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Abstract

Policy evaluation is a critical step in the approximate solution of large Markov deci-
sion processes (MDPs), typically requiring O(|S|3) to directly solve the Bellman system
of |S| linear equations (where |S| is the state space size). In this paper we apply a
recently introduced multiscale framework for analysis on graphs to design a faster algo-
rithm for policy evaluation. For a fixed policy π, this framework efficiently constructs
a multiscale decomposition of the random walk P π associated with the policy π. This
enables efficiently computing medium and long term state distributions, approximation
of value functions, and the direct computation of the potential operator (I − γP π)−1

needed to solve Bellman’s equation. We show that even a preliminary non-optimized
version of the solver competes with highly optimized iterative techniques, and can be
computed in time O(|S| log2 |S|).

Keywords: Markov Decision Processes, Reinforcement learning, Spectral Graph The-
ory, Harmonic Analysis, Riemannian Manifolds.
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1 Introduction

In this paper we apply a novel framework for multiscale analysis of Markov diffusion pro-
cesses on graphs to efficiently solving certain classes of Markov Decision Processes (MDPs).
The approach is based on learning a multiscale tree of wavelet-type basis functions on the
state space of a MDP, which allows efficient hierarchical representation of value functions,
and yields a fast algorithm for the direct solution of the Bellman equation for policy evalu-
ation. The paper focuses on policy evaluation primarily, and the resulting method can be
easily incorporated in approximate or exact policy iteration (PI) algorithms, such as LSPI
[6] and RPI [7].

Bellman’s equation usually involves the solution of a sparse linear system of size |S|,
where S is the state space. A classical direct solution of the system is infeasible for large
problem sizes, since it requires O(|S|3) steps. One common technique is to use an iterative
method, such as value iteration, which has worst case complexity O(|S|2) for sparse transi-
tion matrices, O(|S| log |S|) when the problem is well-conditioned and only low-precision is
required. The approach in this paper is fundamentally different, and yields a direct solution
with the per-step efficiency of value iteration in time O(|S| log2 |S|). It consists of two parts:

(i) a pre-computation step, which depends on the structure of the state space and on the
policy. The result of this step is a multiscale hierarchical decomposition of the set of
all value functions over the state space, and a multiscale compression of powers of the
transition matrix (random walk operator) over the state space. This computation, for
many classes of problems of interest in applications, has complexity O(|S| log2 |S|).

(ii) an inversion step, which uses the multiscale structure resulting from the “pre-computation”
step to efficiently compute the solution of Bellman’s equations for a given reward func-
tion. This phase of the computation has complexity O(|S| log |S|) for many problems
of practical importance where the transition matrix is diffusion-like (defined precisely
below). The constants in front of this asymptotic complexity are much smaller than
those in the pre-computation step.

We will define the class of problems for which the complexity of our method is linear
up to logarithmic factors. Qualitatively, this class includes the case of state spaces that
can be represented by a finite undirected weighted graph, with all the vertices of “small”
degree in which transitions are allowed only among neighboring points, and the spectrum
of the transition matrix decays fast enough. The direct method we present offers several
advantages.

(i) The multiscale construction allows efficient approximation of reward and value func-
tions, which is an important task per se [6, 7].

(ii) It is well-known that the number of iterations necessary for an iterative method to
converge can be very large, depending on the condition number of the problem (which
in general depends on the number of points), and on the precision required. Increasing
precision in the direct inversion technique we propose can be done more efficiently.
In this context we will see that even a simple, non-optimized implementation of our
scheme outperforms standard iterative solvers.
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(iii) When the state space and the policy are fixed, and many value functions correspond-
ing to different rewards (tasks) need to be computed, iteration schemes do not take
advantage of the common structure between the problems. In this case, the number
of iterations for finding each solution is multiplied by the number of solutions sought.
Our direct inversion technique efficiently encodes the common structure of the state
space in the pre-computation step, and then takes advantage of this in the solution of
multiple problems.

A key advantage of the proposed approach is that direct inversion reveals interesting struc-
ture in the underlying problem. The multiresolution construction has interesting connec-
tions to work on hierarchical reinforcement learning [1].

2 Policy Evaluation

A finite Markov decision process (MDP) M = (S,A, P a
ss′ , R

a
ss′) is defined by a finite set

of states S, a finite set of actions A, a transition model P a
ss′ specifying the distribution

over future states s′ when an action a is performed in state s, and a corresponding reward
model Ra

ss′ specifying a scalar cost or reward [9]. A value function is a mapping S → R
or equivalently a vector in R|S|. Given a policy π : S → A mapping states to actions,
its corresponding value function V π specifies the expected long-term discounted sum of
rewards received by the agent in any given state s when actions are chosen using the policy.
This paper focuses on policy evaluation since this is usually the most expensive step in
policy iteration requiring the inversion of the transition matrix. The second phase of policy
improvement requires computing the greedy policy, and is of lower complexity. Policy
evaluation consists of solving the (Bellman) linear system of equations

V π(s) =
∑

s′
P π(s)

ss′
(
Ra

ss′ + γV π(s′)
)
.

Bellman’s equation can be written in matrix form

V π = R + γP πV π

where V π and R are vectors of length |S|, and P π is a stochastic matrix of size |S| × |S|,
and γ ∈ (0, 1] is the discount factor. The solution is given by

V π = (I − γP π)−1R.

The matrix
(I − γP π)−1

is called the fundamental matrix of the Markov chain P π (usually when γ = 1 (non dis-
counted reward)) and also the Green’s function, for its interpretation in potential theory
and physics [5].
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3 Multiscale analysis using diffusion wavelets

Diffusion wavelets, introduced in [4, 2], provide a natural hierarchical multiscale analysis of
Markov chains and graphs. More specifically, this framework provides a multiscale analysis
for functions on a graph, and their efficient analysis, representation, and compression. In
the companion paper [8], we apply this approach to value function approximation. The
approach provides a hierarchical compression and organization of the graph itself, includ-
ing compression of large powers of P for efficient and accurate computation of large time
behavior of the random walk, and efficient computation of several functions of P and its
powers, among which notably the Green’s function (I −P )−1. By “efficient” we mean that
the number of operations required is asymptotically (i.e. for fixed precision, and large |S|),
of order O(|S| log2 |S|).

We describe how to apply the diffusion wavelet framework to MDPs. We assume the
state space can be modeled as a finite undirected weighted graph (S,E,W ) (our approach
generalizes to Riemannian manifolds, which we do not have space to discuss here). If any
policy π is executed, it will traverse some subset of the state space Sπ ⊆ S. For simplicity,
assume that the MDP is ergodic, meaning that all states are visited infinitely often under
every policy. We will write x ∼ y when there is an edge between x and y, we let the
degree of x to be d(x) =

∑
x∼y w(x, y). We will denote by D the diagonal matrix defined

by D(x, x) = d(x), and W the matrix defined by W (x, y) = w(x, y). Let P be the natural
random walk defined by P = D−1W .

3.1 Setup

The hypotheses on P are that P t, t ≥ 0 should be a Markov diffusion process, in a technical
sense made precise in [4]. Qualitatively, this means that P should be local, i.e. from every
point a random walk takes the agent to only a few nearby points; smoothing, i.e. P tδx, for
any initial condition δx, should be a smooth probability cloud centered about x; contractive,
i.e. ||P ||2 ≤ 1. For our algorithm to have complexity at most O(|S| log2 |S|), we need two
further assumptions: first, the matrix P should be sparse, in the sense that only about c|S|
entries are non-zero, where c > 0 is a small constant. This is the case for example for the
natural random walk on a graph where the vertices have degree bounded by c. Second, the
eigenvalues {λj} of P should decay rapidly, for example

#{j : λj ≥ ε2
−j} ≤ c2−jα logα

2 (1/ε)

for some α > 0, and some fixed small ε > 0. As an example, it is shown in [4] as a
direct application of Weyl’s Theorem on the distribution of the eigenvalues of the Laplace-
Beltrami operator on a Riemannian manifold, that this condition is satisfied when P is a
discretization of the natural random walk on a smooth compact Riemannian manifold of
dimension d, in which case one can choose α = d/2.

3.2 Qualitative description

Space constraints allow us only a brief description of the construction: we refer the interested
reader to [4, 2]. The input to the algorithm is a weighted graph (S,E,W ) and a “precision”
parameter ε > 0.
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As above, the natural random walk on the graph is represented P = D−1W , and it is
necessarily reversible. We symmetrize it by conjugation, and take powers to obtain

T t = D
1
2 P tD− 1

2 = (D− 1
2 WD− 1

2 )t = (I − L)t =
∑

i≥0

(1 − λi)tξi(·)ξi(·)

where L is the normalized Laplacian [3], {λi} and {ξi} are its eigenvalues and eigenvectors:

Lξi = λiξi.

Hence the eigenfunctions of Tt are again ξi and the ith eigenvalue is (1 − λi)t. We want to
construct a multiresolution decomposition of the functions on the graph. This is a family
of nested subspaces

V0 ⊇ V1 ⊇ . . . ⊇ Vj ⊇ . . .

spanned by orthogonal bases of diffusion scaling functions Φj. If we interpret T t as an op-
erator on functions on the graph, then Vj is defined as the numerical range, up to precision
ε, of T 2j+1−1, and the scaling functions are smooth bump functions with some oscillations,
at scale roughly 2j+1 (measured with respect to geodesic distance). The orthogonal com-
plement of Vj+1 into Vj is called Wj , and is spanned by a family of orthogonal diffusion
wavelets Ψj, which are smooth localized oscillatory functions at the same scale.

3.3 A simple example

We consider the Markov chain on 4 states

{a, b, c, d} : T =





0.8 0.2 0 0
0.2 0.75 0.05 0
0 0.05 0.75 0.2
0 0 0.2 0.8



 .

This chain has a “bottleneck” between states {a, b} and states {c, d}. We fix a precision
ε = 10−10. See Figure 1 for the discussion that follows. The scaling functions Φ0 are simply
{δa, δb, δc, δd}. We apply T to Φ0 and orthonormalize to get Φ1 (Figure 1). Each function
in Φ1 is an “abstract-state”, i.e. a linear combination of the original states.

We represent T 2 on Φ1, to get a matrix T2, apply to Φ1 and orthonormalize, and so on.
At scale 5 we have the basis Φ5 and the operator T5, representing T 25 on Φ5. At the next
level, we obtain Φ7, which is only two dimensional, because T5Φ5 has ε-rank 2 instead of 4:
of the 4 “abstract-states” T5Φ5, only two of them are at least ε-independent.

Observe the two scaling functions in Φ6 are approximately the asymptotic distribution
and the function which distinguishes between the two clusters {a, b} and {c, d}. Then T6

represents T 26 on Φ7 and is a 2 by 2 matrix. At scale 10, Φ10 is one-dimensional, and is
simply the top eigenvector of T (represented in compressed form, on the basis Φ8), and the
matrix T9 is 1 by 1 and is the top eigenvalue, 1, of T .

3.4 Construction of the scaling functions and wavelets

In more detail, we define the finest scale scaling space V0 as the subspace spanned by
Φ0 := {δx}x∈X , where δx is the Dirac delta at the point x. We then consider the family

Φ̃0 := {T 20
δx}x∈X
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Figure 1: Top: Matrices representing some compressed dyadic powers of T , with gray level
representing entry values. Bottom: some scaling function bases on the 4-state Markov
chain.
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and let Ṽ1 be the span of Φ̃0. A careful Gram-Schmidt procedure applied to Φ̃0 produces
an orthonormal basis of well-localized scaling functions Φ1, spanning a subspace V1 close to
Ṽ1 up to the pre-specified precision ε. V1 is also the subspace spanned by

{ξi : λi ≥ ε}.

Hence in general dimV1 < dimV0: the orthonormalization will produce only dimV1 basis
functions in Φ1.

We now represent T 2 on the basis Φ1 via a matrix T1, and repeat the construction.
At scale j we have constructed an orthonormal basis of localized scaling functions Φj , and
represented T 2j on this basis via a matrix Tj. Observe that the matrix representing T 2j on
this basis has size |Φj | × |Φj|. The assumptions on the decay of the spectrum of T imply
that |Φj| << |Φ0|, and we say that we have represented T 2j in compressed form.

For the next stage we let
Φ̃j := T 2j

Φj

and Vj+1 be the span of these vectors. After orthonormalization to get a (smaller) orthonor-
mal set Φj+1 spanning Vj+1 ⊆ Vj. A set of oscillatory functions Ψj (the wavelets) spanning
Wj, the orthogonal complement of Vj+1 into Vj , can be constructed similarly. They cap-
ture the detail lost from going from Vj to Vj+1, and act as high-pass filters in the sense
that their expansion in terms of eigenfunctions of the Laplacian ξi essentially only involves
eigenfunctions corresponding to eigenvalues

λi ∈ [ε−2j−1, ε−2j+1−1].

In particular their Sobolev norm, or smoothness, is controlled. In Figure 2 this scheme is
written in pseudo-code, where the operations above are described in terms of matrices: the
Gram-Schmidt procedure at each level orthogonalizes the columns of Tj into the product
of an orthogonal matrix Qj, which forms the basis of scaling functions at the next scale,
and a matrix Rj , which represents Tj on Φj in the domain and Φj+1 in the range. The
assumptions of the process {P t} guarantee that Qj and Rj can be constructed so that they
contains only O(|Rj | log |Rj |) entries above precision.

3.5 Applications

Diffusion wavelets and wavelet packets are an efficient tool for representation and approxi-
mation of functions on manifolds and graphs [4, 2], generalizing to these general spaces the
wavelets that have so successfully employed for similar tasks in Euclidean spaces. They are
being applied to the analysis of networks, graphs, learning tasks, document corpora, and to
value function approximation in the companion paper [8].

4 Direct solution of Bellman’s equation

In this section we show that the multiscale construction we discussed allows a direct solution
of Bellman’s equation (2). The starting point are the identities

V π = (I − γP π)−1R =
∑

k≥0

(γΠ− 1
2 T πΠ

1
2 )kR =

∏

k≥0

(I + γ2k
Π− 1

2 (T π)2
k
Π

1
2 )R ,
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DiffusionWaveletTree (T0,Φ0, J, ε):

// T0: symmetric conjugate to random walk matrix, represented on the basis Φ0

// Φ0 : initial basis (usually Dirac’s δ-function basis), one function per column
// J : number of levels to compute
// ε: precision

for j from 0 to J do,

1. Compute sparse factorization Tj ∼ε QjRj , with Qj orthogonal.

2. Φj+1 ← Qj = HjR
−1
j and [T 2j

0 ]Φj+1
Φj+1

∼jε Tj+1 ← RjR∗
j .

3. Compute sparse factorization I − Φj+1Φ∗
j+1 = Q′

jR
′
j , with Q′

j orthogonal.

4. Ψj+1 ← Q′
j.

end

Figure 2: Pseudo-code for construction of a Diffusion Wavelet Tree

where
P π = Π− 1

2 T πΠ
1
2 .

Π is the matrix whose diagonal is the asymptotic distribution of P , and R is the reward
vector. The first identity follows by the definition of T π, the second is the usual Neumann
series expansion for the inverse, and the last identity is called the Schultz formula, which is
true because each term of the Neumann series appears once and only once in the product
(reordering the terms of the summation is allowed because both the sum and the product
are absolutely convergent). The formulas hold for γ ≤ 1 and f not in the kernel of (I−γP π).
The sums and products involved are of course finite once the precision is fixed.

A key component in the construction of diffusion wavelets was the compression of the
(quasi-)dyadic powers of the operator T π. In particular (T π)2j−1f , for any function f , is
just equal to the product

RjRj−1 · . . . · R0f.

In fact Ri represents the operator (T π)2i on the basis Φi in the domain and Φi+1 in the
range, and hence the product above is

T 1+2+22+...+2j−1
f = T 2j−1f

represented on Φj+1, i.e. “in compressed form”. The matrices [Φj+1]∗Φj
“un-pack” this

representation back onto the basis Φ0. To obtain T 2j
f we only need to apply T once more.

In this way the computation of T 2j
f takes only O(j|S| log |S|) operations, since Rj contains

about O(|S| log |S|) entries. This cost should be compared to that of computing directly
the matrix T 2j , which is O(2j |S|) since this matrix contains about O(2j |S|) nonzero entries;
this is also the cost of applying about 2j times the matrix T to f .

In iterative methods such as value iteration, up to |S| iterations are necessary, and the
cost is thus O(|S|2). Our technique has cost only O(|S| log2 |S|). In some cases many less

8



than |S| iterations are needed, especially when the problem is well-conditioned (e.g. γ far
from 1), and of low precision. Even in this case our method offers several advantages, as
discussed above, in terms of understanding the structure of the problem, of creating useful
basis functions, and is competitive in terms of speed, as we show in the experiments.

5 Experiments

We constructed the multiscale analysis on several MDPs, on discrete and continuous spaces
of different topologies. The examples and code for reproducing them will be made available
on the web 1. Here, because of space constraints, we consider only one example. It simulates
a continuous two-room environment, where the two rooms have an elongated shape and
are connected by a corridor. The agent has randomly explored the space, so S consists
of |S| randomly scattered points in the rooms. These points were generated by three
Gaussian distributions, centered at the centers of the two rooms and in the corridor, with
different covariances, which were then nonlinearly warped to emphasize the flexibility of
the approach (see Figure 3). We point out that we could have chosen rooms of arbitrary
shapes, in arbitrary dimension, as the only input to the algorithm is the set of sampled points
(vertices) and the local distances between close-by points (edge weights). We construct a
natural diffusion associated with the random walk in the two rooms, restricted to the states
S actually explored, by letting W (i, j) = e−2||xi−xj ||2. We then construct the corresponding
multiscale analysis, with precision set to 10−15. In Figure 3 we also represent some of
the scaling functions we obtain. We then pick a random reward R on S (a vector of
white Gaussian noise), and compute the corresponding value function, with γ = 1 with
both the multiscale direct inverse Green function, and Matlab Conjugate Squared Method
implementation.

We repeat the above for |S| = 72, 144, 288, 432, 576, 675, 900, 1125 and, for each S, for
20 randomly generated rewards R. We plot in Figure 5 the means and variances of the
running time and the L2-norm of the Bellman residual ((I − P π)Ṽ π − R, where Ṽ π is the
estimated value function), achieved by the two methods.

Figure 6 shows that the complexity of the DWT direct method grows slowly and linearly,
compared to the CGS method. Of course the comparison is not completely fair, in the
sense that that the larger pre-computation time for DWT was not taken into account.
We ran other experiments, varying the precision and γ. When the requested precision, or
the discount γ, decreases, both CGS and DWT have been running times, because of the
geometric term γk, and the instabilities in CGS disappear For precision less than 10−8 the
running time of CGS is a constant factor smaller than that of DWT, as predicted with
asymptotic estimates for both algorithms in this regime, and given that the code for DWT
is not optimized.

6 Conclusions and Future Work

We applied a novel framework based on multiscale analysis of graphs and Markov diffusion
processes to designing a new fast policy evaluation algorithm. The approach constructs a

1at www.math.yale.edu/ mmm82/MDP.html
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hierarchical set of diffusion wavelet basis functions for efficiently representing powers of the
transition matrix. Many directions for extending this approach are being studied, including
applications to policy iteration and reinforcement learning. For large or continuous state
spaces, where graphs represent a sample of the underlying state space, Nyström approxima-
tions can be exploited to interpolate basis functions to novel points. Extensions to factored
state spaces are also being investigated.
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