May 2003.

[6] L. S. Brakmo, D. A. Wallach, and M. A. Viredaz. microSleep: A
technique for reducing energy consumption in handheld devices.
In Proceedings of the Second International Conference on Mobile
Systems, Applications, and Services (MobiSys’04), Boston, MA,
June 2004.

[7] B. Burns, O. Brock, and B. N. Levine. MV routing and capacity
building in disruption tolerant networks. In Proceedings of IEEE
Infocom 2005, March 2005.

[8] H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-structured
flash file system for micro sensor nodes. In Proceedings of The
Second ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys ’04), Baltimore, MD, November 2004.

[9] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and B. B. Welch. The bayou architecture: Support for
data sharing among mobile users. In Proceedings IEEEWorkshop
onMobile Computing Systems and Applications, pages 2–7, Santa
Cruz, California, December 1994.

[10] J. Flinn, S. Park, andM. Satyanarayanan. Balancing performance,
energy, and quality in pervasive computing. In Proceedings of
the 22nd International Conference on Distributed Computing Sys-
tems (ICDCS’02), Vienna, Austria, July 2002.

[11] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Hei-
demann. An evaluation of multi-resolution storage for sensor net-
works. In Proceedings of The First ACM Conference on Embed-
ded Networked Sensor Systems (SenSys ’03), Los Angeles, CA,
November 2003.

[12] D. Gay. Design of Matchbox, the simple filing system for motes.
TinyOS Documentation, August 2003.

[13] D. Gay, P. Levis, R. V. Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to networked
embedded systems. In Proceedings of Programming Language
Design and Implementation (PLDI), June 2003.

[14] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin,
E. Osterweil, and T. Schoellhammer. A system for simulation,
emulation, and deployment of heterogeneous sensor networks. In
Proceedings of The Second ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ’04), Baltimore, MD, November
2004.

[15] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms
for dynamic speed-setting of a low-power CPU. In Proceedings
of the First ACM International Conference on Mobile Computing
and Networking (MobiCom’95), Berkeley, CA, November 1995.

14

[16] Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrish-
nan. Energy-efficient communication protocols for wireless mi-
crosensor networks. In Proceedings of the Hawaiian Interna-
tional Conference on Systems Science, January 2000.

[17] H. Huang, P. Pillai, and K. G. Shin. Design and implementation
of power-aware virtual memory. In Proceedings of USENIX Tech-
nical Conference, San Antonio, TX, June 2003.

[18] A. D. Joseph andM. F. Kaashoek. Building reliable mobile-aware
applications using the Rover toolkit. In Proceedings of The Sec-
ond ACM International Conference on Mobile Computing and
Networking (MobiCom’96), White Plains, NY, November 1996.

[19] R. H. Halstead Jr. MULTILISP: A language for concurrent sym-
bolic computation. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 7(4), October 1985.

[20] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath, and
C. Narayanaswami. Energy trade-offs in the IBM wristwatch
computer. In Proceedings Fifth International Symposium on
Wearable Computers, Zurich, Switzerland, October 2001.

[21] P. Kulkarni, D. Ganesan, and P. Shenoy. Senseye: A multi-tier
camera sensor network. In ACM Multimedia, 2005.

[22] D. Lymberopoulos and A. Savvides. XYZ: A motion-enabled,
power aware sensor node platform for distributed sensor network
applications. In Proceedings of Information Processing in Sensor
Networks (ISPN), Los Angeles, CA, April 2005.

[23] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Ander-
son. Wireless sensor networks for habitat monitoring. In Work-
shop on Wireless Sensor Networks and Applications, Atlanta, GA,
September 2002.

[24] A. E. Papathanasiou and M. L. Scott. Energy efficiency through
burstiness. In Proceedings of the IEEEWorkshop on Mobile Com-
puting Systems and Applications (WMCSA), Monterey, CA, Oc-
tober 2003.

[25] S. Phatak and B. R. Badrinath. Data partitioning for disconnected
client-server databases. In Proceedings of the ACM International
Workshop on Data Engineering for Wireless and Mobile Access,
August 1999.

[26] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-
low power wireless research. In Proceedings of the Fourth In-
ternational Conference on Information Processing in Sensor Net-
works: Special track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS), April 2005.

[27] J. Polastre, R. Szewczyk, C. Sharp, , and D. Culler. The mote
revolution: Low power wireless sensor networks. In Proceedings
of the 16th Symposium on High Performance Chips (HotChips),
August 2004.

[28] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Es-
trin, and M. Srivastava. Cyclops: In situ image sensing and in-
terpretation in wireless sensor networks. In Proceedings of the
Third ACM Conference on Embedded Networked Sensor Systems
(SenSys), San Diago, November 2005.

[29] P. Reiher, J. S. Heidemann, D. Ratner, G. Skinner, and G. J.
Popek. Resolving file conflicts in the Ficus file system. In Pro-
ceedings of the 1994 Summer USENIX Conference, Boston, MA,
June 1994.

[30] M. Rosenblum and J. K. Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Com-
puter Systems, 10(1):26–52, 1992.

[31] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel, and D. C. Steere. Coda: A highly available file system
for a distributed workstation environment. IEEE Transactions on
Computers, 39(4):447–459, 1990.

[32] B. Schott, M. Bajura, J. Czarnaski, J. Flidr, T. Tho, and L. Wang.
A modular power-aware microsensor with 1000x dynamic power

range. In Proceedings of Information Processing in Sensor Net-
works (ISPN), Los Angeles, CA, April 2005.

[33] E. Shih, P. Bahl, and M. J. Sinclair. Wake on Wireless: An event
driven energy saving strategy for battery operated devices. In Pro-
ceedings of the Eighth ACM Conference on Mobile Computing
and Networking, Atlanta, GA, September 2002.

[34] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turducken:
Hierarchical power management for mobile devices. In Pro-
ceedings of The Third International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys ’05), Seattle, WA,
June 2005.

[35] T. Stathopoulos, L. Girod, J. Heidemann, and D. Estrin. System
support for coordinated imaging for sensor networks. Unpub-
lished Poster, 2004.

[36] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and
J. Light. The personal server - changing the way we think about
ubiquitous computing. In Proceedings of Ubicomp 2002: 4th
International Conference on Ubiquitous Computing, Goteborg,
Sweden, September 2002.

[37] D.Woodhouse. JFFS: The journalling flash file system. InOttawa
Linux Symposium, Ottawa, Canada, 2001.

[38] O. Younis and S. Fahmy. HEED: A hybrid, energy-efficient, dis-
tributed clustering approach for ad-hoc sensor networks. IEEE
Transactions on Mobile Computing, 4(4), October 2004.

