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Abstract

We propose dynamic abstraction networks, a new type of hierarchical graphical model that combines
state and temporal abstraction. Fundamental to our approach is the belief that temporal abstraction
and state abstraction are intertwined, and should be modeled jointly in the same network. For the state
abstraction component of the model we use the hierarchical hidden Markov model, while for the policy
abstraction component we use a structure based on the abstract hidden Markov model. We present
results on both real and synthetic activity data comparing the policy abstractions learned with and
without the use of state abstraction.
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1 Introduction

A hallmark of human intelligence is the ability to form spatial and temporal abstractions of the world.
We can reason about whether or not to reach for an object, or go on vacation, or how best to prepare
for retirement. Correspondingly, we are also effortlessly able to maintain state estimates of our location at
multiple levels of abstraction: driving from New York City to Miami, we know whether we are in Georgia or
Maryland, or near a particular exit. What is even more striking is that state abstraction is often intertwined
with temporal abstraction, enabling us to not only jointly reason about one from the other, but also learn
both simultaneously. This synchrony is perhaps one reason why we often report our state using temporal
abstractions (“I'm in graduate school”), or our actions using state abstractions (“I’'m vacationing in Italy”).
We formalize these intuitions using the framework of graphical models, but other approaches are possible.

Previous work in graphical models has largely focused on studying temporal abstraction or state abstraction
in isolation. We propose a new type of hierarchical graphical model, dynamic abstraction networks (DANs),
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that combines state and temporal abstraction. Introduced in [1], the term dynamic abstraction refers to the
changing relevance of state variables over time. For example, traffic conditions are relevant while driving but
irrelevant once at the destination. We extend the definition to include the idea that each abstract state has
certain admissible abstract policies, generalizing the idea from Markov decision processes that each local state
has certain admissible actions. DANs augment the state hierarchy of the hierarchical hidden Markov model
(HHMM) [6] with a policy abstraction component based on the abstract hidden Markov model (AHMM) [3].

Jointly encoding spatial and temporal abstraction in a graphical model like the DAN permits us to do both
joint inference and joint learning. For instance, suppose I know you have seen a Broadway play (abstract
policy). I can infer using a DAN how probable it was that you were in New York City (abstract state).
Intuitively, abstract policies are intricately tied to abstract states. For instance, New York City is both
a temporal and a spatial abstraction: its geographical location permits you to both execute such abstract
policies as visit the Metropolitan Museum of Art or attend a Broadway play, and to define such spatial
abstractions as the five boroughs of New York City or the state of New York.

In the rest of this paper, we define the DAN model and present results comparing temporal abstractions
learned with and without the use of state abstraction.

2 Dynamic Abstraction Networks

One of the simplest models used to infer hidden state from a series of observations is the hidden Markov
model (HMM). Given the basic HMM, one extension is to add a policy layer that chooses among multiple
HMMs, as in the AHMM [3]. Shown in Figure la, the bottom layer of the AHMM represents an HMM.
Alternatively, as in [8], the bottom layer could also represent a Kalman filter. The second layer in the AHMM
represents actions, IIy. Which action can be executed at time ¢ depends on the state and policy at time ¢. If
actions are continuous, we can include an action observation node O 4 as shown in Figure la. The third and
higher layers in the AHMM represent successively more abstract policies, II; where ¢ > 0. Policy termination
nodes J; indicate when a new policy at level i can be chosen. In summary, an AHMM specifies policies as
mappings from states to probability distributions over actions, where higher-level policies are mappings from
states to distributions over lower-level policies.

A key drawback of the AHMM is that because it lacks an explicit mechanism for defining abstract states,
higher level policies are difficult to define and cannot share common state abstractions. Consequently,
abstract policies must be defined over concrete states, greatly increasing the number of parameters that
must be learned. We would therefore like to incorporate some method of state abstraction into the AHMM.
While one approach might be to simply add a decision tree that encodes state abstraction, this does not
enable us to jointly learn abstract states and policies. If we instead incorporate a state abstraction layer
based on a graphical model like the HHMM, we are able to jointly learn both state and policy abstractions.

In comparison to the AHMM, the HHMM encodes no policies or actions. Instead, it encodes state abstrac-
tions as mappings from all higher-level states to a probability distribution over each lower-level state. While
only policies at level i influence policies at level i — 1 in the AHMM, states at level i as well as all higher-level
states influence states at level s — 1. The DBN representation of the HHMM defined in [10] is shown in
Figure 1c; the bottom layer of the HHMM represents an HMM while higher layers represent successively
more abstract states, S; where 7 > 0. State termination nodes «; indicate when a new state at level ¢ can
occur. Along with HMMs, HHMMs have been widely applied in sequence classification problems, such as in
speech and robotics [10, 13].

We can think of DANs as a merging of a state hierarchy, represented by the HHMM, and a policy hierarchy
represented by the modified version of the AHMM shown in Figure 1b. The modified AHMM (mAHMM)
encodes two types of additional dependencies not represented in the AHMM. The first type of dependency is
represented by edges from each level i policy node to all lower-level policy nodes. The second is represented
by edges to and from policy nodes at level ¢ to policy termination nodes at level i + 1. We added these
dependencies because empirically we found that without them the AHMM had difficulty learning to execute
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Figure 1: DBN representation of (a) abstract hidden Markov model, (b) modified abstract hidden Markov
model, (c) hierarchical hidden Markov model, and (d) dynamic abstraction network. We emphasize that (d)
is just one realization of a dynamic abstraction network, and other configurations are possible.



a unique policy with high probability in a given state (see the next section). This may be a consequence
of the type of data that was used. We note that by adding these dependencies we violate the conditional
independence theorem for AHMMs in [3] which permitted them to design a fast Rao-Blackwellized particle
filtering inference method for the AHMM. We merge the mAHMM and HHMM by adding edges from state
nodes at time ¢ on level ¢ to policy and policy termination nodes at time ¢ on level ¢ and from policy nodes
at time ¢ on level ¢ to state nodes at time ¢+ 1 on level i gives us the DAN shown in Figure 1d. Formally, we
define a K-level DAN as comprised of an intertwined state hierarchy and policy hierarchy defined as follows.

Policy Hierarchy. A policy hierarchy H, with K levelsis given by the ordered tuple H, = (04,1, IIy,..., k).
e O, is the set of action observations. Og4 is only necessary if actions are continuous or partially
observable.
e Il is the set of primitive (one-step) actions.

e II; is the set of abstract policies at level 1 < ¢ < K, defined in more detail below.
State Hierarchy. A state hierarchy H, with K levelsis given by the ordered tuple H; = (Og, So, S1,.-.,SK)-

e (g is the set of state observations.

e S; is the set of abstract states at levels 0 < j < K, defined in more detail below.
Abstract Policies. At level 7, each abstract policy 7; € II; is given by the tuple m; =< Sx,, Br,, By O, >-

o Selection set. Sy, C S; is the set of states in which 7; can be executed.

e Termination probability. B,, C S; is the set of states in which m; can terminate. S, : B, — (0,1]
is the probability that policy 7; terminates in state B,,. Note that for all termination states that are
not also selection states, policy m; terminates with probability one.

o Selection probability. o, : Il;11.x X Sy, = [0, 1] is the probability with which a policy =; € II; can be
initiated when executing abstract policies m; 11 € Il;11,...,mk € llk in state s,, € S,.

Abstract States. At level j, each abstract state s; € S; is given by the tuple s; =<II,,, as;,0s, >. Note
that an abstract state may be part of more than one higher level state; for instance, states at level j may be
letters while states at level j + 1 are words.

o Entry set. II,, C II; is the set of policies which enter state s;.

e Ezit probability. as; : S; — (0,1] is the probability that the agent exits state s; € S; when in states
Sj+1 € Sj+1, ...,8K € Sk.

e Transition probability. o,; : Sjy1.x x II; x S; = [0, 1] is the probability that the agent transitions to
state s:"' € 5; from state st € S; when in parent states s®,; € Sj;1,...,5% € Sk and executing

policy 7r§ e II;.

Figure 1d shows a 2-level DAN. For the policy hierarchy, II nodes encode the selection sets S, and the
selection probabilities o, while 8 nodes encode the termination probabilities 3. For the state hierarchy, S
nodes encode the entry sets II; and the transition probabilities o, while o nodes encode the exit probabilities
as. At level i, choosing policy 7; € II; depends in part on state s; € S; but executing m; € II;, by choosing
policy m;—1 € II;_;, depends in part on state s;—; € S;—1. That is, choosing a policy at level ¢ depends on
the state at level i, but executing a policy at level 7 depends on the state at level 1 — 1.
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Figure 2: Models used in experiments.

We note that due to the structure of the AHMM, for all 1 < i < K where K is the number of levels in the
AHMM, if 8! = continue then all policies at levels ¢ and higher must remain the same and !, - = continue.
Thus for all j > i, the edge from S* to 8%, , the edge from II% , ; to 8%, , the edge from S* to It and the
edge from H; 41 to H;-, can be removed due to context-specific independence (CSI) properties [2]. Similarly, if
Bi = end then the edge from 5 to %, and the edge from II% to It can be removed since the next policy no
longer depends on the current policy. These CSI properties permit the design of a fast inference algorithm,
Rao-Blackwellized particle filtering, for the AHMM [3]. Other work [7] has shown that using variational
methods for approximate inference in the AHMM results in a significant speedup in inference. A multiagent
extension to the AHMM that maintains the CSI properties to have an associated Rao-Blackwellized particle
filtering algorithm for inference was proposed in [12].

One of the key ideas for developing this model is that abstract states are useful for learning abstract policies.
Consequently, abstract states are fed into all policy levels including the actions. In the results section we
show empirically that DANs learn “cleaner” policies than AHMMs.

3 Experiments

We used three datasets: the Lab and Entry activity data from [11] and data generated using the Tazi domain
in [5]. The Lab data consists of six types of sequences collected in the hallway of a laboratory. There are
three instances of each type; we use two of each for training and the third for testing. The primary feature
of interest for this data was that the sequences overlapped significantly. The Entry data consists of eight
types of sequences collected in the entryway of a building. There are ten instances of each type; we use
nine of each for training and the tenth for testing. The primary feature of interest for this data was that
the sequences periodically crossed each other. Given the sequences of (z,y) locations, we artificially created
actions for both datasets by computing the z and y differences between the locations at times ¢ and ¢ + 1.

The Tazi domain [5] consists of a five-by-five grid with four taxi terminals, R, G, Y, and B, see Figure 3.
The goal of the agent is to pick up a passenger from one terminal, and deliver her to another one (possibly
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Figure 3: Grid for the Taxi domain.

the same one). There are six actions: north (N), south (S), east (E), west (W), pick up passenger (PU), and
put down passenger (PD). 80% of the time N, S, E, and W work correctly; for 10% of the time the agent
goes right and 10% of the time the agent goes left. The agent’s state consists of the taxi location (TL), the
passenger location (PL), and the passenger destination (PD). Note that PL = 1 when the passenger has
been picked up and PD = 1 when the passenger has been delivered. We generated 1000 training sequences
from a reinforcement learning agent trained in this domain. Each sequence is the trajectory of states visited
and actions taken in one episode as the trained agent uses its learned policy to reach the goal.

We used Expectation-Maximization [4] to learn the parameters for 1-level AHMM, mAHMM, HHMM and
DAN models for the Lab data and Entry data. We learned only 1-level mAHMM and DAN models for the
Tazi data. Figure 2 shows the DAN models used in the experiments; note that the HHMM components of
the DANs have been slightly modified to suit the datasets. Bayes Net Toolbox [9] was used to implement
and train all models.

For the Lab and the Entry data, the state and action observations were treated as two-dimensional Gaussians
and initalized with randomly chosen points from the data. The remaining distributions were multinomials,
and except for the §1, a1, II;, and S; distributions, were initialized randomly. For both the Lab and the
Entry data we set |II;| = 8, || = 4, |S1] = 8, |So| = 30, |B1| = 2, and |a;1| = 2. For the Tazi data, all
distributions were multinomials and except for the £, ag, a1, II;, Sp, and S; distributions, were initialized
randomly. For the Tazi data we set |S1| =5, |So| = 25, |TL| = 25, |PL| =5, |PD| =5, |II;| =6, |II| =6,
lao| =2, [aa] = 2, and [B:1] = 2.

For all experiments, higher level states and policies were biased to change more slowly than lower level states
and policies; e.g., the floor you are on should not change more frequently than the room you are in. For
the Taxi data, this was done by initializing the 81, ag, a1, II1, S, and S; distributions as follows, where
1=0,1.

if B¢ = continue
P(B! | T4, T, 81) = e
(By | g, 117, S7) otherwise
if oy = continue
otherwise

{ 1 if of =af = continue

P(ag | $5,05) =

0.5 if af = continue and

t _
oy = end

0 otherwise

P(af | ag, 55,57 =

1 if Bt = continue and TT{™' = 1T¢
1/|;| if B¢ = end
0 otherwise

Py IO, 81, 87) =



1 if af = continue and Si™' = S¥
1/]So| if af =end
0

t+1 t ot qt+l _t _t
P(So |H0750751 7a07a1)

otherwise
1 if af = continue and SI*! = ¢
P(SIT M, St al) = 1/|81| if af =end
0 otherwise

For the Lab and Entry data, we used the same initializations for £, II;, and S;. Since the DAN used for
the Lab and Entry data (Figure 2a) did not include af), we instead initialized o and Sy to be,

0.95 if of = continue

t| ot oty _
P(aj | Sg,51) = {0.05 otherwise

1 if af = continue and Si™' = S¥
P(SEH | 1IE, S8, ST al) = 1/]So| if af =end
0 otherwise

4 Results

We compared how well the trained models for each of the datasets inferred level 1 policies and states on test
sequences. Table 1 shows the entropy, — >"_ p(x)logp(z), for the filtered and smoothed posterior distributions
P(I14 | Ot,0%1), P(ITt | OKT,0LT), P(St | O%t,0%), and P(S! | O5T,0%T) averaged over all timesteps
t for all test sequences for the Lab and Entry datasets. This metric evaluates how certain each model is in its
inference: i.e., on a given timestep for a given sequence, is one policy more probable or are all policies equally
probable? Ideally, the models should identify at least some policies as significantly more probable than other
policies; equivalently, the relevant posterior should have low entropy. Table 1 shows that for inferring level
1 policies, on both datasets, the DAN has the lowest entropy while the AHMM has the highest entropy. For
inferring level 1 states, the DAN has higher entropy than the HHMM for the Lab data but lower entropy
for the Entry data. We note that the average entropy for the state posteriors is lower than that for policy
posteriors. This may be a consequence of the spatial nature of the Lab and Entry data.

While Table 1 indicates that the DAN is learning policy and state abstractions that on average permit it to
identify the hidden abstract policies of unseen sequences with more certainty than the AHMM or mAHMM,
and to identify the hidden abstract states with about the same certainty as the HHMM, a natural question
to ask is exactly how certain is it. Figure 4 shows the probability of each level 1 policy for sequence 5 of the
Lab data for the AHMM, mAHMM and DAN, and the probability of each level 1 state for the HHMM and
DAN. We found that on average the most likely policy inferred by the DAN had probability 0.908 for the
Lab data and 0.840 for the Entry data with variances of 0.052 and 0.042 respectively while the most likely
policy inferred by the mAHMM had probability 0.854 for the Lab data and 0.723 for the Entry data with
variances of 0.053 and 0.068 and the most likely policy inferred by the AHMM had probability 0.293 for the

| | Model | Lab-F | Lab-S | Entry-F | Entry-S |
Policy | AHMM 1.8621 | 1.8252 | 1.8792 1.8666
mAHMM | 0.3722 | 0.3217 | 0.6912 0.6058

DAN 0.1548 | 0.1183 | 0.3970 0.3591
State | HHMM 0.0526 | 0.0251 | 0.1506 0.0672
DAN 0.0761 | 0.0300 | 0.1380 0.0782

Table 1: Entropy of the filtered (F) and smoothed (S) policy and state posterior distributions, averaged over
all timesteps for all test sequences for the Lab and Entry data.
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Figure 4: Distributions over level 1 policies and states for sequence 5 of the Lab data. Top left graph plots
all of the lab data.

Lab data and 0.250 for the Entry data with variances of 0.014 and 0.021. Similarly we found that on average
the most likely state inferred by the DAN had probability 0.948 for the Lab data and 0.941 for the Entry
data with variances of 0.032 and 0.021 respectively while the most likely state inferred by the HHMM had
probability 0.985 for the Lab data and 0.927 for the Entry data with variances of 0.001 and 0.021.

The influence of the abstract state on the learned abstract policies and vice versa is also apparent from
Figure 4. Notice the dip in probability around timestep 11 for the DAN’s most likely policy and state graphs
in Figure 4. Timestep 11 corresponds to the juncture seen at location (13,9) in the graph in Figure 4 that
plots all of the Lab data. At that point in the data there are two different directions in which the agent
can go, seen as two overalapping sequences beginning to diverge. For the DAN, while it maintains the same
policy for the entire sequence with lower probability at the juncture, it briefly switches to a different state
at the junction point. In comparison, the HHMM chooses one state until the juncture, and then switches to
and maintaines a different state after. This indicates the type of state abstractions learned are affected by
the availability of action and policy information.
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Figure 5: Most likely level 1 policies and states for test sequences 2 and 5 of the Lab data and for and test
sequences 1, 2, 5, and 6 of the Entry data. The hand-labeled most likely policies are overlain over the full
data.
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Figure 6: Level 1 policies and states for two sample sequences from the Taxi data. The TL, PL, and PD
state values and P, actions are also shown.

Figure 5 shows the most likely policies for sequences 2 and 5 of the Lab data for the AHMM, mAHMM, and
DAN, and the most likely states for the HHMM and DAN, as well as the most likely states and policies for
sequences 1, 2, 5, and 6 of the Entry data for the HHMM and DAN. What is apparent from Figure 5 is that
the DAN is identifying unique or semi-unique policies and states for different sequences. Notice particularly
in the most likely state graphs for the Entry data that the HHMM does not maintain the same most likely
state across the juncture at (z,y)-position (36,21), unlike the DAN.

Unlike the Lab and Entry datasets, the Tazi domain focuses less on spatial data. Figure 6 shows the
probability of each level 1 policy and state for two sample Taxi sequences for the mAHMM and DAN. What
we see from Figure 6 is that now the mAHMM has difficulty identifying a single most likely policy with high
probability, unlike before, while the DAN model is still able to identify a unique most likely policy with high
probability. As shown in Figure 6, the mAHMM performs particularly poorly on the second sequence, never
identifying a single policy as most likely for more than a couple of timesteps. Note that while the mAHMM
has difficulty identifying a single policy as most likely, this is not a consequence of the policies themselves
being poorly learned. Rather, because the mAHMM has learned every policy over the entire state space
(due to the structure of the model), all policies are equally good, so any can be used. In essence only a
single global policy has been learned. The problem with this is that it cannot be reused, unlike the more
local policies learned by the DAN. In particular we see from the DAN graphs in Figure 6 that Policy 1 is
used for part or all of both sequences.
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5 Conclusions and Future Work

In summary, we proposed a new type of hierarchical graphical model, dynamic abstraction networks, which
combines state and temporal abstraction. Using this model we showed that abstract policies learned using
state abstraction appear to be better than abstract policies learned using only a flat state representation;
we also found that the availability of policy information seems to affect the types of state abstractions that
were learned. Further experiments as well as more diverse data would be useful to clarify how abstract
policies affect the learning of abstract states and vice versa, particularly experiments using multiple layers
of abstraction (unlike the single layer explored in this paper). Other interesting experiments would include
iterating between learning state abstractions and learning policy abstractions, and determining the effect of
learning policy abstractions from only actions.
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