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ABSTRACT
This paperarguesthata camerasensornetwork containinghetero-
geneouselementsprovidesnumerousbenefitsover traditionalho-
mogeneoussensornetworks.Wepresentthedesignandimplemen-
tation of SensEye–a multi-tier network of heterogeneouswireless
nodesandcameras. To demonstrateits benefits,we implementa
surveillanceapplicationusingSensEyecomprisingthreetasks:ob-
ject detection,recognitionandtracking. We proposenovel mech-
anismsfor low-power low-latency detection,low-latency wakeups,
efficientrecognitionandtracking.Ourtechniquesshow thatamulti-
tier sensornetwork canreconcilethe traditionally conflicting sys-
temsgoalsof latency andenergy-efficiency. An experimentaleval-
uationof our prototypeshows that,whencomparedto a single-tier
prototype,our multi-tier SensEyecanachieve an orderof magni-
tudereductionin energy usagewhile providing comparablesurveil-
lanceaccuracy.

1. INTRODUCTION

1.1 Moti vation
The relentlesspaceof technologicalgrowth hasled to the emer-
genceof a varietyof sensorsandnetworkedsensorplatformsthat
spanthespectrumof cost,form-factor, resolution,andfunctional-
ity. As anexample,considercamerasensors,whereavailableprod-
uctsrangefromexpensivepan-tilt-zoomcamerastohigh-resolution
digital cameras,andfrom inexpensive web-camsand“cell-phone-
class”camerasto even cheaper, tiny camerassuchasCyclops[6]
(seeTable 1). A similar set of options are becomingavailable
for sensorplatforms,with choicesrangingfrom embeddedPCsto
PDA-classStargates[19], andfrom low-power Motes[10, 14] to
evenlowerpowersystems-on-a-chip[1] (seeTable2). Dueto these
advances,thedesignanddeploymentof camerasensornetworks—
wirelessnetworksof sensornodesequippedwith cameras—isnow
feasibleandusefulin avarietyof application scenarios.
Considerthe following applicationsof camerasensornetworks:
(i) environmentalmonitoring, wherea network of wirelesscamera
sensorsis usedto monitor wild-life habitats,rarespeciesin remote
locationsandphenology(studyof periodicbiologicalphenomena)
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Camera Power Cost Features

Cyclops 33mW Unpriced 128x128,fixed-angle,10fps
Web-Cam 600mW $75 640x480,auto-focus,30 fps
PTZ Camera 1W $1000 1024x768,retargetablepan-tilt-

zoom,30 fps

Table1: Differ ent camerasensorsand their characteristics.

Platform Type Resources

Mica Mote Atmega128 84mW, 4KB RAM,
(6MHz) 512KBFlash

YaleXYZ OKI ArmThumb 7-160mW, 32K RAM,
(2-57MHz) 2MB external

Stargate XScalePXA255 170-400mW, 32MB RAM,
(100MHz–400MHz) FlashandCF cardslots

Table2: Differ ent sensorplatforms and their characteristics.

withoutbeingdisturbedbyhumans;(ii) surveillance, wherecamera
sensorsareusedto detect,recognize,andtrackpeopleandvehicles
in high-securityareassuchasairports;(iii) live virtual tours, where
remoteusersnavigatethroughan environmentsuchasa museum
andreceive live, real-timevideofrom camerasensors;and(iv) live
distanceeducation, whereremotestudentsusecamerasensorsde-
ployedin a classroomto geta rich, live tele-immersive experience
of anongoinglecture.
Onepossibleapproachfor designingacamerasensorapplicationis
to chooseaparticularcamerasensorandasuitablesensorplatform
(seeTables1 and2) andprogrameachnodeto performall appli-
cationtasks.Suchanapproachyieldsa flat, single-tier network of
homogeneoussensornodes.However, giventheavailability of sen-
sorsandnodeswith differentcapabilitiesandpower requirements,
it is alsofeasibleto designthesameapplication by employing het-
erogeneouselements.In this approach,resource-constrained,low-
powerelementsareemployedto performsimplerapplicationtasks,
while morecapable,high-power elementstake on morecomplex
tasks. Doing so resultsin more judicioususeof preciousenergy
resources.To illustrate,asurveillanceapplicationcanemploy low-
fidelity camerasto performthe simpler taskof motion detection,
while high-fidelity camerascanbe woken up on-demandfor ob-
ject recognitionand tracking. In contrast,in the single-tierap-
proach,thechoiceof thecamerasensorandthenodeis dictatedby
themost-demandingapplicationtask,causingsimplertasksto con-
sumemoreresourcesthanarenecessarywhenexecutingon these
morecapableelements.
Sincepower consumptionis a critical designissuein sensornet-
works,aheterogeneousapproachcanoptimizepowerconsumption
andmaximizenetwork lifetime whencomparedto the single-tier
approach. Consequently, in this paper, we study techniquesfor
designingmulti-tier camera sensornetworks. By a multi-tier net-



work, we meanthat the sensorsareorganizedhierarchicallyinto
multiple tiers.For instance,atwo-tiersurveillanceapplicationmay
consistof low power camerasat thebottomtier that triggerhigher
resolutioncamerasat the uppertier in anon-demandfashion.The
advantagesof amulti-tier sensornetwork overasingle-tiernetwork
aremany: low cost,high coverage,high functionality, andhigh re-
liability. Dependingon how they aredesigned,singletier systems
oftenmeetonly a subsetof theserequirements. For instance,low
costcanbeachieved by usinga singletier of inexpensive sensors
but at theexpenseof functionality. High coveragecanbeachieved
usinga densedeploymentof untetheredsensorsthatcanbeplaced
anywherebut power considerationscansacrificereliability. High
functionality canbe achieved by employing high fidelity sensors
but at the expenseof sacrificingcoveragedue to the high cost.
Thus,a singlechoicealongthe axes ofpower, cost,or reliability
will resultin asensornetwork thatsacrificesoneor moreof thekey
requirements.In contrast,by employing differentelementsto per-
form taskswith differentrequirements,multi-tier networksprovide
abetterbalanceof cost,coverage,functionality, andreliability.

1.2 Research Contrib utions
Thispaperpresentsdesignandimplementationof SensEye, amulti–
tier network of wirelesssensornodesandcamerasensorsthathave
different capabilitiesacrosstiers. To the bestof our knowledge,
this is the first work to demonstratethe benefitsof employing a
multi-tier camerasensornetwork over traditionalsingle-tiersensor
networks. Thedesignandimplementationof SensEyehasresulted
in severalcontributions.
Whereaslatency (performance)andenergy-efficiency areconflict-
ing goalsin a battery-poweredsingle-tiernetwork, we show that
a multi-tier network can achieve low latencieswithout sacrific-
ing energy-efficiency—somethingthat is infeasiblein traditional
single-tiernetworks.
To demonstratethat theseconflicting goalscan be reconciled in
a multi-tier network, we implementa simplesurveillanceapplica-
tion usingSensEye. Our goal is not to build a bettersurveillance
applicationthan that in the literature[11], ratherit is to demon-
stratethe benefitsof multi-tier networks. SensEyesurveillance
comprisesthreetasks:objectdetection,recognitionandtracking.
We proposenumerousmechanismsand optimizationsto achieve
low-latency, low-power objectdetection,accurateobject localiza-
tion, low-latency inter-tier wakeup, low-power object recognition
andtracking. Overall, our designprocessillustrateshow various
sensingandprocessingtasksshouldbemappedto differenttiersof
a multi-tier network. Our mechanismsaredesignedto exploit re-
dundanciesin cameracoverageresultingfrom a densedeployment
of nodes.For instance,we demonstratehow multiple overlapping
camerascancollaborateto localizean objectandhow localization
canbeexploitedfor energy-efficientwakeups.
We implementSensEyein a three-tiernetwork comprisingfour
typesof camerasensorson Motes,StargatesandembeddedPCs.
An experimentalevaluation of ourprototypeshowsthatin termsof
energy usage,SensEyeis betterthanasingle-tiersystemby factors
of 9.75and6.3,whenusingCyclopsandCMUcamcamerasrespec-
tively. Despitethis significantenergy reduction,SensEyeprovides
similar detectionperformance,with only 6% moremisseddetec-
tionswhencomparedto asingle-tiersystem.Our component-level
benchmarksindicatethatthedetectionlatency andenergy usageat
Tier 1 is anorderof magnitudelessthanthatat Tier 2. Our exper-
imentsalsoreveal that themeanlocalizationerrorsof a CMUcam
anda webcamare20-35%and4.8%, respectively, indicating that
while detectioncanbeperformedusinglower-fidelity CMUcams,
trackingis bestdoneusinghigher-fidelity web-cams.

The remainderof the paperis structuredas follows: Section 2
presentsbackgroundandour systemmodel. Section3 presentthe
designof SensEyewhile Section4 presentsimplementationdetails.
Wepresentanexperimentalevaluationof SensEyein Section5 and
relatedwork in Section6. Finally, Section7 presentsour conclu-
sions.

2. BACKGROUND AND SYSTEM MODEL
In this section,we discusscommonprocessingtasksin a camera
sensornetwork, followedby thesystemmodeland thekey design
principlesthatgovernourwork.

2.1 CameraSensorNetwork Tasks
A camerasensornetwork will needto performseveralprocessing
tasksin orderto obtainusefulinformationfrom thevideoandim-
agesacquiredby variouscamerasensors.Our work is motivated
by two applications,namelymonitoring of rarespeciesin remote
forestsandsurveillancein high-securityenvironments.Bothappli-
cationshavenumerouscharacteristicsin commonandinvolvethree
key tasks.
Object detection: First, the applicationneedsto detectthe pres-
enceof anew objectwheneverit entersthemonitoredenvironment.
To illustrate,therarespeciesmonitoringapplicationneedsto detect
thepresenceof eachanimalthatentersthemonitoredenvironment,
while thesurveillanceapplicationneedsto detectvehiclesor peo-
ple that enterthe high-securityarea. A gooddetectionalgorithm
will minimizethelatency to detecteachnew objectthatentersthe
monitoredarea.
Object recognition: Oncea new objectis detected,it needsto be
classifiedto determineits type(e.g.,acarversusatruck,atigerver-
susa deer).This process,referredto asobjectrecognition, enables
theapplicationto determineif theobjectis of interestandwhether
furtherprocessingis warranted.For instance,asurveillancesystem
may be interestedin countingthe numberof truckson a highway
but not cars. In our work, we assume that an imagedatabaseof
all interestingobjectsis availablea priori, andtherecognitionstep
involvesdeterminingif the newly detectedobjectmatchesoneof
theobjectsin thisdatabase.
Object tracking: Assumingthe new object is of interestto the
application,it canbetrackedasit movesthroughtheenvironment.
Trackinginvolvesmultipletasks:(i) computingthecurrentlocation
of theobjectandits trajectory, (ii) handoff of tracking responsibil-
ity asanobjectmovesoutof visualrangeof onecamerasensorand
into therangeof another, and(iii) streamingvideoor asequenceof
still imagesof theobjectto a loggingstoreor amonitoringstation.
Thegoalof ourwork is to deviseahardwareandsoftwarearchitec-
ture to perform thesetasksso asto optimizepower consumption,
without sacrificing performancemetricssuchaslatency andrelia-
bility. As explainedearlier, ratherthanchoosinga singleplatform
anda single typeof camerasensor, our work focuseson multi-tier
networkswherethedetection,recognitionandtrackingmaybeper-
formedondifferentnodesandcamerasto achieve theabovegoal.

2.2 SystemModel
Our work assumesa camerasensornetwork comprisingmultiple
tiers(seeFigure1). A canonicalsensornodewithin eachtier is as-
sumedto beequippedwith acamerasensor, amicro-controller, and
a radioaswell as on-boardRAM andflashmemory. Nodesareas-
sumedto betetherlessandbattery-powered,andconsequently, the
overall constraintfor eachtier is energy. Within eachtier, nodes
areassumed to behomogeneous,while differenttiersareassumed
to be heterogeneouswith respectto their capabilities. In general,
we assumethat the processing, networking, andimaging capabil-
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Figure1: The multi-tier SensEye hardwarearchitecture.

ities improve aswe proceedfrom a lower tier to a higher tier, at
the expenseof increasedpower consumption. Consequently, to
maximizeapplicationlifetime, the overall applicationshould use
tier-specificresourcesjudiciously andshouldexecuteits taskson
the mostenergy-efficient tier that hassufficient resourceto meet
theneedsof that task. Thus,differenttaskswill executeon differ-
ent tiers andvarioustiers of camerasensornetwork will needto
interactandcoordinateto achieve applicationgoals. Given these
intra- andinter-tier interactions,applicationdesignbecomesmore
complex—theapplicationdesignerneedsto carefullymapvarious
tasksto differenttiersandcarefullydesignthevariousinteractions
betweentasks.
Oneof the goalsof SensEyeis to illustrate thesetradeoffs while
demonstratingthe overall benefitsof the multi-tier approach.To
do so, SensEyeassumesa three-tierarchitecture(seeFigure 1).
The lowest tier in SensEyecomprisesMote nodes[14] equipped
with 900MHzradiosandlow-fidelity Cyclopsor CMUcamcamera
sensors.The secondSensEyetier comprisesStargate [19] nodes
equippedwith web-cams.EachStargateis equippedwith an em-
bedded400MHzXScaleprocessorthatrunsLinux anda web-cam
that cancapturehigherfidelity imagesthanTier 1 cameras.Each
Tier 2 nodealsoconsistsof two radios—a802.11radiothatis used
by Stargate nodesto communicatewith eachother, anda 900MHz
radio that is usedto communicatewith Motesin Tier 1. Thethird
tier of SensEyecontainsa sparsedeployment of high-resolution
pan-tilt-zoomcamerasconnectedto embedded PCs. The camera
sensorsat this tier areretargetableandcanbeutilized to fill small
gapsin coverageprovided by Tier 2 andto provide additionalre-
dundancy for taskssuchaslocalization.
Nodesin eachtier and acrosstiers are assumedto communicate
using their wirelessradios in ad-hocmode; no base-stationsare
assumedin this environment.Theradiointerfaceat eachtier is as-
sumedto be individually duty-cycled to meetapplicationrequire-
mentsof latency and lifetime constrainton eachnode. Conse-
quently, the applicationtasksneedto be designedcarefully since
theradiosonthenodes(andthenodesthemselves)arenot“always-
on”.
Given the above systemmodel, we presentkey designprinciples,
followedby thedesignandimplementation of SensEye.

2.3 DesignPrinciples
Ourdesignof theSensEyemulti-tier camerasensornetwork isbased
on thefollowing principles.

• Principle 1: Map each task to the leastpowerful tier with
sufficient resources: In order to judiciously useenergy re-
sources,eachsensingandprocessingtaskshouldbemapped
to the leastpowerful tier that is still capableof executingit
reliablywithin thelatency requirementsof theapplication—
running the taskon a morecapabletier will only consume

Figure2: Softwarearchitectureof SensEye.

moreenergy thanis necessary.

• Principle 2: Exploit wakeup-on-demand:To conserve en-
ergy, the processor, radio and the sensoron eachnodeare
duty-cycled.Oursystememploys triggersto wakeupanode
in anon-demandfashion andonly whennecessary. For ex-
ample,a higher-fidelity cameracanbewokenup to acquire
a high-resolutionimageonly after a new object is detected
by a lower tier. By puttingmoreenergy-constrainedhigher-
tier nodesin sleepmodeandusingtriggers to wake them up
on-demand,oursystemcanmaximizenetwork lifetime.

• Principle 3: Exploit redundancyin coverage: The system
shouldexploit overlapsin thecoverageof cameraswhenever
possible.For example,two cameraswith overlappingcover-
age canbeusedto localizeanobjectandcomputeits (x, y, z)
coordinatesin theenvironment; this informationcanthenbe
usedto intelligently wakeupothernodesor to determinethe
trajectoryof theobject.Thus,redundancy in sensorcoverage
shouldbe exploited to improve energy-efficiency or perfor-
mance.

3. SENSEYEDESIGN
SensEyeseeksto provide a low-latencyyet energy-efficient cam-
erasensingsolution.Latency andenergy-efficiency areconflicting
systemgoals.To achieve low-latency sensing,sensorsneed to de-
tect,recognizeandtracknew objectsasthey enterandmoveacross
thefield of view of thecameranetwork andminimize missedob-
jects.In contrast,energy-efficientsensingrequiresthatsensorsand
nodesareswitchedoff asmuchaspossible(duty-cycled), which
adverselyimpacts the latency of sensingandhencethe reliability.
Duty-cycling a distributedcameranetwork incursothersourcesof
latency sincewakeup triggersneedto be propagatedacrossdis-
tributedsensornodes,andoperatingsystemlatency is incurredfor
switchingfrom sleepstateto activestate.
Theprimaryinsightin SensEyeis thatcarefultaskallocationacross
tiers enablesthesystemto achievelow energy usage while provid-
ing latenciesthat are closeto an always-onsingle-tiersystem. In
this section,we presentdifferent componentsof the SensEyear-
chitecture(seeFigure2) anddetailsof how thesecomponentsare
handledin ourmulti-tier system.

3.1 Object Detection
Thefirst taskof acamerasensornetwork is to ensurethatanobject
is detectedassoonasit enters,andbeforeit leavesthefield of view
of thenetwork of cameras.While keepingthecamerasalwayson
achieveslow-latency detection,it is very energy-inefficient, since
camerasandnodeswill continuouslyconsumeenergy. Ontheother
hand,thecameraandthesensornodecanbeduty-cycledandwo-
ken up periodically to acquirean imageof the environment; the
imageis thenprocessedto detectthepresenceof new objects.The
longertheperiodbetweensuccessiveimages,thehigherthelatency
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of detection,andthe lower the reliability. Theadvantage,though,
is theefficientuseof energy resources.
In general,object detectionrequireslittle resources,and hence,
it canbe performedat the mostenergy-efficient tier. At this tier,
sinceeachwakeupconsumeslimited energy, the sleepperiodbe-
tweensuccessivewakeupscan be madesmall, therebyenabling
low-latency detection. In addition, SensEyeemploys a random-
izedduty-cycling algorithmwheredifferentcamerasarewokenup
atdifferenttimesto furtherreducethelatency to detectanobject.
Each cameraand its node performsobject detectionvia simple
frame differencing. Eachcameraacquiresan backgroundimage
of theenvironmentatsystemcalibrationtime. Thepixel difference
betweeneachnewly acquiredimageandthebackgroundimageis
computedandthis differenceis usedto flag thepresenceof a new
objectwhenit entersthevisual rangeof thecamera.Observe that
framedifferencingisarelativelysimpleoperation,andhence,Sens-
Eyeemploys low-fidelity energy-efficient sensorsat Tier 1 for the
taskof objectdetection.

3.2 Object Localization
Oncean objecthasbeendetectedat Tier 1, nodesin Tier 2 need
to bewokenup for furtherprocessing.To intelligently wakeupthe
“correct” nodesin Tier 2, theTier 1 nodesneedto computethe3D
coordinatesof the objectand thendeterminewhich Tier 2 nodes
have cameraspointing at this location. The locationof the object
canalsobe usedby the retargetableTier 3 camerasto get corre-
spondinganglesof pan andtilt to view theobject. Theprocessof
computingthe coordinatesof an object is referredto as localiza-

tion. SensEyeusestriangulationtechniquesfor localization—ifthe
objectis simultaneouslyviewedfrom two cameras,andif theloca-
tion andorientationof thetwo camerasis known, thenthelocation
of theobjectcanbecalculated.Thekey insightis thateventhough
theTier 1 camerasarelow-power andhave coarseresolution,they
canprovide sufficientlyaccurate localizationfor makingdecisions
onwherethetargetis, andwhichTier 2 nodesto wakeup.
Accuratelocalizationrequiresthreeelements:(a) cameracalibra-
tion tofind therelative locationsandorientationsof camerasat dif-
ferenttiers,(b) synchronizedreadingsat multiple camerasto limit
localizationerror in the caseof moving objects,and (c) location
estimationbasedonopticsandgeometry.
Our localizationschemeworks for a 3D settingandassumesthat
camerasarecalibratedat systemsetuptime andtheir orientations
areknown relativeto aglobalreferenceframe1. To enablesynchro-
nizedsampling,differentTier 1 devicesareassumedto besynchro-
nizedusinga singlereferencebeaconfrom a Tier 2 node(usinga
time-synchronizationprotocol suchas RBS [9]). Thesebeacons
enablecamerasto synchronizetheir picturesfor purposesof local-
ization.
Cameralocalizationin 3D consistsof threestepsasshown in Fig-
ure 3. First, eachcameracalculatesthe vector along which the
object’s centroidis locatedwith respectto its own frameof refer-
ence.Second,thesevectorsarerotatedandtranslatedto theglobal
frameof referenceusinginformationabouteachcamera’s location
andorientation.Finally, thelocationof theobjectis computedfrom
theclosestpointof approachbetweenthetwo vectors.Wedescribe
thesestepsin moredetailbelow.
Step1: Calculation of vector alongdir ection of object location
As shown in Figure3(a),thecameracoordinatespaceis assumedto
bethefollowing: the imageplaneis theX-Y planeandthecentral
axisperpendicularto the imageplaneis theZ axis. Thecenterof
thecameralensis atpointP2 : (0, 0, f), wheref is thefocal length
of thelens,andthecentroidof theimageof theobjectontheimage
planeis P1 : (x, y, 0). The vector, v, along which the object’s
centroidliesis, therefore,computedasv = P2 − P1 = {x,y, f}.
Step2: Transforming vector to global referenceframe
To translatethe object’s vector, v, from the camera’s reference
frameto theglobalreferenceframe,we usetherotation andtrans-
lation matricesobtainedduring calculationof the cameraorienta-
tions. Eachcamera’s orientationconsistsof a translationandtwo
rotations. The translationfrom the global referenceorigin to the
cameralocationis denotedby a translationmatrix T. Figure3(b)
shows theorientationof a cameraasa compositeof two rotations
Initially, the camerais assumedto positionedwith its centralaxis
along the Z axis and its imageplaneparallel to the global X-Y
plane. First, thecamerais rotatedby anangleof θ in thecounter
clockwisedirectionabouttheZ axis,resultingin X’ andY’ asthe
new X andY axes. Next, the camerais rotationby an angleφ in
the clockwisedirectionaboutthe X’ axis, resultingin Y” andZ’
asthe new Y andZ axes. The two rotationsarerepresentedby a
rotationmatrix R andcanbeusedto reversetransformthevector
calculatedin Step1 to theglobalreferenceframe.If v1 andv2 are
the two vectorsalong the direction of object location from cam-
eras1 and2 respectively, the two correspondingvectorsin global
referenceframeare:

v
′
1 = R1.v1 + T1 (1)

v
′
2 = R2.v2 + T2 (2)

where,R1 andR2 aretherotationmatricesandT1 andT2 arethe

1Thecalibrationprocesscanbeautomatedusinga combinationof
tilt sensorsandpositioningsystemssuchasGPSandCricket [15].



translationmatricesfor thetwo camerasrespectively. Therotation
matrixR takesthefollowing form:

R =









Cosθ −SinθCosφ −SinθSinφ 0
Sinθ CosθCosφ CosθSinφ 0

0 −Sinφ Cosφ 0
0 0 0 1









(3)

where,θ andφ arerotationanglesasdescribedin Step2.
ThetranslationmatrixT takestheform:

T =









a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1









(4)

wherea,bandc arethe translationmagnitudesalongtheX,Y and
Z globalreferenceaxesrespectively.
Step3: Object Location usingClosestPoint of Approach
Giventhe two vectors,v′

1 andv′
2, their intersectionis the location

of the objectasshown in Figure3(c). Sincethe lines arein three
dimensionsthey arenot guaranteedto intersectespeciallydue to
error in centroidcomputationandcameracalibration. A standard
techniqueusedfor approximatingtheintersectionis usingtheClos-
estPointof Approach[7]. Theclosestpoint of approachgivesthe
shortestdistancebetweenthetwo linesin threedimensions.Weuse
thismethodto getpointsCP1 andCP2, theclosestpointsbetween
vectorsv′

1 andv′
2 respectively. The locationof theobjectis given

by themid-pointof CP1 andCP2.
Note that cameracalibrationand localization in 2D are simpler
casesof themoregeneral3D techniquepresentedabove.

3.3 Inter -tier Wakeup
Dueto thehigherpower requirementsof Tier 2 nodesandcameras
(e.g.:Stargateandtheweb-camsin Table1 and2),eachTier 2 node
is normally in sleep(or suspend)modeto conserve energy. Once
anobjectis detectedat Tier 1, oneor moreTier 2 nodesneedto be
wokenupfor furtherprocessing.Inter-tier wakeupis achallenging
problembothfrom anenergy andlatency perspective.
From an energy perspective, inter-tier wakeupshouldensurethat
thereare no wastefulwakeupsof Tier 2 nodes. Localizationat
Tier 1 is a key componentof our energy-efficient wakeup algo-
rithm sinceit canbeusedto makeintelligentdecisionsonprecisely
which node to wakeup.We assumethatTier 1 nodesknow thevi-
sualrangeof eachTier 2 camerain their vicinity (from systemcal-
ibration),andhence,canusethelocalizedcoordinatesof theobject
to determinethemostappropriateTier 2 nodewith acamerapoint-
ing at this location.If no appropriateTier 2 nodecanbeidentified,
SensEyewakesup a Tier 3 retargetablecamera,andusesits pan
andtilt capability to point it to the locationwherethe target was
localized.Localizationis feasibleonly whenat leasttwo nodescan
view the object—if only a singleTier 1 sensordetectsan object,
thenlocalizationcannot beperformedandthenodemustwake up
all Tier 2 nodesthathaveoverlappingcoveragewith itself (this list
dependson theinitial placement).
Froma latency perspective, theseparationof detectionandrecog-
nition tasksacrosstwo different tiers introduceslatency between
the executionof thesetwo tasks. The latency includesthe delay
in receiving andprocessingthewakeuppacket aswell asthedelay
in waking up the Tier 2 node. To ensurethat recognitionis per-
formedbeforea moving objectleavesthevisual rangeof theTier
2 camera,this latency shouldbeassmallaspossible.SensEyeuses
several optimizations to reducethe total latency of detectionand
recognition. The wakeupprocessbegins by the transmissionof a
wakeuppacket to a Tier 2 node(similar to “wakeup-on-wireless”

[8]). Upon receiving this wakeupmessage,theTier 2 nodeneeds
to transitionfrom thesuspendstateto awake state.This transition
durationis kept small by ensuringthat only the bareminimum of
device drivesarerunning—therebykeepingthe driver load times
smallduringwakeup.Severaladditionalsuspend-to-active switch-
ing optimizationsarealsoperformedasdiscussedin [18].

3.4 Object Recognition
Oncea new object is detectedat Tier 1, it needsto be classified
using a recognition algorithm to determineif it is of interestto
the application.The recognitionstepeliminatesuninterestingob-
jects and helpsfocus applicationresourceson objectsthat merit
furtherattention.In SensEyerecognitioninvolvesobtaininganim-
ageof theobject,identifying objectfeaturesandsearchingtheim-
agedatabasefor a match. Clearly, accuraterecognitionrequiresa
high-fidelity imageof theobjectandsignificantlygreaterprocess-
ing andmemoryresourcesthanavailableon a Tier 1 nodesuchas
a Mote (6MHz processorand4KB RAM). Consequently, SensEye
executesthe recognitionalgorithmat Tier 2 usinghigher-fidelity
web-camsandthemore-capable400MHzXScaleprocessorsonthe
Stargates.
Objectrecognitionis well studiedin the vision community, anda
slew of techniqueshave beendesigned[7]. Sincethefocusof our
work is on thedesignof amulti-tier camerasensornetwork, asop-
posedto computervision, we assume thatany of thesealgorithms
canbeemployed in SensEye. As proof of concept,we implement
two recognitionalgorithmsfrom theliterature:asimplefacerecog-
nition algorithm[3, 13] andasecondalgorithmthat isolatestheob-
ject usingconnectedcomponents[7, 17], andusesa simple color-
basedheuristic to matchthe object to the imagedatabase.While
thesealgorithmsareadequatefor our purpose,moresophisticated
recognitionalgorithmscanbeemployedin real-world settings[11].
SensEyeusessoftwareoptimizationsto reducethelatency of object
recognitionand hencethe energy. Latency is incurredsincethe
objectrecognitionprogramhasto initialize thecameraandwait for
thecameraframecaptureto stabilizebeforeperformingtheobject
recognitiontask. SensEyeusesaccuratecalibrationof the camera
on the Tier 2 nodeto determinethe minimum time requiredfor
the imagestabilizationupon wakeup, so that recognitioncan be
performedwith low latency.

3.5 Object Tracking
Trackingof moving objectsinvolvesmultiplesensingandprocess-
ing tasks—continuousobjectdetectionasit movesthroughthefield
of view of cameras,objectrecognitionto ensurethat theobjectof
interestto theapplicationis trackedacrosscameras,andfinally tra-
jectorypredictionto estimatethemovementpatternof theobject.
Objecttrackingin SensEyeinvolvesacombinationof detection,lo-
calization,inter-tier wakeupaswell asrecognition.As the object
moves through the coveredregion, different Tier 1 nodesdetect
the target. If multiple nodesdetect the target, localizationcanbe
usedto accuratelypinpoint the locationof the target. Continuous
localizationcanusedto track the pathof the moving object. Our
currentprototypecanhandleslow moving objects,andtrajectory
predictionschemesfor fastmoving objects(usingtechniquessuch
as[23]) is thesubjectof ongoingresearch.FutureSensEyemecha-
nismswill alsoenableimagesor videoacquiredfrom theobjectto
bedisplayedatamonitoringstationor loggedto apersistentstore.

4. SENSEYEIMPLEMENT ATION
Thissectiondescribestheimplementationof SensEyebasedon the
designdiscussedin theprevioussection.



(a)Tier 1 (b) Tier 2

Figure 4: Prototype of a Tier 1 Mote and CMUcam and a Tier
2 Stargate,web-camand a Mote.

4.1 HardwareAr chitecture
OurSensEyeimplementationusesfour typesof cameras—theAgi-
lentCyclops[6], theCMUcamVisionsensor[5], aLogitechQuick-
camProWebcamanda Sony PTZ camera—andthreeplatforms—
Crossbow Motes[14], Intel Stargates[19] anda mini-ITX embed-
ded PC. SensEyeis a three-tiernetwork, with the first two tiers
shown in Figure4.
Tier 1: Tier 1 of SensEyecomprisesa low-power camerasensor
suchas Cyclops[6] connectedto a low-power Mote [14] sensor
platform. TheCyclopscamerais currentlyavailableonly asa pro-
totype. Therefore,we usethe Cyclopsplatform for our individ-
ual componentbenchmarksandsubstituteit with a similarly con-
strainedbut higherpowerCMUcamfor ourmulti-tier experiments.
TheCyclopsplatformcomprisesanAgilent ADCM–1700CMOS
cameramodule,anATMega128micro-controllerandaXilinx FPGA.
The boardattachesusinga standard32-pin connectorto a Mote,
andcommunicatesto it usingUART. Thesoftwaredistribution for
Cyclops[6] providessupportfor framecapture, framedifferencing
andobjectdetection.
TheCMUcamis a lesspower-optimizedcamerathatcomprisesan
OV7620Omnivision CMOScameraanda SX52 micro-controller.
TheCMUcamconnectsto aMoteusingaserial interface,asshown
in Figure 4(a). The CMUcam hasa commandset for its micro-
controller, that canbe usedto wakeup the CMUcam,setcamera
parameters,captureimages,performframedifferencingandtrack-
ing.
Tier 2: A typical Tier 2 sensorcomprisesof a more-capableplat-
form andcameraandawakeupcircuit to wakeupthenode fromthe
sleepor suspendstateuponreceiving a triggerfrom a Tier 1 node.
In our implementation, asshown in Figure4(b),weuseaIntel Star-
gatesensorplatformwith anattachedMote thatactsasthewakeup
trigger. SincetheStargatedoesnot have hardwaresupportfor be-
ing woken up by the Mote, we useda relay circuit describedin
Turducken [18] for this purpose.TheLogitechWebcamconnects
to theStargatethroughtheUSBport.
Tier 3: A Tier 3 nodecomprisesaSony SNC-RZ30NPTZcamera
connectedto anembeddedPCrunning Linux.

4.2 SoftwareAr chitecture
The software framework of SensEyeis shown in Figure 5. The
descriptionof our software framework assumesthat Tier 1 com-
prisesMotesconnectedtoCMUcamcameras.SubstitutingaCMU-
camwith a Cyclopsinvolvesminimal changein the architecture.
Thefirst two tiersof SensEyecomprisefour softwarecomponents:
(i) CMUcam Frame Differentiator, (ii) Mote–level Detector, (iii)
WakeupMote,and(iv) ObjectRecognitionat theStargate.Follow-
ing is thedescriptionof eachcomponent’s functionality.

CMUcam Frame Differ entiator: The CMUcamreceivesperi-

Mote−level

Detector
Frame
Cmucam

response

poll

trigger wakeup

Stargate

Detection
Recognition

FrameGrabber

Differentiator

Tier 1 Tier 2

Wakeup

Mote

Figure5: SensEye SoftwareAr chitecture.

odic instructionsfrom theMote to captureanimagefor differenc-
ing. On eachsuchinstruction,theCMUcamcapturestheimagein
view, quantizesit into a smallerresolutionframe,performsframe
differencingwith the referencebackgroundframeandsendsback
the result to the Mote. Framedifferencingresultsin imageareas
whereobjectsare presentto be highlighted(by non–zerodiffer-
encevalues).TheCMUcamhastwo modesof framedifferencing,
(i) a low resolutionmode,whereit convertsthecurrentimage(of
88× 143 or 176× 255) to a8× 8 grid for differencing,or (ii) high
resolutionmode,wherea16×16 grid is usedfor differencing.The
framedifferencingis at very coarselevel andhencehasrelatively
higherrorto estimatelocationof theobjector its boundingbox.

Mote–Level Detector: Thefunctionof theTier 1 Mote is to con-
trol the CMUcamandsendobjectdetectiontriggersto the higher
level nodes. On startup,the Mote sendsinitialization commands
to theCMUcam,to setits backgroundandframedifferencingpa-
rameters.Periodically, basedin its samplingrate,the Mote sends
commandsto theCMUcamto captureanimageandperformframe
differencing.TheCMUcamrespondswith theframedifferencere-
sult. The Mote usesa user–specifiedthresholdand the returned
framedifferenceresultto decide whetheranevent (objectappear-
anceor objectmotion) hasoccurred. If an event is detected,the
Mote broadcastsa trigger for the higher tier. On no event detec-
tion, theMote sleepstill thenext samplingtime. Additionally, the
Mote duty-cyclestheCMUcamby puttingit to sleepbetweentwo
samplinginstances.

Wakeup Mote: TheMote connectedto theStargatereceivestrig-
gers from the lower tier Motes and is the interfacebetweenthe
two tiers. On receiving a trigger, the Mote candecidewhetherto
wakeup the Stargate for further processing.Typically, the local-
ized coordinatesare usedfor this purpose. Ratherthan actually
computingtheobjectcoordinatesat a Tier 1 Mote, which requires
significantcoordinationbetweentheTier 1 nodes,our implementa-
tion reliesonaTier 2 Mote to computethesecoordinates—theTier
1 nodessimplypiggybackparameterssuchasθ, φ andthecentroid
of the imageof the objectwith their wakeuppackets. The Tier 2
Mote then usestechniquesdescribedin Section3.2 to derive the
coordinates.TheStargateis thenwokenup if theobjectlocationis
within its field of view, otherwisethetriggeris ignored.

High ResolutionObject Detectionand Recognition: Oncethe
Stargateis woken up, it capturesthe currentimagein view of the
webcam.Framedifferencingandconnectedcomponentlabeling[17]
of thecapturedimagealongwith thereferencebackgroundimage
is performed.This yields thepixelsandboundarieswherethepo-
tential objectsappearin the image. Smoothingtechniquesbased
on color thresholdfiltering and averaging of neighboringregion
areusedto remove noisepixels. Eachpotentialobjectthenhasto
berecognized.In ourcurrentimplementation,weuseanaveraging
schemebasedon the pixel colorson the object. The schemepro-
ducesanaveragevalueof thered,greenandbluecomponentsof the
object.Thevaluescanbematchedagainsta library of objectsand



Mode Latency Average Power Energy
(ms) Current Consumption Usage

(mA) (mW) (mJ)

MoteProcessing 136 19.7 98.5 13.4
CMUcamObject 132 194.25 1165.5 153.8

Detection

Table 3: SensEye Tier 1 (with CMUcam) latency breakup and
energy usage.Total latency is 136ms and total energy usageis
167.24mJ.

the closestmatchis declaredastheobject’sclassification.SensEye
canbeextendedby addingsophisticated classificationtechniques,
facerecognitionand othervision algorithms. We evaluatea face
recognitionsystemin theExperimentalsectionto getanideaof its
latency andpower requirements.

PTZ Controller: The Tier 3 retargetablecamerasareusedto fill
gapsin coverageand to provide additionalcoverageredundancy.
Thepan andtilt valuesfor thePTZ camerasarebasedon localiza-
tion techniquesasdescribedbefore. The camerasexport a HTTP
API for program–controlledcameramovement. We useonesuch
HTTP–basedcameradriver [4] to retarget theTier 3 PTZ cameras.

5. EXPERIMENT AL EVALUATION
In thissectionwepresentdetailedexperimentalevaluationof Sens-
Eye. Specifically, we evaluateseveralpower consumption,latency
andcamerabenchmarksto characterizeindividualcomponentsand
comparesingle–tierandmulti–tierSensEyesystems.

5.1 ComponentBenchmarks
In this sectionwe measurebenchmarksof individual components
that collectively form the SensEyesystem. The benchmarksre-
portedarelatency andenergy usage,localizationaccuracy andob-
ject recognitionperformance.

5.1.1 LatencyandEnergyConsumption
Sinceminimizing energy usageis an important goal of SensEye,
we systematicallybreakdown the power consumptionandlatency
of eachhardwareandsoftwarecomponent in its differentmodesof
operation.Tables3 and4 report latency, averagepower consump-
tion andtheenergy usagefor objectdetectionatTier 1 andTable5
providesasimilar breakdown for objectrecognitionatTier 2.

Tier 1: As seenfrom Table3, 97%of the total latency of object
detectionat Tier 1, i.e., 132msout of 136ms,is dueto CMUcam
processing(framecaptureandframedifferencing). Also, due its
higherpower requirements,CMUcamuses92%of theenergy, i.e.,
153.8mJout of 167.2mJ.In contrast,theCyclops(referTable4)
is muchmoreenergy efficient ascomparedto the CMUcamand
consumes33 mW for 892 ms, which is betterthanthe CMUcam
by a factorof 5.67in termsof energy usage.However, thelatency
of detectionat theCyclopsis around900ms,which is morethan
6 timesasmuchastheCMUcam. This latency numberis anarti-
factof thecurrentCyclopshardwareand canbereducedto around
200mswith optimizationsexpectedin futurerevisionsof thenode.
A breakupof the energy consumptionof the Cyclopscamerafor
detectionis givenin Table4.
Tier 2: The processingtasksat Tier 2 of SensEyecanbe divided
as:wakeupfrom suspendof theStargate,stabilizationafterwakeup
for programto startexecuting,camerainitialization,framegrabber,
vision algorithmfor detectionandrecognitionandfinally theshut-
down procedurefor suspend,asshown in Table5. Thetotal latency
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Mode Latency Current Power Energy
(ms) (mA) (mW) Usage(mJ)

A: ObjectDetection 892 11 33 29.5
B: Idle – 0.34 1 –

Table 4: SensEye Tier 1 (with Cyclops) latency breakup and
energy usage.
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A: Wakeup 366 201.6 1008 368.9
B: WakeupStabilization 924 251.2 1256.5 1161
C: CameraInitialization 1280 269.6 1348 1725.4
D: FrameGrabber 325 330.6 1653 537.2
E: ObjectRecognition 105 274.7 1373.5 144.2
F: Shutdown 1000 153.7 768.5 768.5
G: Suspend – 3 15† –

Table 5: SensEye Tier 2 Latency and Energy usagebreakup.
The total latency is 4 secondsand total energy usageis 4.71J.
† This is measuredonanoptimizedStargatenodewith noperipheralsattached.

atTier 2 to completeall operationsis 4 seconds.Thelargestdelays
areduringcamera initialization (1.28s) andshutdown for suspend
(1 s), with correspondingenergy usagesof 1725.4mJ and768.5
mJ.Theleastlatency taskis thealgorithmusedfor objectdetection
andrecognition,whichhasalatency of 105msandtheleastenergy
usageof 144.2mJ.

The comparison of energy consumptionandlatency revealssome
of the benefitsof using a two-tier rather than a single-tiercam-
era sensornetwork. Every wakeup to shutdown cycle at Tier 2
consumesaround28 timesasmuchenergy assimilar taskat Tier
1 comprisingof CMUcams. When the Tier 1 comprisesof Cy-
clops camerasinsteadof CMUcamsthe ratio of energy usageis
142. Therearetwo reasonsfor this largedifferencein energy con-
sumptionbetweentiers. First, the latency associatedwith Linux
operatingsystemwakeupfrom suspendstateis significantlygreater
than the wakeup latency on a highly limited Mote platform that
runsTinyOS.Second,theStargateplatformconsumessignificantly
greaterpower thana Mote during thewakeupperiod. Thenetef-
fect of greaterlatency and greaterpower consumptionresultsin
significantlygreatertotal energy consumptionfor Tier 2.

5.1.2 Localization
As describedin 3.2, localizing a detectedobjecthasseveral ben-
efits. Localizationat Tier 1 can be usedto wakeup appropriate
(e.g.,nearest)Tier 2 nodesfor furtherprocessingaswell ascom-
puteapproximatetrajectoryinformation for trackingandhandoff
purposes.
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Figure 6 is a scatterplot of 2D localizationaccuracy for objects
usingthe CMUcamandthe Webcam. The CMUcamuses8 × 8
and16 × 16 matrix representationsof the capturedimage (con-
vertedfrom 88× 143 and176× 255 pixelsrespectively) for frame
differencing. This is representative of a typical centroidcompu-
tation thatwe would expecton Cyclopsnodessince thesedevices
areresource-constrainedbothin memoryandcomputationcapabil-
ity. Thewebcamuses a 80 × 60 representationcalculatedfrom a
320 × 240 pixelsimage.As seenfrom the figure,thewebcamhas
theleastlocalizationerrorandtheCMUcamusinga8×8 represen-
tationthelargesterror. Theaverageerror for eachconfigurationis
35%,20.5%and4.85%respectively. Thetrendsdepictedin thefig-
ureindicatethatif coarselocationinformationis desiredor suffices
to wakeuphighertier nodes,Tier 1 based localizationis sufficient.
If accuratelocationinformationis requiredlocalizationshouldbe
performedat thesecondtier of SensEye.

5.1.3 ObjectRecognition
To get an ideaof the latency andpower consumptionof a recog-
nition algorithm,we useda neuralnetwork basedfacerecognition
system[13]. Thesystem is very constrainedandusesfaceimages
of 960pixelsanda960x40x1neuralnetwork for learning.Thesys-
temwhenexecutedonaStargateto recognizefaceshadthefollow-
ing measurements:averagelatency 228 ms,averagecurrentdraw
244.8mA, averagepowerconsumption1.23W andaverageenergy
usageof 280.44mJ.Thesemeasurementsdonotexactly reflectthe
incrementsof energy usageof SensEyeasthefacerecognizeris not
integratedinto it. Themeasurementsrepresenta crudeestimateof
theadditionsto latency andenergy usage.We intendto replacethe
existing pixel averaging–basedrecognizerin SensEyewith other
sophisticatedrecognitionalgorithmsin futurework.

5.2 Comparisonof SensEye with a Single-Tier
Network

In this sectionwe presentanevaluationof thefull SensEyesystem
andcompareit to a single-tierimplementationof our algorithms.
Thecomparisonis alongtwo axes—energy consumptionandsens-
ing reliability. Sensingreliability is definedasthe fraction of ob-
jectsthatareaccuratelydetectedandrecognized.
In ourexperiment,circularobjectswereprojectedontoawall with
an areaof 3m × 1.65m. Objectsappearedat randomlocations
sequentiallyandstayedfor a specifiedduration. Only oneobject

Component Total OnWakeup Energy
Wakeups Object No Object Usage

Found Found (Joules)

Stargate1 311 32 279 1464.8
Stargate2 310 42 268 1460.1

Table6: Number of wakeupsand energy usageof a Single–tier
system. Total energy usageof both Stargates when awake is
2924.9J. Total misseddetectionsare5.

Component Total OnWakeup Energy Cyclops
Wakeups Object No Object Usage Expected

Found Found (Joules) Energy(J)

Mote1 304 15 289 50.7 8.96
Mote2 304 23 281 50.7 8.96
Mote3 304 27 277 50.7 8.96
Mote4 304 10 294 50.7 8.96

Stargate1 27 23 4 127.17 127.17
Stargate2 29 25 4 136.59 136.59

Table7: Number of wakeupsand energy usageof eachSensEye
component. Total energy usagewhen componentsare awake
with CMUcam is 466.8 J and with Cyclops is 299.6 J. Total
misseddetectionsare8.

waspresentin the viewableareaat any time. Objectappearances
were interspersedwith periodsof no object being presentin the
viewablearea.A setof four Motes,eachconnectedto aCMUcam,
constitutedTier 1 andtwo Stargates,eachconnectedto a webcam,
constitutedTier 2 of SensEye. Tier 1 Motesusedasamplingperiod
of 5 secondsand their start times were randomized. The object
appearancetime wassetto 7 secondsandtheinterval betweenap-
pearanceswassetto 30 seconds.Thesingle–tiersystemconsisted
of the two Stargatenodeswhich werewoken up every 5 seconds
for objectdetection. This differsfrom SensEyewherea Stargateis
wokenuponly ona triggerfrom Tier 1. Thenodesat boththetiers
wereplacedin suchamannerthateachtier coveredtheentire view-
ableregion asshown in Figure7. The experimentused50 object
appearancesfor measuringtheenergy andreliability metrics.

5.2.1 EnergyUsage
Weusetwo metricsto comparetheenergy usagebetweenSensEye
andthe single–tiersystem,energy usagewhenawake andenergy
usagein suspendmode.
Tables6 and 7 report the numberof wakeupsand detailsof de-
tectionat eachcomponentof the single–tiersystemandSensEye
respectively. As canbe seenfrom the tables,the Stargatesof the
single–tiersystemwakeupmoreoften thantheStargates at Tier 2
of SensEye. A totalof 621wakeupsoccurin thesingle–tier system,
whereas58 wakeupsoccurat Tier 2 of SensEye. Thehighernum-
berof wakeupswith thesingle–tierareduethe periodicsampling
of theregionto detectobjects.Of out thetotal621wakeups,anob-
ject is detectedonly 74 timesin the single-tiersystemwhereasin
SensEyeTier 1 performsinitial detectionandtheTier 2 Stargates
arewokenup fewer times—resultingin lower energy usage.The
Tier 1 sensornodesarecumulatively woken up 1216times. The
energy usageof SensEyeduringtheexperimentis 466.8J,ascom-
paredto 2924.9Jby thesingle–tiernode,afactorof 6.26reduction.
If theCMUcams in SensEyewerereplacedby Cyclopscameras,a
factorof 9.75reductionin energy usage is obtained.
As reported in [6], the Cyclopswith Mote consumes1 mW in its
sleepstatewhereasanoptimizedStargateconsumes15mW in sus-
pendmode.TheCMUcamhasapowerconsumptionof 464mW in



sleepmodeandis highly unoptimized. Thus,in thesuspendstate,
the Tier 2 nodeconsumesmorethanan orderof magnitudemore
power than the Tier 1 nodeswith Cyclopscameras.For our ex-
perimentalsettingof 30 secondsof idle time betweenobjects,this
correspondsto anenergy reductionby a factorof 33 for SensEye.

5.2.2 SensingReliability
Next we comparethe reliability of detectionand recognitionof
the two systemsin the above describedexperimentalsetup. The
single–tiersystemdetected45outof the50objectappearancesand
SensEyedetected42—a 6% decreasein sensingreliability. The
resultshows the efficacy of usingSensEyeinsteadof a single-tier
network, asSensEyeprovidessimilar detectionperformance(6%
moremisseddetections)at an orderof magnitudelessenergy re-
quirements.
The sensingreliability of SensEyeis dependenton the time for
whichanobjectis in view, thesamplingperiodat Tier 1 andspeed
of the object if it is moving. Sinceincreasingsamplingperiodis
sameas increasing time for which object in view, we study the
effect of different timesfor which object is view on sensingreli-
ability. Figure 8(a) plots the fraction of undetectedobjectswith
objectin–view timingsof 5,7and9 seconds.As seenfrom thefig-
ure,whenanobjectis in view for 5 seconds,52%objectsarenot
detected.With a time of 9 secondsfor eachobjectto be in view,
thepercentagedropsto zero. A timing of 7 secondsyieldsaninter-
mediatevalueof 16%undetectedobjects.
To studytheeffect of speedof moving objectson sensingreliabil-
ity, we conductedan experimentwhereobjectsmoved acrossthe
viewablearea.Theobjectstartedfrom a randompoint on oneside
of the rectangularareaandexited from anotherrandompoint on
theother side.Thesamplingperiodusedat the Tier 1 nodeswas5
seconds.Figure8(b) plots thepercentageof undetectedobjectsat
differentspeedsof themoving object.As canbeseen,at theslow-
estconsideredspeedof 0.2m/s,asamplingrateof 5 secondsis able
to detectall objectsatleastonce.A speedof 0.6m/sresultsin 62%
undetectedobjects.Thetrendshown is intuitive,givena sampling
rate,higherspeedsleadto higherundetectedobjects.Basedon the
desiredprobability of detection,the plots can be usedto choose
samplingratesfor differentobjectmovement speeds.

5.2.3 Coverage
A key benefitof SensEyeis that more sensingelementscan be
placedat lower energy cost than a single-tierarchitecture. This
givesSensEyegreaterspatialredundancy betweennodesandben-
efitsboththelatency of objectdetectionaswell astheaccuracy of
localization. We now look at the overlappingcoverageprovided
by the Tier 1 nodesand the Tier 2 nodes(also the nodesof the
single–tiernetwork). Figure 8(c) plots, for eachcomponent,the
caseswhenonly a singlenodecoveredanddetecteda object. As
canbeseen,thecoverageof Mote2andMote 3, which werecen-
trally placed,sharedalot of areawith theotherMotes.Hencethese
nodesarewokenup mostandalsohave themostredundantwake-
upsascomparedto Mote1 andMote4, which wereplacedat the
corners.TheTier 2 Stargatesalsohave asmalloverlappingregion
andarewokenup a small fractionof timesredundantly. Basedon
thecoverageandoverlappingnodeswokenup for detection,54%
objectscanbelocalizedin SensEyewhereas36%canbelocalized
in a single-tiernetwork comprisingonly the Stargatenodes.This
metricof coveragecanbeusedto guidefurthernodeplacementsto
reduceor increaseredundancy, in orderto minimize energy usage
or increaselocalizationopportunitiesrespectively.

5.2.4 Coveragewith Tier 3 RetargetableCameras
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Figure9: Sensitivity to SensEyesystemparameters.

To testthecoverageandretargatablefeatureof theTier 3 PTZcam-
eras,we measurethe numberof timesa Tier 3 nodesuccessfully
views an objectafter its pan andtilt movements.The experimen-
tal setuphad40% overlapping coverageamongTier 1 nodesand
the PTZ cameracould view at most a quarterof the total cover-
ageareaat any time. Whenan objectwasdetectedby morethan
oneTier 1 node,previously described3D localizationtechniques
wereusedto calculatethepan andtilt valuesandretarget theTier
3 camera.Outof the50objectappearances,thePTZcameracould
view 46—a92% successrate. Theexperimentverifiesthat3D lo-
calizationtechniquesalong with retargetablecamerashave ahigh
successrateandareusefulto improvecoverage.

5.2.5 Sensitivityto SystemParameters
SensEyehasseveral tunableparameterswhich effect energy usage
andsensingreliability. In thissection,weexplorethesensitivity to
two importantsystemparameters,samplingrateandcameradetec-
tion threshold.
Thepower consumptionat Tier 1 is a functionof thesamplingpe-
riod usedto probe the CMUcamandcheckfor object detections.
Figure9(a)plotsthepowerconsumptionataMotewith increasing
valuesof samplingperiod.Thesamplingperiodis variedfrom 100
msto 10 secondsandthepower consumptionat thesetwo ends is
137 mW and105.7mW respectively. While the power consump-
tion reduceswith increasingsamplingperiodasexpected,it quickly
plateaussincethelargesleeppower consumptionof theCMUcam
dominatesat lowersamplingperiods.
Fromasensingreliability perspective,eachMoteusesaconfidence
thresholdvalueto comparewith theconfidencewith whichaCMU-
camreportsa detection. The thresholddetermineswhentriggers
aresentto Tier 2. A higherthresholdmeanscloserobjectswill be
detectedmoreeasilythanfartherobjectsanda lower thresholdcan
moreeasilydetectobjectsat largerdistances.Thetrendis verified
by theplot shown in Figure9(b). We variedtheconfidencethresh-
old from 30 to 100 andmeasuredto maximumdistance at which
objectsareflaggedasdetectedand its trigger sentto Tier 2. As
canbeseenin thefigure,a thresholdof 30 candetectobjectstill a
distanceof 6.5 feet andwith thresholdsgreaterthan80 the maxi-
mumdistancedropsto lessthan1 feet.Choosinga goodthreshold
is importantsinceit controlsthefalsepositivesandfalsenegatives,
andhencetheenergy consumptionandreliability of thesystem.

6. RELATED WORK
SensEyedraws upon numerousefforts in camerasensors,power
management,sensorplacementandsurveillance,which we review
here.
Multimedia SensorNetworks: Several studieshave focusedon
single-tiercamerasensornetworks.Panoptes[22] is anexampleof
a videosensornodebuilt usinga Intel StrongARM PDA platform
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Figure8: SensEye sensingreliability and coverage.

with a LogitechWebcamasthe vision sensor. The nodeusesthe
802.11wirelessinterfaceandcanbe usedto setupa video–based
monitoringnetwork. Panoptesis an instance of a single-tiersen-
sor network andis not a multi-tier network like SensEye. A Tier
2 nodeof SensEyeis similar to Panoptes,with additionalsupport
for network wakeupsandoptimizedwakeup-from-suspendenergy
saving capability. Panoptesalsoincorporatescompression,filtering
andbufferingandadaptationmechanismsfor thevideostreamand
canbeusedby Tier 2 nodesof SensEye. Othertypesof multimedia
sensors,likeaudiosensors[21], havealsobeenusedfor calibration
andlocalizationapplications.
Video Surveillance: A distributedvideo surveillancesensornet-
work is describedin [12]. Thevideosensornetwork is usedto solve
theproblemof attentionto eventsin presenceof limited computa-
tion, bandwidthandseveraleventoccurrences.Thesystemimple-
mentsprocessingat camerasto filter out uninterestingandredun-
danteventsandtracksabnormalmovements.The CVSN Project
[2] focuseson developingdistributedvision processing techniques
for countingthenumberof peoplein anarea.
Anotherexampleof a single-tiervideo surveillanceandmonitor-
ing systemis VASM [16]. Themainobjective of thesystemis to
usemultiple,cooperativevideosensorsfor continuoustrackingand
coverage.Thesystemdevelopssophisticatedtechniquesfor target
detection,classificationandtrackingandalsoacentralcontrolunit
to arbitratesensorsto trackingtasks. A framework for single-tier
multi-camerasurveillance is presentedin [11]. The emphasisof
the study is efficient tracking using multi-source spatio-temporal
datafusion, hierarchicaldescriptionand representationof events
and learning-basedclassification.The systemusesa hierarchical
master-slave configuration,whereeachslave camerastationtracks
local movementsand relaysinformation to the masterfor fusion
andglobalrepresentation.While ourgeneralaimis to build similar
systems,we focuson systems,networking andperformanceissues
in a multi-tier network usingvideosurveillanceasanapplication.
Thevisionalgorithmsandcooperationtechniquesof theabovesys-
temscanextendcapabilitiesof SensEye.
SensorPlacement: An importantcriteria of sensornetworks is
placementandcoverage. Singletier placementof camerasis stud-
ied in [20]. The papersolves the problemof efficient placement
of camerasgiven anareato be coveredto meettask–specificcon-
straints.This methodprovidessolutionsfor the single–tierplace-
mentproblem andis usefulto placeeachtier of SensEyeindepen-
dently. Someof thesetechniquesapply to placementof nodesin
SensEyebut needto beextendedfor multi–tier settings.
Power management: Power managementschemes,like wake–
on-wireless[8] and Turducken [18], are techniquesto efficiently
usethe limited batterypower and thus extend lifetime of sensor
platforms. The wake–on–wirelesssolution usesa incoming call

to wakeup the PDA and reducespower consumptionby shutting
down thePDA whennot in use.Turduckenusesa combinationof
devices,a laptop,aStargateandamote,anduseslowersubsystems
to reducepowerconsumptionandwakesupthemorepowerhungry
devicesonly whenrequired.TheSensEyeTier 2 nodeis optimized
usingboththeabovesolutions.

7. CONCLUSIONS
In this paper, we arguedabout the benefitsof using a multi-tier
camerasensornetwork over singletier networksandpresentedthe
designandimplementationof SensEye, a multi-tier camerasensor
network. Usinga implementationof a surveillanceapplicationon
SensEyeandextensive experiments,we demonstratedthata multi-
tier network canachieveanorderof magnitudereductionin energy
usagewhencomparedto a single-tiernetwork, without sacrificing
reliability.
Aspartof futurework,weplantostudyplacementandself-calibration
techniquesfor camerasensornetworks.
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