
Value Function Approximation with Diffusion Wavelets and
Laplacian Eigenfunctions

Sridhar Mahadevan
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

mahadeva@cs.umass.edu

Mauro Maggioni
Program in Applied Mathematics

Department of Mathematics
Yale University

New Haven, CT 06511
mauro.maggioni@yale.edu

June 9, 2005

Technical Report 2005-38
Department of Computer Science

140 Governors Drive
University of Massachusetts
Amherst, MA 01003-9624

Abstract

We investigate the problem of automatically constructing efficient representations
or basis functions for approximating value functions based on analyzing the structure
and topology of the state space. In particular, two novel approaches to value function
approximation are explored based on automatically constructing basis functions on
state spaces that can be represented as graphs or manifolds: one approach uses the
eigenfunctions of the Laplacian, in effect performing a global Fourier analysis on the
graph; the second approach is based on diffusion wavelets, which generalize classical
wavelets to graphs using multiscale dilations induced by powers of a diffusion operator
or random walk on the graph. Together, these approaches form the foundation of a
new generation of methods for solving large Markov decision processes, in which the
underlying representation and policies are simultaneously learned.

Keywords: Markov Decision Processes, Reinforcement learning, Spectral Graph The-
ory, Harmonic Analysis, Riemannian Manifolds.

1

1 Introduction

Value function approximation (VFA) is a well-studied problem: a variety of linear and non-
linear architectures have been studied [1]. A significant drawback of much past work is
that the architecture for VFA is not automatically derived from the geometry of the under-
lying state space, but rather handcoded in an ad hoc trial-and-error process by a human
designer. A new framework for VFA called proto-reinforcement learning (PRL) was recently
proposed in [6, 7, 8]. Instead of learning task-specific value functions using a handcoded
parametric architecture, agents learn proto-value functions, or global basis functions that
reflect intrinsic large-scale geometric constraints that all value functions on a manifold [11]
or graph [3] adhere to, using spectral analysis of the self-adjoint Laplace operator. This
approach also yields new control learning algorithms called representation policy iteration
(RPI) where both the underlying representations (basis functions) and policies are simulta-
neously learned. Laplacian eigenfunctions also provide ways of automatically decomposing
state spaces since they reflect bottlenecks and other global geometric invariants.

In this paper, we extend the earlier Laplacian approach in a new direction using the
recently proposed diffusion wavelet transform (DWT), which is a compact multi-level rep-
resentation of Markov diffusion processes on manifolds and graphs [4, 2]. Diffusion wavelets
provide an interesting alternative to global Fourier eigenfunctions for value function approx-
imation, since they encapsulate all the traditional advantages of wavelets: basis functions
have compact support, and the representation is inherently hierarchical since it is based on
multi-resolution modeling of processes at different spatial and temporal scales.

2 Technical Background

This paper uses the framework of spectral graph theory [3] to build basis representations for
smooth (value) functions on graphs induced by Markov decision processes. Given any graph
G, an obvious but poor choice of representation is the “table-lookup” orthonormal encoding,
where φ(i) = [0 . . . i . . . 0] is the encoding of the ith node in the graph. This representation
does not reflect the topology of the specific graph under consideration. Polynomials are
another popular choice of orthonormal basis functions [5], where φ(s) = [1 s . . . sk] for some
fixed k. This encoding has two disadvantages: it is numerically unstable for large graphs,
and is dependent on the ordering of vertices. In this paper, we outline a new approach
to the problem of building basis functions on graphs using Laplacian eigenfunctions and
diffusion wavelets.

A finite Markov decision process (MDP) M = (S,A, P a
ss′ , R

a
ss′) is defined as a finite set

of states S, a finite set of actions A, a transition model P a
ss′ specifying the distribution over

future states s′ when an action a is performed in state s, and a corresponding reward model
Ra

ss′ specifying a scalar cost or reward [10]. A state value function is a mapping S → R
or equivalently a vector in R|S|. Given a policy π : S → A mapping states to actions, its
corresponding value function V π specifies the expected long-term discounted sum of rewards
received by the agent in any given state s when actions are chosen using the policy. Any
optimal policy π∗ defines the same unique optimal value function V ∗ which satisfies the
nonlinear constraints

V
∗
(s) = max

a

∑

s′
P a

ss′
(
Ra

ss′ + γV ∗(s′)
)

2

For any MDP, any policy induces a Markov chain that partitions the states into classes:
transient states are visited initially but not after a finite time, and recurrent states are visited
infinitely often. In ergodic MDPs, the set of transient states is empty. The construction
of basis functions below assumes that the Markov chain induced by a policy is a reversible
random walk on the state space. While some policies may not induce such Markov chains,
the set of basis functions learned from a reversible random walk can still be useful in
approximating value functions for (reversible or non-reversible) policies. In other words,
the construction of the basis functions can be considered an off-policy method: just as
in Q-learning where the exploration policy differs from the optimal learned policy, in the
proposed approach the actual MDP dynamics may induce a different Markov chain than the
one analyzed to build representations. Reversible random walks greatly simplify spectral
analysis since such random walks are similar to a symmetric operator on the state space.
Ultimately, the constructed basis functions can approximate the value function for any
policy, regardless of what type of Markov chain it induces.

2.1 Smooth Functions on Graphs

We assume the state space can be modeled as a finite undirected weighted graph (G,E,W),
but the approach generalizes to Riemannian manifolds. We define x ∼ y to mean an edge
between x and y, and the degree of x to be

d(x) =
∑

x∼y

w(x, y).

D will denote the diagonal matrix defined by Dxx = d(x), and W the matrix defined by
Wxy = w(x, y) = w(y, x). The L2 norm of a function on G is

||f ||22 =
∑

x∈G

|f(x)|2d(x).

The gradient of a function is defined as

∇f(i, j) = w(i, j)(f(i) − f(j))

if there is an edge e connecting i to j, 0 otherwise. The smoothness of a function on a
graph, can be measured by the Sobolev norm

||f ||2H2 = ||f ||22 + ||∇f ||22 =
∑

x

|f(x)|2d(x) +
∑

x∼y

|f(x) − f(y)|2w(x, y) . (1)

The first term in this norm controls the size (in terms of L2-norm) for the function f , and
the second term controls the size of the gradient. The smaller ||f ||H2 , the smoother is f .
We will assume that the value functions we consider have small H2 norms, except at a
few points, where the gradient may be large. Important variations exist, corresponding to
different measures on the vertices and edges of G.

Classical techniques, such as value iteration and policy iteration [10], represent value
functions using an orthonormal basis (e1, . . . , e|S|) for the space R|S| [1]. For a fixed precision
ε, a value function V π can be approximated as

||V π −
∑

i∈S(ε)

απ
i ei|| ≤ ε

3

where αi = 〈V π, ei〉 is the component of the value function V π projected onto the ith

coordinate function ei, since the ei’s are orthonormal, and the approximation is measured
in some norm, such as L2 or H2. The goal is to obtain representations in which the index
set S(ε) in the summation is as small as possible, for a given approximation error ε. This
hope is well founded at least when V π is smooth or piecewise smooth, since in this case it
should be compressible in some well chosen basis {ei}.

3 Laplacian Eigenfunctions

The combinatorial Laplacian L [3] is defined as

Lf(x) =
∑

y∼x

w(x, y)(f(x) − f(y)) = (D − W)f .

Often one considers the normalized Laplacian

L = D− 1
2 (D − W)D− 1

2

which has spectrum in [0, 2]. This Laplacian is related to the notion of smoothness as above,
since

〈f,Lf〉 =
∑

x

f(x)Lf(x) =
∑

x,y

w(x, y)(f(x) − f(y))2 = ||∇f ||22

which should be compared with (1). Functions that satisfy the equation Lf = 0 are called
harmonic. The Spectral Theorem can be applied to L (or L), yielding a discrete set of
eigenvalues

0 ≤ λ0 ≤ λ1 ≤ . . .λi ≤ . . .

and a corresponding orthonormal basis of eigenfunctions{ξi}i ≥ 0, both solutions to the
eigenvalue problem Lξi = λiξi.

The eigenfunctions of the Laplacian can be viewed as an orthonormal basis of global
Fourier smooth functions that can be used for approximating any value function on a graph.
These basis functions capture large-scale features of the state space, and are particularly
sensitive to “bottlenecks”, a phenomenon widely studied in Riemannian geometry and spec-
tral graph theory [3].

Observe that ξi satisfies
||∇ξi||22 = λi.

In fact, the variational characterization of eigenvectors shows that ξi is the normalized
function orthogonal to ξ0, . . . , ξi−1 with minimal ||∇ξi||2. Hence the projection of a function
f on S onto the top k eigenvectors of the Laplacian is the smoothest approximation to
f , in the sense of the norm in H2. A potential drawback of Laplacian approximation is
that it detects only global smoothness, and may poorly approximate a function which is
not globally smooth but only piecewise smooth, or with different smoothness in different
regions. These drawbacks are addressed in the context of analysis with diffusion wavelets,
and in fact partly motivated their construction.

4

DiffusionWaveletTree (H0,Φ0, J, ε):

// H0: symmetric conjugate to random walk matrix, represented on the basis Φ0

// Φ0 : initial basis (usually Dirac’s δ-function basis), one function per column
// J : number of levels to compute
// ε: precision

for j from 0 to J do,

1. Compute sparse factorization Hj ∼ε QjRj , with Qj orthogonal.

2. Φj+1 ← Qj = HjR
−1
j and [H2j

0]Φj+1
Φj+1

∼jε Hj+1 ← RjR∗
j .

3. Compute sparse factorization I − Φj+1Φ∗
j+1 = Q′

jR
′
j , with Q′

j orthogonal.

4. Ψj+1 ← Q′
j.

end

Figure 1: Pseudo-code for constructing a Diffusion Wavelet Tree

4 Diffusion Wavelets

Diffusion wavelets were introduced in [4, 2], and provide a fast multiscale analysis of func-
tions on a manifold or graph, generalizing wavelet analysis and associated signal processing
techniques (such as compression or denoising) to functions on manifolds and graphs. They
allow the fast and accurate computation of high powers of a Markov chain P on the manifold
or graph, including direct computation of the Green’s function (or fundamental matrix) of
the Markov chain, (I − P)−1, which can be used to solve Bellman’s equation. Here, “fast”
means that the number of operations required is O(|S|), up to logarithmic factors.

Space constraints permit only a brief description of the construction of diffusion wavelet
trees. More details are provided in [4, 2]. The input to the algorithm is a “precision”
parameter ε > 0, and a weighted graph (G,E,W).

We can assume that G is connected, otherwise we can consider each connected compo-
nent separately. The construction is based on using the natural random walk P = D−1W
on a graph and its powers to “dilate”, or “diffuse” functions on the graph, and then defin-
ing an associated coarse-graining of the graph. We symmetrize P by conjugation and take
powers to obtain

Ht = D
1
2 P tD− 1

2 = (D− 1
2 WD− 1

2)t = (I − L)t =
∑

i≥0

(1 − λi)tξi(·)ξi(·) (2)

where {λi} and {ξi} are the eigenvalues and eigenfunctions of the Laplacian as above. Hence
the eigenfunctions of Ht are again ξi and the ith eigenvalue is (1 − λi)t. We assume that
H1 is a sparse matrix, and that the spectrum of H1 has rapid decay.

A diffusion wavelet tree consist of orthogonal diffusion scaling functions Φj that are
smooth bump functions, with some oscillations, at scale roughly 2j (measured with respect
to geodesic distance), and orthogonal wavelets Ψj that are smooth localized oscillatory
functions at the same scale. The scaling functions Φj span a subspace Vj , with the property

5

that
Vj+1 ⊆ Vj

and the span of Ψj, Wj, is the orthogonal complement of Vj into Vj+1. This is achieved
by using the dyadic powers H2j as “dilations”, to create smoother and wider (always in a
geodesic sense) “bump” functions (which represent densities for the symmetrized random
walk after 2j steps), and orthogonalizing and downsampling appropriately to transform sets
of “bumps” into orthonormal scaling functions.

Computationally (Figure 1), we start with the basis Φ0 = I and the matrix H0 := H1,
sparse by assumption, and construct an orthonormal basis of well-localized functions for
its range (the space spanned by the columns), up to precision ε, through a variation of the
Gram-Schmidt orthonormalization scheme, described in [4].

In matrix form, this is a sparse factorization

H0 ∼ε Q0R0

with Q0 orthonormal. Notice that H0 is |G| × |G|, but in general Q0 is |G| × |G(1)| and
R0 is |G(1)|× |G|, with |G(1)| ≤ |G|. In fact |G(1)| is approximately equal to the number of
singular values of H0 larger than ε. The columns of Q0 are an orthonormal basis of scaling
functions Φ1 for the range of H0, written as a linear combination of the initial basis Φ0.

We can now write H2
0 on the basis Φ1:

H1 := [H2]Φ1
Φ1

= Q∗
0H0H0Q0 = R0R

∗
0,

where we used H0 = H∗
0 . This is a compressed representation of H2

0 acting on the range
of H0, and it is a |G(1)| × |G(1)| matrix. We proceed by induction: at scale j we have
an orthonormal basis Φj for the rank of H2j−1 up to precision jε, represented as a linear
combination of elements in Φj−1. This basis contains |G(j)| functions, where |G(j)| is com-
parable with the number of eigenvalues λj of H0 such that λ2j−1

j ≥ ε. We have the operator
H2j

0 represented on Φj by a |G(j)| × |G(j)| matrix Hj, up to precision jε. We compute a
sparse decomposition of Hj ∼ε QjRj, and obtain the next basis Φj+1 = Qj = HjR

−1
j and

represent H2j+1 on this basis by the matrix

Hj+1 := [H2j
]Φj+1

Φj+1
= Q∗

jHjHjQj = RjR
∗
j .

Wavelet bases for the spaces Wj can be built analogously by factorizing IVj −Qj+1Q∗
j+1,

which is the orthogonal projection on the complement of Vj+1 into Vj. The spaces can
be further split to obtain wavelet packets [2]. A Fast Diffusion Wavelet Transform al-
lows expanding in O(n) (where n is the number of vertices) computations any function
in the wavelet, or wavelet packet, basis, and efficiently search for the most suitable basis
set. Diffusion wavelets and wavelet packets are a very efficient tool for representation and
approximation of functions on manifolds and graphs [4, 2], generalizing to these general
spaces the nice properties of wavelets that have been so successfully applied to similar tasks
in Euclidean spaces.

Diffusion wavelets allow computing H2k
f for any fixed f , in order O(kn). This is non-

trivial because while the matrix H is sparse, large powers of it are not, and the computation
H · H . . . · (H(Hf)) . . .) involves 2k matrix-vector products. As a notable consequence,

6

this yields a fast algorithm for computing the Green’s function, or fundamental matrix,
associated with the Markov process H, via

(I − H1)−1f =
∑

k≥0

Hk =
∏

k≥0

(I + H2k
)f.

In a similar way one can compute (I − P)−1. For large classes of Markov chains we
can perform this computation in time O(n), in a direct (as opposed to iterative) fashion.
This is remarkable since in general the matrix (I − H1)−1 is full and only writing down
the entries would take time O(n2). It is the multiscale compression scheme that allows to
efficiently represent (I −H1)−1 in compressed form, taking advantage of the smoothness of
the entries of the matrix. This is discussed in general in [4]. In the companion paper [9] we
use this approach to develop a faster policy evaluation step for solving MDPs.

5 Experiments

Figure 2 contrasts Laplacian eigenfunctions and diffusion wavelet basis functions in a three
room grid world environment. Laplacian eigenfunctions were produced by solving Lf = λf ,
where L is the combinatorial Laplacian, whereas diffusion wavelet basis functions were
produced using the algorithm described in Figure 1. The input to both methods is an
undirected graph, where edges connect states reachable through a single (reversible) action.
Such graphs can be easily learned from a sample of transitions, such as that generated
by RL agents while exploring the environment in early phases of policy learning. Note
how the intrinsic multi-room environment is reflected in the Laplacian eigenfunctions. The
Laplacian eigenfunctions are globally defined over the entire state space, whereas diffusion
wavelet basis functions are progressively more compact at lower levels, beginning at the
lowest level with the table-lookup representation, and converging at the highest level to
global basis functions similar to Laplacian eigenfunctions.

Figure 3 compares the approximations produced in a two-room grid world MDP with
630 states. These experiments illustrate the superiority of diffusion wavelets: in the first ex-
periment (top row), diffusion wavelets handily outperform Laplacian eigenfunctions because
the function is highly nonlinear near the goal, but mostly linear elsewhere. The eigenfunc-
tions contain a lot of ripples in the flat region causing a large residual error. In the second
experiment (bottom row), Laplacian eigenfunctions work significantly better because the
value function is globally smooth. Even here, the superiority of diffusion wavelets is clear.

5.1 Control Learning using Representation Policy Iteration

Now, we turn to control learning and compare the performance of diffusion wavelets and
Laplacian eigenfunctions using the Representation Policy Iteration (RPI) algorithm de-
scribed in [7] on the classic chain example from [5]. RPI can be viewed as a modified LSPI
algorithm where the basis functions φ(s, a) handcoded in LSPI are learned from the graph
Laplacian using a random walk of 5000 steps for a 50 state chain. The chain MDP is a
sequential open (or closed) chain of varying number of states, where there are two actions
for moving left or right along the chain. In the experiments shown, a reward of 1 was
provided in states 10 and 41. Given a fixed k, the encoding φ(s) of a state s for Laplacian

7

Figure 2: Examples of Laplacian eigenfunctions (top) and diffusion wavelet basis func-
tions (bottom) computed using the graph Laplacian on a complete undirected graph of a
deterministic grid world environment with reversible actions.

8

!
"!

#!
$!

!
"!

#!
$!
!

"!

#!

$!

%!

&!

!
"!

#!
$!

!
"!

#!
$!

!"!!

!

"!!

#!!

$!!

!
"!

#!
$!

!

"!

#!

$!
!

"!

#!

$!

%!

&!

!
"!

#!
$!

!

"!

#!

$!
!#!!

!"!!

!

"!!

#!!

$!!

!
"!

#!
$!

!

"!

#!

$!
!&

!

&

"!

!
"!

#!
$!

!

"!

#!

$!
!'!

!%!

!#!

!

#!

%!

'!

! &! "!! "&! #!!
!(

!'

!&

!%

!$

!#

!"

!

"

#
)P
Eig

! &! "!! "&! #!!
!.&

"

".&

#

#.&

$
)P
Eig

Figure 3: Top row: value functions in a two room grid world MDP, where each room has
21 × 15 states connected by a door in the middle of the common wall. The left value
function is for a random walk and the right shows the optimal value function. Second row:
approximation produced by 5 diffusion wavelets. Third row: approximation produced by
5 Laplacian eigenfunctions. Bottom row: least-squares approximation error (measured in
log scale) using a maximum of 200 basis functions (bottom curve: diffusion wavelets; top
curve: Laplacian eigenfunctions).

9

eigenfunctions is the vector comprised of the values of the kth lowest-order eigenfunctions
on state k. For diffusion wavelets, all the basis functions at level k were evaluated at state
s to produce the encoding.

Figure 4: This experiment compares value function approximation in a 50 state chain MDP
using 44 diffusion wavelet basis functions at level 4 (top left), 19 basis functions at level 6
(top middle), and 10 basis functions at level 8 (top right) of the hierarchy, and using 40
Laplacian basis functions (bottom left), 20 basis functions (bottom middle), and 10 basis
functions (bottom right). For each plot, the dotted line is the exact value function, and the
smooth line is the approximation.

Figure 4 illustrates the varying smoothness of the approximation produced by diffusion
wavelet trees and Laplacian eigenfunctions. As the number of basis functions are reduced,
the smoothness increases and the approximation gets progressively worse. As the figure
shows, it is possible to get very accurate approximation using either technique provided
sufficient number of basis functions is selected.

Method #Trials Error
RPI DF (5) 4.4 2.4
RPI DF (14) 6.8 4.8
RPI DF (19) 8.2 0.6
RPI Lap (5) 4.2 3.8
RPI Lap (15) 7.2 3
RPI Lap (25) 9.4 2

Method #Trials Error
LSPI RBF (6) 3.8 20.8
LSPI RBF (14) 4.4 2.8
LSPI RBF (26) 6.4 2.8
LSPI Poly (5) 4.2 4
LSPI Poly (15) 1 34.4
LSPI Poly (25) 1 36

Table 1: This table compares the performance of RPI using diffusion wavelets and Laplacian
eigenfunctions with LSPI using handcoded polynomial and radial basis functions on a 50
state chain graph MDP.

Table 1 compares the performance of RPI using diffusion wavelets and Laplacian eigen-
functions, along with LSPI using two handcoded parametric basis functions: polynomials
and radial-basis functions (RBF). Each row reflects the performance of either RPI using
learned basis functions or LSPI with a handcoded basis function (values in parentheses
indicate the number of basis functions used for each architecture). The two numbers re-
ported are steps to convergence and the error in the learned policy (number of incorrect
actions), averaged over 5 runs. The results show the automatically learned Laplacian and

10

diffusion wavelet basis functions in RPI provide a more stable performance at both the low
end and at the higher end, as compared to the handcoded basis functions used in LSPI.
As the number of basis functions are increased, RPI with Laplacian basis functions takes
longer to converge, but learns a more accurate policy. Diffusion wavelets converge slower
as the number of basis functions is increased, giving the best results overall with 19 basis
functions. Unlike Laplacian eigenfunctions, the policy error is not monotonically decreasing
as the number of bases functions is increased. This result needs to be investigated further.
LSPI with RBF is unstable at the low end, converging to a very poor policy for 6 basis
functions. LSPI with a 5 degree polynomial approximator works reasonably well, but its
performance noticeably degrades at higher degrees, converging to a very poor policy in one
step for k = 15 and k = 25.

6 Future Work

This paper described two novel approaches to state value function approximation where
the underlying basis functions were learned based on structural analysis of the state space
topology. Both approaches to learning basis functions outperform handcoded parametric
radial basis functions and polynomials in a simple 50 state chain MDP. Further work is
ongoing on scaling this approach to approximating action value functions, as well as to
large state spaces by exploiting symmetries defined by a group of automorphisms of the
graph, or certain covering spaces of the graph. These enhancements will facilitate efficient
construction of eigenfunctions and diffusion wavelets. For very large state spaces, one
can randomly subsample the graph, construct the eigenfunctions of the Laplacian or the
diffusion wavelets on the subgraph, and then interpolate these functions using the Nyström
approximation and related low-rank linear algebraic methods.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont,
Massachusetts, 1996.

[2] J. Bremer, R. Coifman, M. Maggioni, and A. Szlam. Diffusion wavelet packets. Technical
Report Tech. Rep. YALE/DCS/TR-1304, Yale University, 2004. to appear in Appl. Comp.
Harm. Anal.

[3] F. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[4] R. Coifman and M Maggioni. Diffusion wavelets. Technical Report Tech. Rep. YALE/DCS/TR-
1303, Yale University, 2004. to appear in Appl. Comp. Harm. Anal.

[5] M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1107–1149, 2003.

[6] S. Mahadevan. Proto-value functions: Developmental reinforcement learning. In Proceedings
of the 22nd International Conference on Machine Learning, 2005.

[7] S. Mahadevan. Representation policy iteration. In Proceedings of the 21st International Con-
ference on Uncertainty in Artificial Intelligence, 2005.

[8] S. Mahadevan. Samuel meets Amarel: Automating value function approximation using global
state space analysis. In National Conference on Artificial Intelligence (AAAI), 2005.

11

[9] S. Mahadevan and M. Maggioni. Value function approximation with diffusion wavelets and
laplacian eigenfunctions. In NIPS, submitted, 2005.

[10] M. L. Puterman. Markov decision processes. Wiley Interscience, New York, USA, 1994.

[11] S Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.

12

