
1

Effective Resource Allocation for Process
Simulation: A Position Paper

Mohammad S. Raunak and Leon J. Osterweil
University of Massachusetts at Amherst

{raunak, ljo}@cs.umass.edu

Abstract: We often simulate processes to be able to
reason about, forecast, and plan the best utilization of
available resources. As process programmers, we define
resources to be the agents that carry out tasks, and the
tools and other entities required by agents in order for
them to be able to complete their assigned work.
Specifying these resources rigorously and allocating them
efficiently during process simulation or execution is a non
trivial problem. In this paper, we present many hard and
interesting issues related to resource management and
propose some solution approaches. In particular, we talk
about an auction based solution approach, which we feel
fits well in different types of process simulation.

Index Terms— allocation, process, resource, simulation

I. INTRODUCTION

ne of the primary reasons to execute or simulate
processes (and many other types of software) is to
be able to reason about, forecast, and plan, the best

utilization of available resources [kellner99]. Managing
resources well translates into better process
management, which in turn, ensures better quality in the
final products or services resulting from a process.
From our perspective as process programmers, we
define resources to be the agents that carry out tasks,
and the tools and other entities required by agents in
order for them to be able to complete their assigned
work. Specifying these resources rigorously and

allocating them efficiently during process simulation or
execution is a non trivial problem.

This research was partially supported by the Air Force Research
Laboratory/IFTD and the Defense Advanced Research Projects
Agency under Contract F30602-97-2-0032, by the U.S. Department of
Defense/Army and the Defense Advance Research Projects Agency
under Contract DAAH01-00-C-R231, and by the National Science
Foundation under Grant No. CCR-0204321. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied of the Defense
Advanced Research Projects Agency, the Air Force Research
Laboratory/IFTD, the U.S. Dept. of Defense, the U. S. Army, The
National Science Foundation, or the U.S. Government

.

Our previous work in process programming has
focused on specifying the coordination of activities,
their execution semantics and artifact flows [wise98,
cass99, cass00]. All these issues are undeniably crucial
for properly capturing a process and supervising its
execution. However, we have always maintained that a
clear, precise and complete definition of the resources
required by the process, and flexible mechanisms for
their allocation, are no less important for process
analysis and improvement. We argued the importance
of a separate resource manager and laid out a modeling
approach in earlier works [rodion99, lerner00]. Over the
last few years our experience with process modeling,
analysis, and execution have grown, drawing from our
work with processes in such diverse domains as digital
government, e-commerce, and medical services, as well
as with software process. These experiences have
provided insights into some more challenging issues
and have pointed us toward some promising approaches
to address the challenges. In this paper, we present
many hard and interesting issues related to resource
management and propose some solution approaches.

II. RESOURCE MANAGEMENT CHALLENGES

In our work we define a process as (largely)
hierarchical structure of tasks, called steps. Each step is
to be executed by an agent, whose characteristics are
specified as part of the process definition, and a set of
auxiliary resources, also specified as part of the process
definition [cass00, wise98]. In our approach, the
execution of such a process definition entails the
binding of a specific agent, and specific resources,
identified by means of a search through a resource
repository, to each process step, as it comes up for
execution. An important premise of our work is that
resources, and indeed agents, can be either humans or
automated devices (either hardware or software). Thus
our process definitions can rightly be viewed as
specifications of how humans and automated devices

O

2

are to be coordinated. This view particularly emphasizes
the importance of effective identification of the agents
and resources to be selected for binding to the various
steps. Invariably the resources that are available are in
short supply and are the subjects of contention. Thus,
potential delays, bottlenecks, and resource starvation
can presumably be avoided or reduced by using
resource analysis to identify ways in which resource
contention can be alleviated (e.g. by causing tasks to
execute in parallel or by skillful sharing of resources).

Another way to achieve better process performance
is to schedule the resources based on some allocation
strategies. Researchers in operating systems, multi agent
systems and operations research have long looked at
different allocation algorithms for better utilization of
resources in processes. However, the challenges we face
in software and a lot of other processes are unique due
to the diverse nature of resources we need to deal with
here. Resources like processor time, network bandwidth
or completely automated agents have strictly predictable
behavior that is relatively less complex to schedule and
reason about. The simultaneous presence of humans and
automated agents, and the potential diversity in the time
granularity of the required resources, make it inherently
much more difficult to specify them properly and
allocate them effectively with a coherent scheduling
scheme.

There are three very important and intricately
interconnected tasks in the realm of resource
management: modeling the resources, identifying and
retrieving the resources and finally, scheduling the
resources. The modeling task usually takes place before
simulation, potentially in parallel with the process
definition work. The modeling or specification of
resources, to a large extent, is dependent on the domain
for which a process is being programmed. In software
processes, for example, we have human agents like
programmers, designers, testers as well as non-human
resources like compilers, development environments,
software licenses etc. On the other hand, a medical
emergency room process includes resources like nurses,
doctors, orderlies, beds, medicines, and a whole variety
of equipments and tools. It is quite challenging to
provide a common structure and service architecture
that would allow a process programmer to model and
allocate resources from these diverse domains
coherently.

Identifying and retrieving the resources require
capabilities to store resource information persistently
and to be able to query them with some rich query
language. Specifying and storing both resource types
and instances adequately is not always straight forward.
The resource manager architecture needs to be flexible
enough to support processes from diverse domains that
deal with a wide ranging resource types.

Scheduling of resources is primarily required during
run time. The modeling and scheduling capabilities that
we have previously proposed in [rodion99] have proven
effective in programming processes with comparatively
less complex resource variety and requirements. Our
previous approach worked by statically defining the
resource model and letting process steps query that
static model. However, we have discovered that agents
and resources often have dynamic attributes which may
change in real time during the execution of the process.
For example, in an emergency department process of a
hospital, the nurses (one type of agent/resource) are
frequently changing locations and any query based on
the propinquity of a resource requires the resource
manager to accommodate dynamically changing
resources states.

Software, medical, and other processes require
complex specification of composite resources like
design teams or nursing pools which include instances
of individual agents, each of which might potentially
need to be allocated to several different tasks. While
allocation of such resources can be done by modeling
capacity of these resources and to allow them to be
assigned to multiple tasks in parallel, a more accurate
model of such partial allocation would require time
based allocation of the agents to each task. In this case,
an agent will not be bound to a process step
indefinitely; it will be acquired by the step for a specific
period of time.

Often we come across process programs where
resources are sought in some preferential order. For
example, there may be a designated agent for a task;
however, other agents with some particular skill can
carry out the task in absence of the designated agent.
The process definition somehow needs to specify the
preferred resource in addition to specifying all the
attributes properly that would allow selection of
substitute resources that can fill in.

Our experiences with processes and resources have
shown that there are process definitions that require the
execution to block in case a resource is busy. Allowing
such blocking calls to the resource server during an
execution or simulation of a process gives rise to the
whole dimension of potential deadlocks and starvations.

An important requirement of resource management is
the ability to reserve resources for planning purposes.
This service requires look-ahead capabilities on the
process execution paths. As process programmers, we
often need to deal with complex processes with
abundant exceptions. Such control flow structures make
it very difficult to predict future resource requirements
based on which proper reservation can be made. A
related requirement for a resource manager is to be able
to identify the level of resource redundancy required to

3

ensure safe completion of processes in case of a sudden
surge in activities.

Our ongoing work with medical processes has
strongly demonstrated the need for resource preemption
capability in the resource manager. Resources like
doctors, nurses or even hospital beds get preempted and
assigned to a new instance of a task with higher priority
in an emergency department process. We are convinced
that such cases of higher priority work preempting
resources from a running low priority task is not
uncommon in software processes either. From the
process simulation or execution perspective, this brings
in a whole new level of complexity.

III. SOLUTION APPROACHES

In [lerner00], we described a resource model based
on resource classes, resource instances, their attributes
and relationships amongst them. Our subsequent
experience with process simulation work has shown that
not all the elements of that proposed framework are
necessarily effective for resource modeling and
allocation in simulations. We thus propose a new
approach to resource modeling where entities are
primarily categorized as agents and non-agent
resources. Our contention is that the association
between a process step and its required resources is
driven by constraints on the agent or agents responsible
for carrying out the task.

Resources usually have different types of constraints.
Amongst others, there are “requires” relationships
between resource entities which prevent assigning of a
resource without also assigning one or more other
required resource. This constraint can be addressed by
having attributes associated with the resources that
would allow the resource manager to query on a
resource attribute to create compound resource
collections dynamically at run time.

The other important constraint on resources is
brought about by dynamically created composite
objects. For example, a programmer pair in XP pair
programming practice or a couple of nurses assigned to
a ‘trauma patient’. We propose to utilize ideas similar to
“views” used by database researchers to create abstract
tables on the fly. The process programmer will define
resource objects and will provide definitions of the
types of composition allowed for these resource objects.
When a process step specifies a query for one of these
composite resource objects, a query processor will join
multiple objects to create composite resource on the fly
and the Resource Manager will retrieve them
atomically.

We also propose the incorporation of timing
constructs in our process model, Little-JIL [wise98], in
order to provide important information regarding the

time within which an agent needs to start its work after
being assigned to a task, and the maximum time the
agent is given to complete the task. In some cases, we
also envision the need for specifying the minimum time
required for a task for scheduling purposes.

The resource analysis study is often performed with
the objective of identifying the amount of redundancy
required for resources to successfully execute processes
in case of a surge of activity. We are in the process of
collecting real life data for a medical emergency
department process to investigate the characteristics of
process behavior and resource loads under such
circumstances. We also plan to explore process
simulation with stochastic input model to create such
scenarios.

We will explore the allocation of resources using
strategies based on known scheduling algorithms from
other areas like operating systems for non-agent
resources. However, we propose a novel approach for
the assignment of agents to tasks. Agents and groups of
agents will be presented with specifications of tasks,
time requirements and other resource requirements
related to them. Assignment of agents to tasks is to be
done by means of an auction. The agents will be
required to bid for assignment to these tasks, being
incentivized to bid as aggressively as possible,
consistent with private valuations based upon their need
for work, desire for advancement, or fear of layoffs.
The final assignment of tasks will be done in response
to determination of the highest bidder. Groups of agents
in this scenario will be allowed to communicate
amongst themselves in a manner that is similar to the
way bidders may collude in different types of auctions
to reduce their bid. In our case, however, bidder
collusion will be aimed at coming up with the highest
bid for a task.

We believe this idea of auctioning is going to be
applicable in different resource management issues. The
preferential ordering of resources that we have
discussed earlier can be achieved based on the bids
placed by the different agents (and other resources). We
also feel that the requirements of supporting dynamic
creation of composite resource objects can be aptly
addressed with the utilization of combinatorial auctions.
There is a broad literature in Operations Research on
different auction formats and their effectiveness. We
believe, we can utilize those results and experiment
with them in our environment to discover their utility.

IV. RELATED WORKS

Different software process programming languages
like APEL[establier97], MVP-L[rombach93],
ALF[canals94], Statemate[harel90] and Process
Weaver[fern93] have used resource managers to

4

facilitate process execution. However, the modeling
capabilities in such systems are restrictive and do not
provide support for scheduling.

There has been considerable work in operating
systems focusing on scheduling techniques of primarily
hardware resources [goyal96, shenoy98]. As mentioned
earlier, the domains of their work including required
timing granularity, differ significantly from resources
that include both human and automated agents as well
as other entities.

V. CONCLUDING REMARKS

Modeling as well as scheduling of resources to
reason about effective process simulation and resource
requirements is a hard problem. There is ample
literature in other areas of computer and management
sciences that look at the resource management issues
from different domain perspectives. It is crucial for our
community to take a critical look at the issues of
resource management, identify the unique challenges
faced by the process programmers while simulating or
executing processes, determine what approaches from
other areas may or may not work, and propose and
evaluate new solution approaches. In this paper, we
have tried to motivate such resource management
research by pointing to some intricate issues related to
resources within a process environment. We have also
proposed an auction based solution approach, which we
feel will work well in different types of process
simulation and execution.

ACKNOWLEDGMENT

We would like to thank Barbara Lerner, Rodion
Podorozhny, Anoop Ninan and Joel Sieh for their
earlier attempts at developing some initial versions of
resource management service for process execution
support.

REFERENCES

[canals94] Canals, G. et. al., ALF: A framework for building process-
centered software engineering environments. In Software Process
Modeling and Technology, pages 153-185Research Studies Press,
Sommerset, England 1994
[cass99] Cass, A.G., Lerner, B. S., McCall, E. K., Osterweil, L. J.,
Sutton, Jr., S. M. and Wise, A. Logically central, physically
distributed control in a process runtime environment, Technical
Report 99-65, University of Massachusetts, Department of Computer
Science, November 1999
[cass00] Cass, A.G., Lerner, B. S., McCall, E. K., Osterweil, L. J.,
Sutton, Jr., S. M. and Wise, A. Little-JIL/Juliette: A process definition
language and interpreter, In Proceedings of the 22nd International
Conference on Software Engineering, 754-757, Limerick, Ireland,
June 2000

[establier97] Establier, J., Dami, S. and Amiour. A., APEL: A
graphical yet executable formalism for process modeling, In
proceedings of Automated Software Engineering, March 1997.
[fern93] Fernstrom, C. PROCESS WEAVER: Adding process support
to UNIX. In the second International conference on Software
processes, pages 12-26, 1993 `
[goyal96] Goyal, P., Guo, X. and Vin, H. A Hierarchical CPU
Scheduler for Multimedia Operating Systems. Proceedings of the 2nd
Symposium. on Operating Systems Design and Implementation, pages
107-122, Seattle, Washington, 1996.
[harel90] Harel, D. and Lachover, H. et. al. STATEMATE: A
working environment for the development of complex reactive
systems. IEEE Transactions on Software Engineering, vol 16, issue 4,
April 1990.
[kellner99] Kellner, M. I., Madachy, R. J., and Raffo, D. M., Software
Process Simulation Modeling: Why? What? How? Journal of Systems
and Software, vol. 46, no. 2/3, 15 April, 1999
[lerner00] Lerner, B. S., Ninan, A. G, Osterweil L. J., Podorozhny R.
M. , Modeling and Managing Resource Utilization in Process,
Workflow, and Activity Coordination, Technical Report, Department
of Computer Science, University of Massachusetts, Amherst, MA
01003, August 2000. (UM-CS-2000-058)
[rodion99] Podorozhny, Rodion, Lerner, B. S. and Osterweil L. J.,
Modeling Resources for Activity Coordination and Scheduling. 3rd

Internation conference on coordination models and languages,
Amsterdam 1999
[rombach93] Rombach, H. and Verlage, M. How to assess a software
process modeling formalism from a project member’s point of view. In
proceedings of the Second International Conference on Software
Processes, pages 147-159, 1993.
[shenoy98] Shenoy, P and Vin.H, CELLO: A Disk Scheduling
Framework for Next-Generation Operating Systems. Proceedings of
the ACM SIGMETRICS, 1998.
[wise98] Wise, Alexander, Little-JIL 1.0 Language Report,
Department of Computer Science, University of Massachusetts,
Amherst, MA 01003, April 1998. (UM-CS-1998-024)

