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Abstract

In this paper, we consider the problem of finding an “efficient” and “robust” set of routes in the face of changing/uncertain
traffic. The changes/uncertainty in exogenous traffic are characterized by multiple traffic matrices. Our goal is to find a set of
routes that results in good average case performance over the set of traffic matrices, while avoiding bad worst case performance
for any single traffic matrix. With multiple traffic matrices, previous work aims solely to optimize the average case performance
[1], or the worst case performance [2]. For a given set of traffic matrices, different sets of routes offer a different tradeoff between
the average case and the worst case performance. In this paper, we quantify the performance of a routing configuration at both
network level and link level. We propose a simple metric - a weighted sum of the average case and the worst case performance -
to control the tradeoff between these two considerations. Despite of its simple form, this metric is very effective. We prove that
optimizing routing using this metric has desirable properties, such as the average case performance being a decreasing, convex and
differentiable function to the worst case performance. By extending previous work [1][3], we derive methods to find the optimal
routes with respect to the proposed metric for two classes of intra-domain routing protocols: MPLS and OSPF/IS-IS. We evaluate
our approach with data collected from an operational tier-1 ISP. For MPLS, we find that there exists significant tradeoff (e.g.,

difference) between optimizing solely on the average case performance and solely on the worst case performance.
Our approach can identify solutions that can dramatically improve the worst case performance ( ) while only slightly
sacrificing the average case performance ( ), in comparison to that by optimizing solely on the average case performance.
For OSPF/IS-IS, we still find a significant difference between the two optimization objectives, however, a fine-grained tradeoff is
difficult to achieve due to the limited control that OSPF/IS-IS provide.
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I. INTRODUCTION
Routing optimization is used to find a set of routes, i.e., the set of paths along which packets are forwarded in order to

optimize a well-defined cost function (such as link utilization or packet delay). The most commonly used intra-domain Internet
routing protocols today are Open Shortest Path First (OSPF) [4] and intermediate system-intermediate system (IS-IS) [5]. In
OSPF/IS-IS, each link is associated with a positive weight. Traffic is routed along the shortest paths. In case of ties where
several outgoing links are on shortest paths to the destination, the flow is split evenly among them. As shown by [6], OSPF/IS-
IS does not support arbitrary distribution of flow between source and destination, and may incur high cost. Multi-protocol
Label Switching (MPLS) [7] has been introduced as a more flexible routing protocol. In MPLS, the routing path and splitting
fraction can be arbitrarily chosen for traffic flow based on source and destination addresses.
A traffic matrix (TM) specifies the data rate between every pair of ingress and egress points. A number of works [8][6][9]

have focused on calculating an optimal set of routes for a single TM. For a given TM, those works consider minimizing link
utilization of the most congested link [9], or minimizing the network cost [8][6], characterized by the sum of link costs, each
of which is an increasing convex function of link data rate. The problem is then formalized and solved as an optimization
problem. With OSPF/IS-IS, the problem is shown to be NP-hard [6]. With MPLS, the problem can be formalized and solved
as a convex optimization problem [8] or a linear programming (LP) problem [6].
Recently, for a large-scale Internet with bursty demands, multiple TMs have been used to characterize the change of traffic

(different traffic rates at different times of the day) or traffic estimation uncertainty in the exogenous traffic [2][1]. The
routing problem is to find a single set of routes to optimize the performance over multiple TMs. With multiple TMs, existing
work either focuses on the average case performance, or the worst case TM performance. [1] aims to minimize the expected
link/network cost. [2] aims to minimize the worst case link utilization. However, optimizing the average case performance and
worst case performance often conflict with each other. Solely minimizing the average case performance may lead to high worst
case performance. Also, if we are too conservative, focusing too much on the worst case performance, we may substantially
decrease the average case performance as well.
In this paper, we consider the routing optimization problem of finding an “efficient” and “robust” solution in the face of

changing/uncertain traffic. Intuitively, we may prefer a set of routes that results in good average case performance with multiple
TMs, and not bad worst case performance for any single TM. In order to achieve this, we focus on the tradeoff between the
average case and worst case performance. We examine this tradeoff at both link-level and network-level. The link-level focus
is on the congestion level of individual links, whereas the network-level focus is on the combined congestion level at all links.
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At the link level, we use expected link cost to quantify the average case performance, and worst case link cost the worst case
performance. At the network level , we use expected network cost to quantify the average case performance, and worst case
network cost the worst case performance. In this paper, we propose a simple metric: the weighted sum of average case and worst
case performance, to control the tradeoff between these two considerations. We show our metric’s effectiveness by proving that
the average case performance is a convex, decreasing, continuous, and differentiable function of the worst case performance.
We solve our proposed metric for two general inter-area routing approaches, MPLS and OSPF/IS-IS by extending work [1][3].
We evaluate our metric using data derived from an operational tier-1 ISP. For MPLS, we find a considerable tradeoff between
average case and worst case performance ( ) of the optimal average case/worst case performance. Those tradeoff
provides us a solution with both good average case performance and good worst case performance. Compared to the solution
with best average case performance, but bad worst case performance, the tradeoff solution dramatically improves the worst
case performance ( of the optimal worst case performance), while only sacrificing the average case performance
a little ( of the optimal average case performance). For OSPF, we still find a significant difference between the
two optimization objectives, however, a fine-grained tradeoff is difficult to achieve due to the limited control that OSPF/IS-IS
provide.
Motivated by a commonly used robust optimization framework [10], we also investigate another routing optimization approach

which aims to reduce the performance sensitivity relative to the change of TMs. We use the variance of network/link cost to
model the performance variance. We find that it is problematic to adopt this approach because the variance term is not tied to
an absolute performance measure, and thus minimizing the performance variance may leads to bad performance for all TMs.
The remainder of this paper is organized as follows. In section II, we review related work. In section III, we introduce

tradeoff metric. In section IV, we demonstrate the tradeoff metric effectiveness by showing that average case performance is
a convex, decreasing, continuous and differentiable function of worst case performance. We also show how to compute the
optimal set of routes according to this metric by extending [1][3]. In section V, we show result using data derived from an
operational tier-1 ISP. In section VI, we discuss the deficit of the performance variance metric. Section VII concludes the
paper.

II. CONTEXT AND RELATED WORK

In this section, we first discuss the different performance metrics used in routing optimization with multiple TMs. Then we
review the existing routing optimization solutions for those metrics.

A. Performance Metrics
We first review the performance metrics used for routing optimization with a single TM. Then we review the performance

metrics in the case of multiple TMs. With a single TM, performance is quantified at either link level or network level [8][9].
Link level performance metrics focus on the congestion level of individual links, whereas network level metrics focus on the
combined congestion of all links. More precisely, at the link level, the TM performance is characterized by the link utilization of
the most congested link [9]. At the network level, performance for a given TM is characterized by the network cost, computed
as the sum of all link costs, each of which is an increasing convex function of link data rate; or characterized by the expected
link cost, which differs from the network cost by a constant ratio (the number of links of the network) [8].
Recently, for a large-scale Internet with bursty demands, multiple TMs have been used to characterize the change of traffic

(different traffic rates at different time of the day) or traffic estimation uncertainty in the exogenous traffic. With multiple TMs,
existing work either focuses on the average case performance over all TMs [1], or the worst case TM performance [2]. With
multiple TMs, the average case performance is characterized by the expected TM cost, or expected link cost, which differs from
the former by a constant ratio (the number of links of the network) [1]. With multiple TMs, the worst case performance can be
addressed at either the link level or the network level. On one hand, link level worst case performance is characterized by the
the link utilization of the most congested link over all TMs [2] [11]. On the other hand, network level worst case performance
is characterized by the the worst case network cost over all TMs. To our knowledge, we are the first to focus on network level
worst case performance.
In existing works, average case performance and worst case performance are individually addressed. However, focusing

exclusively on one may result in bad result for the other. In order to find a set of routes with good average case performance
and not bad worst case performance, we focus on the tradeoff between the average case performance and worst case performance.
We examine this tradeoff at both link level and network level. At link level, we use expected link cost to quantify the average
case performance, and worst case link cost the worst case performance. At network level, we use expected network cost to
quantify the average case performance, and worst case network cost the worst case performance.

B. Routing Optimization Solutions
In this section, we discuss the existing routing optimization solutions. Specifically, we review the solution methods for

routing optimization under MPLS and OSPF/IS-IS routing protocols.
MPLS provides the most flexible routing capability. Under MPLS, traffic from a source to a destination may be split arbitrarily

over all possible paths. With multiple TMs, we say a set of MPLS routes is feasible if the resulting link data rates are less
than or equal to the link capacity for all TMs. From [1], we know that the feasible set of MPLS routes is convex. When the
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optimization objective is a convex or linear function of routing variables, the routing optimization problem is a linear/convex
optimization problem. Specifically, if the objective is to minimize the worst case link utilization, the optimization problem is
a LP problem. If the objective is to minimize the worst case network cost, or to minimize the expected network/link cost,
the optimization problem is a convex optimization problem. In the latter case, the link cost function is approximated as a
piece-wise linear function to expedite the computation. The convex optimization problem is then converted to and solved as a
LP problem.
OSPF/IS-IS are two most commonly used intra-domain Internet routing protocols. In OSPF/IS-IS, each link is associated a

positive weight. The traffic is routed along the shortest paths. In case of ties where several outgoing links are on the shortest
paths to the destination, the flow is split evenly among them. Weight assignments determine packet forwarding, and thus
determine the average case and worst case performance. In [6], Bernard et al.showed that the routing optimization problem
under OSPF/IS-IS is a NP-hard problem. They used local search techniques to iteratively improve the quality of link weights,
changing one or a few link weights in each iteration. The procedure ends after 5000 iterations. The solution is not guaranteed
to be optimal. Instead, the solution quality is affected by random choice made through iterations.

III. TRADEOFF METRIC

In this section, we first introduce notation. Then through a simple example, we show the possible significant tradeoff
between average case performance and worst case performance. Finally, we introduce our metric to tradeoff between those
two considerations.

A. Notation
Network topology: The network is composed of a set of nodes and a set of directed links . The nodes in
are represented by the integers . The directed links in are represented by .
Link capacity : , where denotes the capacity of link .
Traffic Matrices : is a set of traffic matrices with associated positive weights ,

. In TM , , , denotes the rate of exogenous traffic, in bits/s, originating
from node destined to node .
Ratio variables : , , , where denotes the ratio of the traffic rate originating

from destined to that is forwarded over link to the overall traffic rate originating from destined to . A set of ratio
variables should satisfy the flow conservation constraints. i.e.,

otherwise
(1)

Let denote the set that satisfies (1). As shown in [1], can always be implemented by MPLS. Therefore, we use
and a set of MPLS routes interchangeably.

Link weights : , where is the weight for link . In OSPF/IS-IS, traffic is forwarded along the
shortest paths determined by from source to destination. In case of ties where several outgoing links are on shortest paths to
the destination, the flow is split evenly among them. A set of weights completely determines the packet routes. OSPF/IS-IS
is not as flexible as MPLS. As shown by [6], in general, the set of ratio variable sets implemented by OSPF/IS-IS is a subset
of .
Link data rates : , , , where denotes the link data rate over link under

TM .
(2)

Link cost : , , where denotes the cost function of link . We assume that the link cost is a
convex, increasing function of link data rate. In the context of routing optimization, link cost normally represents the overall
packet delay on a link [8]. While our analysis can be applied to any function with such properties, we will use,

(3)

This -like link cost can be approximated by a collection of piece-wise linear functions. Specifically, let ( , ),
be . We have,

(4)

Network cost : denotes the network cost of TM , . It is the sum of the cost of all of the links when
the TM is .

(5)
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B. Average Case and Worst Case Performance under Multiple TMs
Let and denote the expected link cost and expected network cost.

(6)

(7)

Note that and differ only by a ratio of .
Let and denote the worst case link cost and worst case network cost.

(8)

(9)

C. Tradeoff between Average Case Performance and Worst Case Performance
It is easy to see that the expected network cost is equivalent to the worst case network cost under a single TM. However, in

the case of multiple TMs, the two metrics capture different characteristics of a routing configuration, and thus may introduce
a tradeoff between each other. We illustrate this tradeoff with a small example. In this example, the worst case performance
is high if we only focus on the average case performance. However, we will observe that the worst case performance can be
significantly reduced by sacrificing the average case performance by just a very small amount. The example is based on a
network and a piece link cost function shown in Figure 1.
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Fig. 1. A topology and a 2-piece link cost function

We consider the case of two TMs with weights, .

(10)

Figure 2 shows the optimization result for average case performance and worst case performance. If we only optimize the
average case performance, we incur both high link level and network level worst case performance. The demand between node
and node in TM requires of the capacity of link , and the demand between node and node in TM

requires of the capacity of link . Beyond link utilization, ( ) is slightly cheaper than ( ).
As a result, the average case performance is optimized when all traffic from node to node are forwarded through link

, and then link . i.e., . However, this optimal solution for average case performance incurs
high worst case performance. As all traffic from node to are forwarded through link , and then , in TM ,
link is heavily congested, with a high utilization of , and a high link cost of . Therefore, TM incurs a
high network cost of compared to TM network cost of .
However, if we can sacrifice the average case performance a little bit, the worst case performance might be substantially

improved at both network level and link level. This is achieved by routing the traffic from node to node about evenly via
link and link . The cost of link under TM is substantially decreased, from above to about ; and
the network cost of TM , from above to about . Note that this substantial improvement in worst case performance
is achieved by only sacrificing a little bit in average case performance — the expected network cost is slightly increased from
above optimal value to a value less than .

D. Our Metric: Tradeoff between Average Case Performance and Worst Case Performance
We have shown the potential significant tradeoff between average case performance and worst case performance. In this

paper, we use a simple metric: weighted sum of average case performance and worst case performance to control the tradeoff
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Fig. 2. An example : tradeoff between average case performance and worst case performance

between these two considerations. i.e., given ,

(11)
(12)

When approaches , we are optimizing the average case performance; and when approaches , we are optimizing the
worst case performance. We control the tradeoff between average case and worst case performance by varying between
to . The effectiveness of our metric will be shown in next section.

IV. TRADEOFF METRIC EFFECTIVENESS AND SOLUTION
In this section, we first show our metric effectiveness by proving that the average case performance is a convex, decreasing,

continuous and differentiable function of worst case performance. Then, we propose solution methods for MPLS and OSPF/IS-
IS to solve our metric.

A. Metric Effectiveness
When varying between to , as we shall see, our metric nicely controls the tradeoff between average case performance

and worst case performance. We demonstrate this by proving Theorem 4.1.
Theorem 4.1: Under MPLS, assume that the link cost is a continuous, non-decreasing function of link data rate, and
, . For the routing optimization problem defined in (11) and (12), the average performance and are non-

decreasing continuous function of ; the worst case performance and are non-increasing continuous function of .
The average performance and worst case performance tradeoff curve is a differentiable decreasing
convex curve on P-F plane and

Proof: See Appendix A.

Fig. 3. Average case performance is a convex, decreasing, and differentiable function of worst case performance

Theorem 4.1 reveals the fundamental tradeoff between the average case and the worst case performance: as shown in Figure
3, average case performance is a convex, decreasing, and differentiable function of worst case performance. Our metric, the
weighted sum of average case and worst case performance, nicely controls the tradeoff between average case performance and
worst case performance. When we prioritize average case performance over worst case performance to the extreme, we end
up with the left corner point . i.e., a result derived when we first optimize the average case performance, and
then optimize the worst case performance given that the average case performance is minimized. As a property of this dual
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optimization, , the MPLS solution generated by our metric is always loop-free. Existing work solely focusing on
worst case performance may get a solution with loop and bad average case performance. [11] relieves this problem using a
loop removal algorithm. However, their solution may still incur a bad average case performance. When we prioritize worst
case performance over average case performance to the extreme, we end up with the right corner point . In this
paper, we use as a value of to be sufficiently close to , and as a value to be sufficiently close to .
At the same time, all points on the curve would be of interest given that we intend to tradeoff between those two

considerations. For a given , there is a point on the tradeoff curve with average case performance and worst case
performance . The derivative is . The derivative at is dramatic — which indicates
that the worst case performance can be substantially reduced at minor cost of average case performance. The derivative at

is close to — which indicates that the average case performance can be substantially improved at minor
cost of worst case performance. Due to the convexity of the curve, the derivative not only describes the local
trend of the tradeoff between and when the weight is in the neighborhood of , but also serves as a bound
for global trend. More specifically, at , in order to reduce the the average case performance from to ,

, one has to suffer an increase in the worst case performance of . Symmetrically,
to reduce the the worst case performance from to , , one has to suffer an increase
in the average case performance of .

B. Solution method for our tradeoff metric
We derive the optimal solution with respect to our tradeoff metric under two class of routing protocols – MPLS and OSPF/IS-

IS. Given the tradeoff parameter , we optimize our tradeoff metric among all feasible sets of routes. (A set of routes is feasible
if the resulting link data rates is less than or equal to capacity for all TMs.)
As we mentioned earlier, and MPLS routes can be used interchangeably. Therefore, we formalize the MPLS routing

optimization problem using ratio variables as control variables.

Given: network , link capacity , TMs.
Minimize: , or .
Constraints:
For each TM , ,
1) Route constraints. is implemented by a set of routes .
2) Feasibility constraints. .

When link costs are approximated by piece-wise linear functions, they can be expressed as additional constraints.
3) Piece-wise constraints. For ,

From the above problem formulation, we see that our tradeoff metric can be solved as a convex optimization problem. When
the link cost function is approximated as piece-wise linear functions, our metric can be solved as a LP problem.
Under OSPF/IS-IS, [6] shows that the optimization problem for average case performance is an NP-hard problem even for

a single TM. Our problem is even harder. Therefore, we solve our tradeoff metric under OSPF/IS-IS using a so-called local
search heuristic introduced in [6]. In this approach, we iteratively improve the solution quality by adjusting one or a few link
weights. Here the quality of a solution is evaluated using our proposed metric defined over the multiple input TMs. Since the
problem is NP-hard, the solution is not guaranteed to be optimal. Instead, the solution quality is affected by random choice
made through iterations.

V. RESULT
A. Network Topology and TMs
Our evaluations are based on real traffic data collected from a large operational IP network – AT&T’s North American

commercial backbone network. The network consists of tens of Point of Presence (PoPs), hundreds of routers, thousands of
links, and carries over one petabyte of traffic per day.
We use the PoP-level network topology on February 14, 2005 in our evaluations. We first obtain the router-level topology

using the methods of Feldmann et al. [12]. We then reduce the router-level topology into a PoP-level topology by collapsing
the router-level links between the same pair of PoP into a single PoP-level link. The capacity of the PoP-level link is computed
as the sum of the capacities of all the underlying router-level links.
The TMs are estimated from SNMP link load measurements using the tomo-gravity method [13], which has been shown

to yield accurate estimates, especially for large TM elements. We use hourly TMs, as they are commonly used in network
engineering applications. The data collection in our study contains two weeks of hourly TMs (from February 13, 2005 to
February 26, 2005). The TMs in our original dataset are at the router level. We aggregate them into PoP-level TMs by
mapping the demand between each pair of routers to the corresponding pair of PoPs. Each PoP-level TM contains over 400
origin-destination flows at rates ranging from tens of Kbps to tens of Gbps.
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As the true value of the traffic demand and link utilization is considered proprietary, we normalize the TMs in our data
collection so that the maximum link utilization with Cisco’s default routing (OSPF/IS-IS weight of each link being inversely
proportional to its capacity) under the first TM in our collection is . In the rest of the paper, we will use these normalized
TMs for our evaluation.

B. Evaluation Methodology
From the small example in Figure 2, we have observed that there can be a significant tradeoff between average case

performance and worst case performance for a given set of demand scenarios. Our evaluation in this section is to explore such
a tradeoff with real network demands and configuration. We base our analysis primarily on a set of peak demand scenarios,
which we will refer to as the Peak TMs. We look at the TMs at the peak hours on weekdays. For each day, we select the
six consecutive hours that appear to have the highest total traffic volume. Intuitively, those TMs should capture the traffic
variability due to the wide geographic range of the network – the network we considered spans three time zones, and the
traffic on the west tends to lag a few hours behind in reaching its peak compared to that on the east. Due to space limit, we
only report the result of one day – February 14, 2005. The result of the other days are quantitatively similar. Besides Peak
TMs, we also consider scenarios with a mixture of Peak TMs and Low TMs, which represents the demand at hours when the
total traffic volume appears to be low. We pick, from each day, the twelve consecutive hours with the lowest total volume as
the set of Low TMs.
For each set of input TMs, we use equal weight for each TM. We consider the two classes of routing protocols: MPLS and

OSPF/IS-IS. We identify the optimal routes under MPLS by constructing a LP system (as described in Section IV-B) and then
solve it with the AMPL/CPLEX [14] toolkit. Under OSPF/ISIS, we explore the “best” weight setting by implementing a local
search strategy similar to that in [6]. We limit our search to iterations, which appear to have converged to an optimal (at
least locally) solution. Next, we first present our evaluation result for MPLS, and then for OSPF/IS-IS.

C. MPLS
1) Tradeoff grows as load increases: We first explore the extent of the performance tradeoff under a variable level of offered

work load. To do so, we take the Peak TMs, and scale every demand in each of the TMs by a constant factor. We vary the
scaling factor from to . For each scaling factor, we evaluate the performance of two extreme routing configurations. On
one extreme, we focus on optimizing the average case performance (by setting ). On the other extreme, we focus
on optimizing the worst case performance (by setting ). In either case, we compute the average case performance
cost ( or , depending on which of the performance measures being considered), and the worst case performance cost
( or ).
Figure 4 plots the difference between the two extreme routing optimizations in terms of the average case performance and

worst case performance: those when subtract those when . Figure 6 (a) presents the result of using the
network-wide cost as the performance measure and Figure 6 (b) presents the result for the link-level cost. From Figure 6 (a),
we observe that optimizing only on the average case performance ( ) incurs a higher cost for the worst case than the
lowest worst-case-cost achievable ( ), and the difference grows as the offered workload increases – manifested by
the increasing curve on the positive side of y-axis. The counterpart is also true: optimizing only on the worst case performance
would result in a higher average-case-cost than the optimal, with the difference increasing with load. This is manifested by
the decreasing curve (increasing in magnitude) on the negative side of y-axis. This result is expected since when the load is
very low, all demand flows can be routed through the least expensive route, which is optimal for each individual TM. In this
case, there is no difference between optimizing either the worst case or the average case. However, when the load becomes
sufficiently large in comparison to the capacity, contention arises among different TMs – a routing configuration works best
for one TM may perform poorly for another TM. Thus, finding a routing configuration that performs well both in average case
and in worst case becomes very important.
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Fig. 4. Tradeoff grows as load increases (Peak TMs)
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Fig. 6. Change of each TM in network level cost and link level cost

For link level performance measure (Figure 4 (b)), we find that the general trend matches that in Figure 4 (a). However, the
magnitude of the difference is not monotonically increasing as load increases. This is an artifact introduced by the piece-wise
linear function that we used to approximate the continuous link cost. Consider the case where a flow can be routed through
two paths. In order to optimize the average link cost, it is advantageous to route traffic through the one with higher capacity.
However, as load increases, the utilization of the higher-capacity-path reaches a next level on the piece-wise linear function, it
may become advantageous to route the additional traffic through the lower-capacity-path. This continues until a next level of
piece-wise function is reached. Meanwhile, in order to optimize the worst link cost, it is always advantageous to balance the
traffic so that the two paths have equal cost. Now we look again at the process as load increases: at the beginning, the two
objectives contradict to each other, which means the difference between the optimization result should increase; at the second
phase, however, both optimization lead to a more balanced routing, i.e., their difference should decrease; and this repeats until
a next level of piece-wise linear function is hit, producing the non-monotonic behavior of Figure 4 (b).
2) provides us control on the level of desired tradeoff: Now we have seen that the two optimization objectives may have

significant difference. In this subsection, we examine how much control we can achieve by optimizing routing with respect to
our metric in the tradeoff between the average case and worst case performance. To do so, we fix the set of offered load (Peak
TMs with a scaling factor of ) and vary the tradeoff parameter from to .
Figure 5 plots such a tradeoff curve – the worst case performance as a function of the average case performance. As

changes from to , we are trading off average case performance with worst case performance. The amount of
possible tradeoff is considerable. The range of tradeoff for worst case network cost is , about of the optimal worst
case network cost. The range of tradeoff for expected network cost is , about of the optimal expected network cost.
The range of tradeoff for worst case link cost is , about of the optimal worst case link cost. The range of tradeoff for
expected link cost is , about of the optimal expected link cost.
We also observe that by changing , we have very fine-grained control in determining the desirable level of tradeoff. With

either network level performance measure or link level performance measure, we can identify solutions with both good average
case performance and good worst case performance. In particular, with network level performance measure (Figure 5 (a)),
when we choose , the worst case network cost drops dramatically, from to ( of the optimal worst case
cost), with minor increase of average case cost, from to ( of the optimal average cost). Similarly, with link level
performance measure (Figure 5 (b)), when we choose , the worst case link cost drops dramatically, from to
( of the optimal worst case cost), with minor increase of average case cost, from to ( of the optimal average
case cost).
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Figure 6 provides us insight on how is the tradeoff achieved by plotting the performance cost under each individual TM
when changes from to . Figure 6 (a) uses the network-wide cost and Figure 6 (b) uses the link-level cost
as the performance measure. We can easily observe the contention among the different TMs. In either performance measure,
TM dominates the other TMs, in that it represents the worst-cast performance. When we increase , we observe that the
performance cost associated with TM indeed decreases. However, this is achieved by sacrificing the performance under other
TMs. In particular, when we uses network level performance measure, we find that TM , , suffer considerable performance
degradation, especially when gets close to . This implies that TM , , and have competing demand such that their
individually preferable routing configurations differ. On the other hand, TM and TM share more conformity with TM in
that they appear having contributed little in the contention.
3) Tradeoff in case of peak TMs and low TMs: We have seen that the for Peak TMs, the tradeoff can be considerable. Now,

we turns to the tradeoff in case of a combination of peak TMs and low TMs. We focus on two TMs with a scaling factor of
, one TM from Peak TMs, and one TM from Low TMs. Table I shows the result for network level optimization tradeoff.

For both expected network cost and worst case network cost, the tradeoff is very limited — no more than of the optimal
expected network cost or worst case network cost. This is because the peak TM dominants in the expected network cost, as
well as the worst case network cost. No matter which one we are focusing on, the routing solution is always close to the
optimal solution of the peak TM. As a result, we get very limited network level tradeoff.

0.0001 483.68 876.59
0.9999 484.01 875.85

TABLE I
LIMITED NETWORK LEVEL TRADEOFF FOR A PEAK TM AND A LOW TM

At link level, Figure 7 (a) shows the result of tradeoff for a peak TM and a low TM. We also plot the link level tradeoff
curve for the peak TM as Figure 7 (b). For the worst case link cost, the peak TM determines the range of tradeoff: the tradeoff
of two TMs (a) and the tradeoff of the peak TM (b) are equivalent (from to ). For the expected link cost, the peak TM
also determines the range of tradeoff: the range of the tradeoff for two TMs (a) (from to ) is equivalent to the of
the tradeoff range for the peak TM (from to ). The tradeoff curve of two TMs (a) is sharper than the peak TM (b).
Therefore, to achieve the same worst case link cost, the corresponding in (a) is smaller than (b). This would continue to
decrease as we increases the number of low TMs. In the case of a large portion of low TMs, the body of the tradeoff curve
corresponds to with small values. And thus we need to focus on small value to exploit the benefit of tradeoff for such
input TMs.
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Fig. 7. Link cost tradeoff dominated by peak TM, peak TM and low TM

D. OSPF/IS-IS
Under OSPF/IS-IS protocol, we fix the set of offered load (Peak TMs with scaling factor ) and examine the tradeoff

between average case performance and worst case performance. We solve the tradeoff metric using our implemented heuristic
algorithm described in IV-B. Table II shows the optimization result when takes the value of and . The
performance difference between optimization result of and is considerable. At link level, the difference in
expected link cost is , about of the best found expected link cost. The difference in worst case link cost is

, about of the best found worst case link cost. At network level, the difference in expected network cost is
, about of the best found expected network cost. The differnce in worst case network cost is , about

of the best found worst case network cost. However, when we vary from to , We could not find more fine-grid
tradeoff solution — the solution is always one of the two listed in the table. However, this result might not reflect the existing
fine-grid tradeoff solution as OSPF/IS-IS optimizer may not return optimal solution due to the NP-hardness of the problem.
On the other hand, OSPF/IS-IS, a coarse grid routing protocol compared to MPLS, may inherently have few fine-grid tradeoff
solutions.
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0.0001 3.74 223.73 328.85 521.96
0.9999 4.24 57.19 373.49 476.42

TABLE II
TRADEOFF BETWEEN AVERAGE AND WORST CASE PERFORMANCE UNDER OSPF/IS-IS

E. Comparison with average case performance only or worst case performance only approaches
We compare our approach with existing approaches which focus on only average case performance or only worst case

performance. i.e. and . However, completely focusing on one metric and ignoring the other one may lead to
catastrophically high cost for the ignored metric. We illustrate this using Peak TMs. Table III shows the link level optimization
result when are , , , and . When , we are only optimizing the expected link cost. When ,
we are first optimizing the expected link cost, and then optimizing the worst case link cost given that the expected link cost
is minimized. Since and both optimize the expected link cost in first priority, we get the same expected
link cost . For the same reason, when and , we get the same worst case link cost . However, when

, since we also optimize the expected link cost given that the worst case link cost is minimized. We get a much
lower expected link cost , compared to , which is achieved when we only optimize the worst case link cost. When

, the routing solution may have loop for traffic not been forwarded through the most congested link. Previous work [11]
address this problem by applying an additional loop removal algorithm. However, their solution may still incur high expected
link cost. In contrast, our algorithm not only guarantee to have loop-free routing solution, but also achieve the optimal expected
link cost.

0 9.28 255.00
0.0001 9.28 255.00
0.9999 10.64 221.03

1 83.56 221.03

TABLE III
BAD EXPECTED LINK COST IF ONLY MINIMIZING WORST CASE LINK COST

VI. REVISIT: OPTIMIZING THE PERFORMANCE VARIANCE
Throughout this paper, we focus on the tradeoff between average case performance and worst case performance. However,

motivated by a commonly used robust optimization framework [10], we now investigate another routing optimization approach
which aims to reduce the performance sensitivity relative to the change of TMs. More specifically, let and to quantify
the link-level and the network-level performance variance.

(13)

(14)

However, because the variance-based performance variance measure is not tied to the absolute performance, minimizing
variance-based metrics may result in bad performance for all TMs — the performance of each TM is worse than or equal
to those of the optimization results focusing on the average case performance (In Appendix B, we illustrate this by a small
example). Because of the deficit of this performance variance metric, in this paper, we have chosen to focus on the worst case
performance, as well as the tradeoff between it and average case performance.

VII. CONCLUSION
In this paper, we have studied the routing optimization problem in the presence of multiple TMs. Previous work in this field

has been focusing either on the average case performance or the worst case performance. Our work, however, has focused on
obtaining an understanding of the tradeoff between optimizing the average case performance and optimizing the worst case
performance. We have first discovered, through examining both a small constructed example and data from a real operational
network, that solely optimizing one of the metrics (average case or worst case performance) can sometimes lead to a relatively
poor performance of the other. In particular, we found cases where a relative difference exists in their performance
cost when optimizing one versus the other.
Since it is often desirable to find a set of routes that results in good average case performance over all TMs considered while

avoiding bad worst case performance for any single TM, we have proposed a simple metric, weighted sum of the average
case and the worst case performance, to control the tradeoff between the two consideration. Despite of its simple form, this
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metric is very effective. We have proved that routing optimization over this metric have nice properties such as the average
case performance being a decreasing convex and differentiable function to the worst cast performance.
Equipped with this tradeoff metric, we have further developed solution approaches, by extending the methods in [1] and

[3], to identifying the routing configuration that represents the desired level of tradeoff under two classes of widely used intra-
domain routing protocols – MPLS and OSPF/IS-IS. We have evaluated our approach with data collected from an operational
tier-1 ISP. In the case of MPLS, we found that our approach can identify solution that dramatically improves the worst case
performance ( ) while slightly sacrificing the average case performance ( ), in comparison to that by
optimizing solely on the average case performance. In the case of OSPF/IS-IS, although there exists significant difference in
optimizing the average case versus the worst case performance, a fine-grained tradeoff is difficult to achieve due to the limited
control that OSPF/IS-IS provide.

VIII. APPENDIX
A. Convexity of the Trade-Off Curve in Section III-D
We prove Theorem 4.1 in two steps. We first prove Theorem 8.1 and then Theorem 8.2 for MPLS. We assume that the link

cost is a continuous, non-decreasing function of link data rate, and , .
Theorem 8.1: For the routing optimization problem defined in (11) and (12), the average performance and are

non-decreasing continuous function of ; the worst case performance and are non-increasing continuous function of
.

Proof: We prove the case for network cost and . The case for link cost follows the same procedure.
Notation: let be the optimal routing solution at and construct , . Denote

the link rate vectors resulted from routing by where is a row vector
of link traffic rates for TM when routing is implemented.
Continuity:

is continuous in .
Proof by contradiction: if there is a discontinuity between some and , without lose of generality, assume

, then is a better solution than for the optimization problem
at . This contradicts with the definition of . Similarly, we can rule out the discontinuity between and .
Both , are continuous in .
Proof by contradiction: if there is a discontinuity in between some and , . Then we have

and . Since is continuous in , then

(15)

We can construct another routing

The corresponding link rate vector is

Since link cost function is a strict convex function of link rate, we will have

Together with (15), we have

This contradicts with the definition of and .
Monotonicity: Suppose , then by definition,

(16)
(17)

Equivalently,
(18)
(19)

Therefore,
if , then
if , then from (18) we have

(20)
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From (19) we have
(21)

Combining (20) and (21), we have , which contradicts with , therefore it is impossible to have
.

if , then and

(22)

Therefore, the average performance is a non-decreasing function of ; the worst case performance is a non-increasing
function of .

Theorem 8.2: The average performance and worst case performance tradeoff curve is a differ-
entiable decreasing convex curve on P-F plane and

Proof: Look at two arbitrary points on the P-F curve, , and , then we
must have . Let be the point on the P-F curve s.t. , then we know

. From (22) we will have,

Therefore

Equivalently,

Therefore, on the P-F tradeoff plane, F is a convex function of P. Furthermore, from (22), since is continuous in , then
P-F curve is differentiable with . Therefore, the average performance and worst case performance tradeoff
curve is a differentiable decreasing convex curve on P-F plane.

B. An example to show the deficit of the performance variance metric
In this example, through a simple example, we demonstrate the deficit of the performance variance metric. i.e., under the

performance variance measure, the network costs of each TM may be worse than or equal to those of the optimization results
given by the average case performance measure — in which performance variance metric provides us no gain over the average
performance measure for any TM.
This example is based on a topology shown in the left plot of Figure 1. For simplicity, we use piece link cost function

shown in the right plot of Figure 1. We consider the network cost of two TMs with equal weights .

(23)

Under TM , the network cost, as well as the the cost of link , is fixed ( ). The optimal network cost of TM ,
is about . This is achieved when the demand from node to node is evenly split and forwarded through link
and link . However, if we minimize , the ”variance-based network-level worst case performance”, the network cost
of must increase in order to reduce the network cost difference from . We end up with a set of routes which forwards
all packets from node to node via link , resulting , and then .
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