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Abstract

In wireless data networks, the routing of data depends on the link capacities which, in turn, are determined by the allocation of
communication resources (such as power, frequency, and time slots) to the links. In this paper, we propose a distributed algorithm
for individual node to allocate resource to its incoming and outgoing links and establish routing tables to minimize global cost
by generalizing Gallager’s result [1]. We focus on so-called node-based wireless data networks in which each node has fixed
set of resources to be allocated to its incoming and outgoing links, the link capacity is a concave and increasing function of
resources allocated to it, and the global cost is the sum of all node costs, each of which is a convex and increasing function of
resource allocation variables of the node, and link data rates on the incoming and outgoing links of the node. The algorithm is
applied independently at each node: it iteratively updates the local resource allocation based on link data rates, and then updates
the routing table based on information communicated between neighbor nodes about the marginal global cost to each destination.
The marginal global cost is computed through the sensitivity analysis of the node cost with respect to the link data rates. For
stationary input traffic, the global cost converges, with successive updates of the resource allocation and routing tables, to the
minimum over all resource allocation and routing assignments. Through simulation over a TDMA wireless data network, we show
that the parameters of our proposed algorithm can be tuned to speed up the optimization convergence.

Index Terms

Wireless Data Networks, Resource Allocation, Routing Optimization, Mathematical Programming/Optimization

I. INTRODUCTION
In wireless data networks, efficient resource usage (where resources may include power, frequency, and time slots) is of

great importance. One way of achieving resource-efficient communication is to move from optimizing routing in isolation
to optimally coordinating routing and resource allocation. In this paper, we propose a distributed algorithm by generalizing
Gallager’s result [1] which only focus on routing optimization problem.
Routing optimization is used to find a set of routes, i.e., the set of paths along which packets are forwarded in order to

optimize a well-defined objective function. The routing optimization problem has been well studied [1] [2] in wired networks
with fixed link capacities: the network cost (delay, or worst case link utilization) is normally a convex function of link data
rates, and the routing optimization problem is formulated and solved as a convex multi-commodity network flow problem.
In contrast, link capacities in wireless networks are not necessarily fixed, but instead can be adjusted by the allocation of
communication resources (e.g., power, frequency, or time slots) among the various links. A change in resource allocation thus
changes the link capacities, and thus impacts the routing decision. Therefore, the resource allocation problem and routing
problem are coupled through link capacities, and the overall performance and resource usage of the wireless network can be
improved by simultaneous optimization of resource allocation and routing.
Recently, the joint resource allocation and routing optimization problem has been one of the most intensively studied areas.

Solution approaches may be roughly classified as being static [3] [4] [5], dynamic [6] [7], or quasi-static. In the static case,
the input to the joint optimization problem (such as the node locations, link properties, overall resource, and traffic demand)
is fixed. Because the static case is essentially a network design problem, it can be solved off-line, centrally. With dynamic
resource allocation and routing, control decisions are made according to the instantaneous states of the networks (such as
queues, as well as available resources). A principal challenge here is that conveying (instantaneous) state information to nodes
for use in the decision-making process. Quasi-static resource allocation lies between the extremes of static and dynamic cases.
Here, the state of the operational data network evolves over time - new source-destination pairs may establish data transmission
sessions and old sessions may terminate. Over a longer time scales, nodes or links may fail, new nodes and links may be
added. The resource allocation and routing must be changed over the evolving network to satisfy the changing demands. Our
interest here will be on distributed algorithms for quasi-static resource allocation and routing, i.e., in algorithms in which each
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node makes its own resource allocation decision and constructs its own routing tables based on periodic updating information
from neighbor nodes. The various pros and cons of centralized versus distributed approaches are well known [1] [8].
In this paper, we consider a class of wireless data networks known as node-based wireless data networks, in which each

node has a fixed set of resources (power and time slot fractions are normally node-level fixed resource) to be allocated to its
incoming and outgoing links. Additionally, in node-based wireless data networks, link capacity is a concave and increasing
function of resources allocated to it. Node resource allocation determines the capacities on all wireless links, upon which nodes
route traffic from source to destination for all traffic demands. Our goal is to find an allocation of resources and a feasible
set of routes that minimizes the global network cost (such as overall energy consumption rate) among all possible resource
allocation and routing combinations.
In a wired network, the network resources are link capacities. Each link incur higher performance cost (delay, and link

utilization) as it consumes more resource (capacity) to carry traffic. In contrast, in node-based wireless data networks,
the network resources are power, frequency, time-slots etc. Each node incurs higher resource cost (such as overall energy
consumption rate) as the node consumes more resources in transmitting and receiving data. We characterize a node cost by
a convex and increasing function of its resource variables, and the data rates on its incoming and outgoing links. The global
network cost is the summation of all node costs.
We extend [1], which only focuses on routing optimization problem with fixed link capacities, to take resource allocation

into account as well. We achieve the joint optimality in two steps: in the first step, for a set of routes φ, we find its associated
optimal resource allocation h∗(φ) which gives lowest global network cost D∗(φ); in the second step, we find the set of routes
with minimum network cost

φ∗ = argmin
φ

D∗(φ)

It is thus straightforward to see that the solution to the joint optimization problem is (h∗(φ∗), φ∗). In node-based wireless data
networks, for fixed set of routes, resource allocations on all the nodes are independent with each other. Therefore, the first
step can be solved by each node independently. However, similar as in wired network, routing decisions on all the nodes are
coupled through the network. The second step does require cooperation between nodes. In [1], the routing optimization for
wired network is driven by the marginal link costs. For our problem, the routing optimization is driven by the marginal node
costs, which can be calculated by nodes through sensitivity analysis of their optimal node costs with respect to the data rates
of their incoming and outgoing links.
The framework of our algorithm is shown in Figure 1. The joint resource allocation and routing optimization is achieved

through node’s collective routing optimization, and independent local resource optimization for current flow. Based on current
flow rates, each node independently optimizes its resource allocation, and computes marginal node cost with respect to incoming
and outgoing link data rates through sensitivity analysis. The marginal node cost then drives the global routing optimization
similar to [1]. We show that for stationary input traffic, our generalized solution converges to optimal resource allocation and
routing with successive updates of the node resource allocation decision and routing tables. Through simulation over a TDMA
wireless data network, we show that the parameters of our proposed algorithm can be tuned to speed up the optimization
convergence.

collectively routing optimization
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independent local resource optimization 

assigns resource to incoming and outgoing links
computes marginal node cost through sensitivity analysis

marginal node cost current routing

Fig. 1. An algorithm for optimal resource allocation and routing

The paper is organized as follows. Section II describes the routing optimization problem for wired networks with fixed
capacities. In section III, we present resource model for the node-based wireless network that supports the data network, and
demonstrate examples that fit our framework. Based on the network model and resource model, we formalize the joint resource
allocation and routing optimization problem in section IV. In section V, for fixed the routing, we solve the resource allocation
problem, and calculate the marginal cost with respect to the link data rates. In section VI, we generalize Gallager’s distributed
algorithm to search for the set of optimal routes. We investigate issues such as faster algorithm convergence through simulation
in section VII. In section VIII, we conclude the paper.
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II. ROUTING OPTIMIZATION WITH FIXED CAPACITIES
The routing optimization problem with fixed capacities has been well studied in wired networks [1] [2], and the model is

rather standard: the topology is represented by a directed graph, the demand is modeled as a multi-commodity flow, and the
global cost is the sum of link costs, each of which is a convex and increasing function of link data rate on it.

A. Network Topology
We represent the data network by a directed graph G = (V, E) where V is the set of nodes, and E the set of links. Let a

node in V be represented by an integer from 1, 2, . . . , n, and a link in E, from node i to node k, be represented by (i, k). For
node i, we use LI(i) to denote the set of links that terminates at it, and LU (i) the set of links that emanates from it. We call
L(i) = LI(i) ∪ LU (i) as the set of links adjacent to node i. For link (i, j), we use cij to denote its capacity.

B. Multi-commodity Network Flows
Let ri(j) be the expected traffic, in bits/s, entering the network at node i and destined for node j. Let ti(j) be the total

expected traffic at node i destined for node j. Thus ti(j) includes both ri(j) and traffic from other nodes that is routed through
i for destination j. Finally let φik(j) be the fraction of the ti(j) that is routed over link (i, k). Since ti(j) is the sum of the
input traffic and traffic routed to i from other nodes,

ti(j) = ri(j) +
∑

l

tl(j)φli(j) (1)

Equation (1) implicitly expresses the conservation of flow at each node: the traffic rate into a node for a given destination
is equal to the traffic rate out of the node for that destination. Next, we define φ precisely to ensure the equation (1) has a
unique solution of t given r and φ.
Definition : A routing variable set φ for network G = (V, E) is a set of nonnegative numbers φik(j), i, k, j ∈ V , satisfying

the following conditions.
1) φik(j) = 0 if i = j, or (i, k) /∈ E,
2)

∑
k φik(j) = 1 if i #= j,

3) ∀i, j(i #= j) ∈ V , there is a routing path from i to j, which means there is a sequence of nodes, i, k, l, . . . , m, j such
that φik(j) > 0, φkl(j) > 0, . . . , φmj(j) > 0.

Theorem 2.1: Let a network G = (V, E) have input set r and routing variable set φ. Then the set of equations (1) has a
unique solution for t. Each component ti(j) is nonnegative and continuously differentiable as a function of r and φ.

Proof: Proved in [1]. Included in Appendix A for completeness.
Now let fik(j) be the expected traffic rate destined to j , in bits/s, on link (i, k), and fik be the aggregated expected traffic

rate, on link (i, k). We have,

fik(j) = ti(j)φik(j) (2)

fik =
∑

j

fik(j) (3)

Clearly, a feasible set of flows f must satisfy the capacity constraints.

fik ≤ cik, (i, k) ∈ E (4)

The explicit flow conservation at each node using flow variable set f is given as follows. For fik(j) ≥ 0, (i, k) ∈ E, j ∈ V ,
∑

(i,k)∈LU (i)

fik(j) −
∑

(l,i)∈LI(i)

fli(j) = ri(j), i #= j (5)
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C. Routing Optimization Problems with Fixed Link Capacities
In case of data network with fixed link capacities, one of the most common cost functions used in the literature is the sum

of link costs, each of which is a convex and increasing function of link data rate on it. Let D be the overall cost, and Dij be
the cost of link (i, j), we have

D =
∑

(i,j)∈E

Dij(fij) (6)

Using flow variable set f as control variables, the optimization is formalized as a convex optimization problem.

Problem Formulation over f (7)

Given: network G = (V, E), link capacity set c, input demand set r.
Minimize: cost D.
Constraints:
1) Flow conservation. See (5).
2) Capacity feasibility constraints. See (4).

Using routing variable set φ as control variables. [1] proposed a distributed algorithm to achieve the same minimized network
cost.

Problem Formulation over φ (8)

Given: network G = (V, E), link capacity set c, input demand set r.
Minimize: cost D.
Constraints:
1) Route constraints. Demand r is implemented by routing variables set φ.
2) Capacity feasibility constraints. See (4).

In this paper, however, we are interested in distributed solution for the case of quasi-static networks for joint resource
allocation and routing problem. we are going to generate [1] to take resource allocation into consideration as well.

III. COMMUNICATION RESOURCE MODEL AND ASSUMPTIONS
In wireless data networks, the capacities of individual links depend on the media-access scheme and selection of certain

critical communication resources (such as power, frequency, or time-slot fractions) allocated to individual links. We refer to
these critical communication resources collectively as resource variables. We assume that the media-access scheme is fixed,
but the resource allocation can be adjusted at our will. The resource variables are themselves limited by various resource
constraints (such as limits on the total transmit power at each node). Next, we first introduce the communication resource
model in node-based wireless networks. Then, we describe three examples that fit in this communication resource model.

A. Communication Resource Model of Node-based Wireless Networks
In node-based wireless networks, the communication resource model has three key properties.
Fixed resources on nodes: Each node i has fixed set of communication resources denoted by ui. In an operational network,

power and time slot (fractions) are normally node-level fixed resources. Frequency allocation can be dynamic. However, in
this paper, we will focus on the case where communication resources are fixed at each node.
Resource allocation to adjacent links: Each node can only allocate its set of resources to its incoming and outgoing links.

This translates to that a node only consumes its resources if it transmits or receives data. Let hkl(i), (k, l) ∈ L(i) be a vector
of communication resources allocated to adjacent link (k, l) by node i. The resource feasibility constraint states that the total
amount of resources allocated by node i must be less than or equal to its fixed set of resources ui, we have

∑

(k,l)∈L(i)

hkl(i) ≤ ui (9)

Concave capacity of allocated resources: The sending capacity of link (k, l) is a concave and increasing function of set of
resources allocated to it by sender node k, and the receiving capacity of link (k, l) is a concave and increasing function of set
of resources allocated to it by receiver l. The capacity of link (k, l) is limited by its sending capacity and receiving capacity.
Let κs

kl and κr
kl denote the sending capacity and receiving capacity of link (k, l). We have,

ckl = min(κs
kl(hkl(k)), κr

kl(hkl(l))) (10)
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where κs
kl and κr

kl are concave and increasing functions of allocated set of resources.
In general, the capacity cik depends not only on its own allocated set of resources, but also on set of communication resources

allocated to other links in the network (due to interference). However, in this paper, we will focus on the interference free
case. Certain joint resource allocation and routing optimization problems (including three examples we show next) directly fits
the interference free model. Furthermore, some problems with more complex interference considerations (such as problems in
[9]) was reduced and solved as an interference free problem.

B. Examples of the Resource Model of Node-Based Wireless Networks
Certain joint resource allocation and routing optimization problems directly fits the resource model of node-based wireless

networks. Here, we will only illustrate how the Gaussian channels with FDMA, and Gaussian channels with TDMA using
omni-directional/directional antennas, fit into this framework.
1) Gaussian Channel With FDMA: In the Gaussian channel with FDMA, each node i is preassigned disjoint frequency Wi,

and power Pi. For simplicity, we assume that for data transmission over link (i, j), only the sending node i is required to
allocate set of resources (power Pij(i), and frequency Wij(i)) for communication to take place. The received power at node
j is σijPij(i) where σij is the path loss function on link (i, j). The receiving node j is also subject to independent additive
white Gaussian noises (AWGNs) with power spectral densities N j

0 . Based on the Shannon capacity formula, the capacity of
link (i, j) is a concave and increasing function of the resource variables (Pij(i), Wij(i)).

cij = Wij log2

(
1 +

σijPij(i)
N j

0Wij(i)

)
(11)

The communication variables at node i ∈ V are constrained by its overall resources limits,
∑

(i,j)∈LU (i)

Pij(i) ≤ Pi

∑

(i,j)∈LU (i)

Wij(i) ≤ Wi (12)

2) Gaussian Channel with TDMA using Omni-Directional Antennas: In the Gaussian channel with TDMA using Omni-
directional antennas, node i is preassigned disjoint frequency Wi, and power Pi. In the TDMA case, the resource variables
are time-slots rather than frequency or power. Similarly to the FDMA case, we assume that for data transmission over link
(i, j), only the sending node i is required to allocate resources (time slots) to link (i, j). This means that a node can parallelly
receive packets from multiple neighbors at any time slot, but it can only send packet to one neighbor node at each time slot.
Let τij(i) be the time-slot fraction allocated to link (i, j) by node i. The achieved capacity cij is a linear (hence, convex)
function of τij(i),

cij = τij(i)Wi log2

(
1 +

σijPi

N j
0Wi

)
(13)

Each node overall utilization for transmitting can not exceed 100%,
∑

(i,j)∈LU (i)

τij(i) ≤ 1 (14)

3) Gaussian Channel with TDMA using Directional Antennas: In the case of communication over a network in which each
node is equipped with a single directional antenna, a node can only send packets or receive packet at any time slot: to send
packets through link (i, j), both the sending node i and receiving node j are required to allocate resource (time slot). Let Pi be
the power at node i, and W be the network wide frequency. Let τij(i) be the time-slot allocated to link (i, j) by the sending
node i, and τij(j) the time-slot allocated to link (i, j) by the receiving node j. Assuming that directional antennas eliminate
interference between any pair of links, the achieved capacity cij is then a concave and increasing function of τij(i) and τij(j),

cij = min(κs
ij(τij(i)), κr

ij(τij(j))) (15)

= min(τij(i), τij(j))W log2

(
1 +

σijPi

N j
0W

)
(16)

At node i ∈ V , the overall node utilization for both transmitting and receiving can not exceed 100%. i.e.,
∑

(i,j)∈LU (i)

τij(i) +
∑

(i,j)∈LI(i)

τij(i) ≤ 1 (17)
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However, as shown by [10], the above condition does not guarantee a feasible solution. Instead, a sufficient condition is
given in [10] as follows. ∑

(i,j)∈LU (i)

τij(i) +
∑

(i,j)∈LI(i)

τij(i) ≤ 2/3 (18)

We thus take ui = 2/3 as fixed node resource (time-slot) for this case.

IV. JOINT OPTIMIZATION ON RESOURCE ALLOCATION AND ROUTING
A model for joint optimization on resource allocation and routing over the node-based wireless data networks can be derived

by combining the network flow model and the resource model described in the previous two sections. This model reflects
how the link capacities depend on the allocation of communications resources, and how the overall optimal network cost be
achieved by joint optimization on resource allocation and routing.

A. Network Cost in Node-based Wireless Networks
In node-based wireless networks, the overall network cost is the sum of all node costs, each of which is a convex and

increasing function of resource variables of the node, and link data rates on the incoming and outgoing links of the node. The
node cost reflects the cost at the node level, while the network cost reflects the overall cost. Let Di be the cost of node i, we
have,

Di = Df
i ({fkl|(k, l) ∈ L(i)}) + Dh

i ({hkl(i)|(k, l) ∈ L(i)}) (19)

where Df
i is a convex and increasing function of link data rates of incoming and outgoing links of node i, and Dh

i a convex
and increasing function of resource variables of the node i.
Let D denote the overall network cost, we have

D =
∑

i∈V

Di (20)

Note that D is a convex and increasing function of flow rate set f and resource variables h.

B. Joint Resource Allocation and Routing Optimization Problem
In node-based wireless networks, the joint resource allocation and routing problem can be formulated as a convex optimization

problem using resource variables h and flow variables f as control variables. Let the network costDh,f be a function of resource
variable set h and flow variable set f , we formalize the joint optimization problem as follows.

Problem Formulation over h, f (21)

Given: network G = (V, E), node resource set u, input demand set r.
Minimize: Dh,f

Constraints:
1) Flow conservation. See (5).
2) Capacity feasibility constraints. See (4).
3) Resource feasibility constraints. See (9).

Since Dh,f is a convex function over h and f , and the constraints define a convex set over h and f . The joint resource
allocation and routing optimization problem is a convex optimization problem. This implies that it can be solved globally and
efficiently using centralized algorithms from convex optimization literature [11] [3]. However, in this paper, we are interested
in a distributed solution to the above problem. Therefore, similar to [1], we use routing variables set φ (rather than flow rate
variables f ) and resource variable set h as control variables in formalizing the problem. Let the network cost Dh,φ be a
function of resource variable set h and flow variable set φ, we have,

Problem Formulation over h, φ (22)

Given: network G = (V, E), node resource set u, input demand set r.
Minimize: cost Dh,φ.
Constraints:
1) Route constraints. Demand r is implemented by routing variables φ.
2) Capacity feasibility constraints. See (4).
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3) Resource feasibility constraints. See (9).

We use a node-based penalty function to implicitly satisfy the resource feasibility constraints. Let bi denote a vector of
allocated resources of node i. The penalty function at node i, denoted by DP

i , is an increasing function of allocated resources
bi, and approaches infinity when any kind of allocated resource m of node i, bi(m), goes into the fixed amount resource m

of node i, ui(m) .
∀m, lim

bi(m)→ui(m)
DP

i = ∞ (23)

The overall penalty function DP is the sum of all node penalty functions.

DP =
∑

i∈V

DP
i (24)

Let Ai be the objective function at node i, and A the overall objective function. We have,

Ai = Di + DP
i (25)

A =
∑

i∈V

Ai = D + DP (26)

Similar to the representation of D using Dh,f and Dh,φ, we use Ah,f to denote A a function of h and f , and Ah,φ a function
of h and φ.
Adding penalty function DP may deviate from optimizing the original cost function D. However, in node-based wireless

networks, the node-based penalty function may prevent a node resource from being completely depleted in favor of global
cost. The remaining resource may be used to better accommodate the changing demand, or be used for fast recovery in the
case of node or link failures.

C. An Example of the Joint Resource Allocation and Routing Problem
Now we give an example of joint resource allocation and routing problem. In wireless data networks where nodes are energy

constrained, minimizing the energy consumption (power) is very important. One way to achieve energy-aware routing is to
minimize the overall energy consumption rate through joint resource allocation and routing.
The cost at node i, Di, is the energy consumption rate at node i. For simplicity, we assume that the energy is only consumed

at the transmission side. Therefore,
Di =

∑

(i,j)∈LU (i)

τij(i)Pij(i) (27)

where τij(i) and Pij(i) are time-slots and power allocated to link (i, j) by node i.
The penalty at node i, DP

i , is a function of allocated resources bi. For the three examples we given in section III, we choose
the penalty function as follows.
Gaussian Channel with FDMA

DP
i =

αp
i

Pi −
∑

(i,j)∈LU (i) Pij
+

αw
i

Wi −
∑

(i,j)∈LU (i) Wij
(28)

Gaussian Channel with TDMA (Omni-directional Antenna)

DP
i =

ατ
i

1 −
∑

(i,j)∈LU (i) τij(i)
(29)

Gaussian Channel with TDMA (Directional Antenna)

DP
i =

ατ
i

2
3 −

∑
(i,j)∈LU (i) τij(i) −

∑
(j,i)∈LI(i) τji(i)

(30)

where αp
i , αw

i , and ατ
i are positive parameters to adjust the degree of punishment.
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V. RESOURCE ALLOCATION FOR FIXED ROUTING
Now we solve the joint resource allocation and routing optimization problem for node-based wireless networks. In this

section, we solve this optimization problem in the case of fixed routing (thus fixed data flow). With fixed set of routes, we are
able to solve the global resource allocation problem via independent local resource optimization at each node. Furthermore,
through sensitivity analysis, each node locally calculates the marginal node cost with respect to link data rates. As we shall
see later, the marginal node cost serves a key role in searching for the optimal set of routes.

A. Node-Level Resource Optimization Problem
In node-based wireless networks, the node costs among individual nodes are coupled together through routing variables.

However, with fixed set of routes, resource allocations on all nodes are independent with each other. Therefore, the global
optimal resource allocation can be achieved by local resource optimization at individual nodes. Assuming that with fixed route
set φ, each node can always estimate the flow rate set f on incoming and outgoing links, each node then solves the following
convex resource allocation problem.

Problem Formulation over h at node i (31)

Given: resource vector ui, flow rates fkl, (k, l) ∈ L(i).
Minimize: Ah,f

i (or Ah,φ
i )

Constraints:
1) Capacity feasibility constraints. See (4).

For given set of routes φ and its resulting flow rate f , let Af
i (f) (or Aφ

i (φ)) denote the optimal Ah,f
i (or Ah,φ

i ) at node i.
Summing up the optimization result at all nodes, we get globally minimized objective function Af (f) (or Aφ(φ)).

Af (f) =
∑

i∈V

Af
i (f), Aφ(φ) =

∑

i∈V

Aφ
i (φ) (32)

As we mentioned earlier, the optimization problem of Ah,f is a convex optimization problem. From [11], we know that the
optimization problem over Af (f) is also a convex optimization problem. More specifically, Af (f) is a convex and increasing
function over a convex set of flow sets satisfying the capacity feasibility constraints and the resource feasibility constraints.
This convex set of flow sets is a closure of |E| planes (each of which corresponds to fij = 0, (i, j) ∈ E), and an envelope
imposed by resource constraints. The shape of the envelope depends on the link capacity functions as a concave and increasing
function of resources allocated to them, and fixed set of resources of all nodes. 1 We use F to denote the convex set of flow
sets satisfying the capacity feasibility constraints and the resource feasibility constraints, and F∞ the set of flow sets on the
envelope imposed by resource constraints. Due to the punishment of penalty function DP , the flow sets f∞ on the resource
boundary F∞ satisfies limf→f−

∞
Af (f) = ∞. (i.e.,f∞ must be implemented by fully consuming at least a kind of resource at

certain node). The penalty function DP keeps f from approaching envelope F∞ when Af (f) is minimized.

B. Node Sensitivity Analysis
While solving the local resource optimization problem for the fixed flow (31), each node i also locally calculates the marginal

node cost with respect to the link data rates ∂Af
i (f)/∂fkl, (k, l) ∈ L(i) through sensitivity analysis [11].

From (10), we see that for link (k, l) ∈ E, ckl is determined by resource allocated by both sender k and receiver l. An
increase of data flow fkl requires the increase of capacity ckl. This, in turn, requires that both sender k and receiver l to
allocate additional resources to link (k, l), incurring higher cost Af

k and Af
l . Therefore, the marginal global cost with respect

to the link data rate of link (k, l), ∂Af (f)/∂fkl is calculated as the sum of marginal node cost over two end nodes k and l.

∂Af (f)
∂fkl

=
∂Af

k(f)
∂fkl

+
∂Af

l (f)
∂fkl

(33)

Note that the marginal global cost ∂Af (f)/∂fkl can be derived through local communication between end nodes k and l.

1In case of wired network with fixed capacities, the envelope is given by E planes (which correspond to fij = cij , (i, j) ∈ E).
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VI. SEARCHING FOR OPTIMAL ROUTING
In previous section, for given fixed set of routes, nodes can achieve the optimal resource allocation through independent

node-level resource optimization, and calculate the marginal global cost through local sensitivity analysis and communication
between neighbor nodes. Now, we focus on routing optimization. i.e., an algorithm adjusts routing variables to converge to the
optimal set of routes. Next, we propose our solution by generalizing Gallager’s result [1]. We first generalize [1]’s necessary
and sufficient condition for optimal set of routes. Then we generalize [1]’s distributed algorithm.

A. Necessary and Sufficient Conditions for Optimal Cost

Now we generalize [1]’s necessary and sufficient conditions to minimize Aφ over all feasible sets of routes. Similar to [1],
we compute the partial derivatives of Aφ with respect to the inputs r and the routing variables φ as follows.

∂Aφ(φ)
∂ri(j)

=
∑

k

φik(j)
[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂rk(j)

]
(34)

∂Aφ(φ)
∂φik(j)

= ti(j)
[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂rk(j)

]
(35)

The existence and uniqueness of ∂Aφ(φ)/∂ri(j) and ∂Aφ(φ)/∂φik(j) is given by the following theorem.

Theorem 6.1: Let a network have input set r and routing variable set φ, and let each marginal link cost ∂Af (f)
∂fik

be continuous

in fik, (i, k) ∈ E. Then the set of equations (34) has a unique set of solutions for ∂Aφ(φ)
∂ri(j)

. Furthermore, (35) is valid and both
∂Aφ(φ)
∂ri(j)

and ∂Aφ(φ)
∂φik(j) for i #= j, (i, k) ∈ E are continuous in r and φ.

Proof: See Appendix B.
Using Lagrange multipliers for the constraint

∑
k φik(j) = 1, and taking into account the constraint φik(j) ≥ 0, the necessary

conditions for a minimum of Aφ with respect to φ are, ∀i #= j, (i, k) ∈ E,

∂Aφ(φ)
∂φik(j)

{
= λij φik(j) > 0
≥ λij φik(j) = 0. (36)

This states that for given i, j, all links (i, k) for which φik(j) > 0 must have the same marginal cost ∂Aφ(φ)/∂φik(j), and
that this marginal cost must be less than or equal to ∂Aφ(φ)/∂φik(j) for the links on which φik(j) = 0. However, as shown
by [1], (36) is not a sufficient condition to minimize Aφ even for the routing optimization problem in wired networks.
Given i, j in (35), if ti(j) = 0, then ∀k, we have ∂Aφ(φ)/∂φik(j) = 0. This means that, if node i is not on any route

carrying the traffic destined to j, the above necessary conditions would be automatically satisfied. Thus, we hypothesize that
(36) would be sufficient to minimize Aφ if the factor ti(j) were removed from the condition.
Theorem 6.2: Let F be a convex and compact set of flow sets, which is enclosed by |E| planes (each of which corresponds to

fij = 0, (i, j) ∈ E), and a boundary envelope F∞. Assume that Af is convex and continuously differentiable for f ∈ F −F∞,
Let Ψ be the set of φ for which the resulting set of flow rates f are in the above convex and bounded set F −F∞. Then (36)
is necessary for φ to minimize Aφ over Ψ and (37), for all i #= j, (i, k) ∈ E, is sufficient.

∂Af (f)
∂fik

+
∂Aφ(φ)
∂rk(j)

≥ ∂Aφ(φ)
∂ri(j)

(37)

Proof: See Appendix C.

B. A Distributed Algorithm for Routing Optimization
Based on the above sufficient condition, we now develop a gradient-based algorithm by generalizing [1]. Each node i must

incrementally decrease those routing variables φik(j) for which the marginal cost ∂Af (f)/∂fik + ∂Aφ(φ)/∂rk is large, and
increase those for which it is small. The algorithm breaks into three parts: a protocol between nodes to calculate the marginal
costs, an algorithm for calculating the routing updates and modifying the routing variables, and a protocol for forecasting the
flow rates of next iteration and allocating resources to support them. We discuss the protocol to calculate the marginal costs
first.
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Assume that each node i can estimate the link traffic rate fkl for each incoming and outgoing link (k, l) ∈ L(i). Based on
this information, node i calculates ∂Af

i (f)/∂fkl, (k, l) ∈ L(i) through sensitivity analysis. Then, for each pair of nodes i, j

with common link (i, j), node j sends ∂Af
j (f)/∂fij to node i. Upon receiving it from node j, node i computes ∂Af (f)/∂fij

using (33).
In order to see how node i can calculate ∂Aφ(φ)/∂ri(j). Define node m to be downstream from node i (with respect to

destination j) if there is a routing path from i to j passing through m (i.e., a path with positive routing variables on each
link). Similarly, we define i as upstream from m if m is downstream from i. A routing variable set φ is loop free if for
each destination j, there is no i, m(i #= m) such that i is both upstream and downstream for m. The protocol used for an
update, now, is as follows: for each destination node j, each node i waits until it has received the value ∂Aφ(φ)/∂rk(j) from
each of its downstream neighbors k #= j. The node i then calculates ∂Aφ(φ)/∂ri(j) from (34) (using the convention that
∂Aφ(φ)/∂rj(j) = 0) and broadcasts this to all of its neighbors. It is easy to see that this procedure is free of deadlocks if and
only if φ is loop free.
We shall later define small but important detail that has been omitted so far in the updating protocol between nodes: a small

amount of additional information is necessary for the algorithm to maintain loop freedom. It turns out to be necessary, for
each destination j and each node i, to specify a set Bi(j) of blocked node k for which φik(j) = 0 and the algorithm is not
permitted to increase φik(j) from 0. We first define and discuss the algorithm and then define the sets Bi(j).
The algorithm Γ, on each iteration, maps the current routing variable φ into a new set φ1 = Γ(φ). The mapping is defined

as follows. For k ∈ Bi(j),
φ1

ik(j) = 0, ∆ik(j) = 0. (38)

For k /∈ Bi(j), define

aik(j) =
∂Af (f)
∂fik

+
∂Aφ(φ)
∂rk(j)

− min
m/∈Bi(j)

[
∂Af (f)
∂fim

+
∂Aφ(φ)
∂rm(j)

]
(39)

∆ik(j) = min[φik(j), ηaik(j)/ti(j)] (40)

where η is a scale parameter of Γ to be discussed later. Let kmin(i, j) be a value of m that achieves the minimization in (40).
Then

φ1
ik(j) =

{
φik(j) − ∆ik(j) k "= kmin(i, j)
φik(j) +

∑
k !=kmin(i,j) ∆ik(j) k = kmin(i, j). (41)

The algorithm reduces the fraction of traffic sent on non-optimal links and increases the fraction on the best link. The amount
of reduction, given by ∆ik(j), is proportional to αik(j), with the restriction that φ1

ik(j) cannot be negative. In turn αik(j) is
the difference between the marginal cost to node j using link (i, k) and using the best link. Note that as the sufficient condition
(37) is approached, the changes get small, as desired. The amount of reduction is also inversely proportional to ti(j). The
reason for this is that the change in link traffic is related to ∆ik(j)ti(j). Thus when ti(j) is small, ∆ik(j) can be changed
by a large amount without greatly affecting the marginal cost. Finally the changes depend on the scale factor η. For η very
small, convergence of the algorithm is guaranteed, as shown in Theorem 6.3, but rather slow. As η increases, the speed of
convergences increases but the danger of no convergence increases.
We now complete the definition of algorithm Γ by defining the block sets Bi(j). See [1] for further reasoning on how this

definition guarantees the loop free properties.
Definition: The set Bk(j) is the set of nodes k for which both φik(j) = 0 and k is blocked relative to destination j.

A node k is blocked relative to j if k has a routing path to j containing some link (l, m) for which φlm(j) > 0, and
∂Aφ(φ)/∂rl(j) ≤ ∂Aφ(φ)/∂rm(j), and

φlm(j) ≥ η

[
∂Af (f)
∂flm

+
∂Aφ(φ)
∂rm(j)

− ∂Aφ(φ)
∂rl(j)

]/
ti(j) (42)

The protocol required for a node i to determine the set Bi(j) is as follows. Each node l, when it calculates ∂Aφ(φ)/∂rl(j),
determines, for each downstreamm, if φlm(j) > 0, and ∂Aφ(φ)/∂rl(j) ≤ ∂Aφ(φ)/∂rm(j), and satisfy (42). If any downstream
neighbor satisfies these conditions, node l adds a special tag to its broadcast of ∂Aφ(φ)/∂rl(j). The node l also adds the
special tag if the received value ∂Aφ(φ)/∂rm(j) from any downstream m contained a tag. In this way all nodes upstream of
l also send the tag. The set Bi(j) is then the set of nodes k for which the received ∂Aφ(φ)/∂rk(j) was tagged.
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Theorem 6.3: Let F be a convex and compact set of flow sets, which is enclosed by |E| planes (each of which corresponds
to fij = 0, (i, j) ∈ E), and a boundary envelope F∞. Assume that Af is a convex and increasing function for f ∈ F − F∞

and that ∀f∞ ∈ F∞, limf→f−
∞

Af = ∞. For every positive number A0, if φ0 satisfies Aφ(φ0) ≤ A0, then with scale factor
η = [Mn8]−1,

lim
m→∞

Γ(φm) = min
φ

(Aφ(φ)) (43)

where

M = max
(l1,m1),(l2,m2)∈E

max
f :Af (f)≤A0

∂2Af

∂fl1m1(f)∂fl2m2

(f) (44)

Proof: See Appendix D.
.
Note that η depends on some upper bound A0 to Aφ; this is natural, since when the link data rates f are very close to the

capacities nodes can provide, small changes in the link data rates cause large changes in the cost. The proof uses a ridiculously
small value of η to guarantee convergence under all conditions. In next section, we simulate over a TDMA network to identify
practical values for η.
Finally, we discuss the protocol for forecasting the flow rates of next iteration and allocating resources to support the updated

traffic. Assume that each node i can estimate the demand rate set ri(j) entering from i. First, for each destination node j, each
node i signals the downstream nodes under φ1 (which is the set of routes for next iteration) so that each node k gets a list of
of upstream nodes under φ1. Second, for each destination node j, each node i waits until it has received the forecasted value
f1

li(j) from each of its upstream node l under φ1. For each downstream node k under φ1, each node i then calculates f1
ik(j)

from (1)(2) and sends it to k. Each node i also calculates forecasted f1
kl, (k, l) ∈ L(i) from (3). Based on the forecasted link

data rates of incoming and outgoing links f1, nodes allocate and optimize resource allocation as we have discussed in section
V-A.
We have proposed a distributed algorithm for routing optimization. Note that in each iteration, the resource allocation is also

optimized through local independent resource optimization at all nodes. Combining the collective routing optimization, and
independent local resource optimization at all nodes, we have achieved the optimal cost over all feasible resource allocation
and routing combinations.

VII. NUMERICAL EXAMPLES
In this section, we present numerical results of the proposed joint resource and routing optimization problem on a synthetic

wireless network. We illustrate through this particular example how the choice of step-size scale factor η affect convergence
speed. It will become clear that, in practice, it is possible to choose a η much larger than the value used in the proof of
Theorem 6.3 to expedite the convergence. Furthermore, we will discuss the impact of the added penalty function on the
original optimization problem.

A. Simulation over TMDA Networks with Directional Antennas
We implemented the proposed algorithm to minimize the overall energy consumption rate in a TDMA wireless network

where nodes are equipped with direction antennas. TDMA wireless networks with direction antennas have been introduced
in section III-B.3, and the joint resource allocation and routing problem to minimize the overall energy consumption rate has
been formulated in section IV-C.
Figure 2 illustrates a synthetic network with 30 nodes and 254 links (127 bi-directed links). We place nodes uniformly on

the unit square [0, 1] × [0, 1]. Two nodes i, j can communicate to each other if the distance between them yij is within the
threshold 0.35. For data communication over link (i, j), the path loss is σij = (y0/yij)2, where y0 = min(k,l)∈E ykl is the
reference distance, and the receiver j is subject to noise with power spectral density N0 = 0.1. The network has frequency
resource W = 1, and each node has power limit Pi = 100. Each node have fixed resources (time slots ui = 2/3) to be allocated
to its incoming and outgoing links. Let τij(i) and τij(j) be time-slots assigned to link (i, j) by node i and j respectively, from
(16), the capacity of link (i, j) is,

cij = min (τij(i), τij(j)) log2

(
1 + 1000

(
y0

yij

)2
)

(45)

We generate traffic demand set r by randomly picking 32 source and destination pairs. The traffic rate between a source
and destination pair is uniformly distributed within [0.18, 0.55].
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Fig. 2. Topology of a uniformly generated wireless network with 30 nodes and 127 bidirectional links

From (27), the energy consumption rate at node i is,

Di =
∑

(i,j)∈L(U)

100τij(i).

Our goal is to minimize the overall network energy consumption rate (D =
∑

i∈V Di). We use the penalty functions defined
in (30), repeated as follows:

DP
i =

ατ
i

2
3 −

∑
(i,j)∈LU (i) τij(i) −

∑
(j,i)∈LI(i) τji(i)

DP =
∑

i∈V

DP
i ,

where ατ
i is a weight to adjust the degree of punishment on node i.

The initial set of resource allocation and routes are chosen using a baseline algorithm. Each node i fairly allocates all of its
own set of resources to its incoming and outgoing links so that the resulting sending capacity for all outgoing links, and the
receiving capacity for all incoming links are equal. i.e., ∀(k, l) ∈ L(i),

τkl(i) log2

(
1 + 1000

(
y0

ykl

)2
)

= Ci, (46)

where Ci is the fairly allocated capacity by node i to its all incoming and outgoing links. The resulting capacity of link (i, j)
is thus

cij = min{Ci, Cj}. (47)

The initial set of routes is then computed using a distributed protocol like Open Shortest Path First (OSPF) [12] with the
inverse of the capacities computed above as link weights.

B. Scale Factor η and Convergence
In the previous section, with a small scale factor η, we have shown that optimization algorithm Γ must eventually converge

to the optimum for a network with stationary inputs, nodes, and node resources. The question of whether the algorithm can
adapt fast enough to keep up with changing statistics is not obvious and deserves more study. Faster adaption may be achieved
through more frequent optimization protocol, or using larger scale factor η. However, the frequent optimization protocols reduce
the resource available for data transmission, and may reduce the accuracy of link data rate estimation. A large scale factor η
may break the convergence of the algorithm. In this section, we numerically compare how the proposed algorithm converges
to the optimum with different scale factors η.
With fixed penalty functions ατ

i = 10−4, i ∈ V , we choose four different scale factors η = {10−3, 10−5, 10−6, 10−7} to
run the algorithm, that minimizes the objective function A = D + DP . Note that all four choices of η are much larger than
the value given in Theorem 6.3. When η = 10−3, the algorithm generates infeasible flow, and then fails the optimization.
When η is chosen from {10−5, 10−6, 10−7}, the algorithm does converge to the optimum as shown in Figure 3. We see that
the optimization reduces the objective function A from the baseline 338.31 to 269.09, an improvement around 20% from the
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baseline solution. We also see that the convergence of the algorithm depends to a great extent on the value of η: a larger value
of η may lead to faster convergence. From the figure we see that for η = 10−5, 10−6, 10−7, the algorithm takes roughly 400,
4000 and 40000 iterations to reduce A within 5% of the optimal value (282.44). We also conducted simulations with other
parameter settings, and get similar results.
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Fig. 3. Comparisons of convergence speed for different ηs

C. Penalty Functions and Optimization Result
In this paper, we use penalty function to enforce the resource feasibility constraints. The added penalty function in the

objective function will deviate obtained solution from the real optimum of the original optimization problem without the penalty
function. To examine the impact of the penalty function on the original optimal goal, we vary the degree of punishment by
choosing ατ

i from {10−4, 10−2, 1}.
Table I shows the optimization result for different values of ατ as we set ατ

i = ατ , i ∈ V . As we expected, the larger ατ , the
more objective function A deviates from the original function D. When ατ = 10−4, the fraction of the penalty in the overall
objective function is DP /A = 4 × 10−5. The negligible penalty results in a solution D very close to the optimum, which is
69.07 less than the baseline case. In contrast, when ατ = 1, the fraction of the penalty in the overall objective function is
DP /A = 0.2. In this case, the degree of punishment is not negligible. Consequently, D incurs higher cost, and the gain is
reduced from 69.07 to 49.28 (a loss of gain by 29%). The result of ατ = 10−2 stays between the previous two cases. The
fraction of the penalty in the overall objective function is DP /A = 3 × 10−3. As the degree of punishment is still small, D

is closer to the case of ατ = 10−4.

ατ A = D + DP D DP /A D − D(baseline)

10−4 269.09 269.08 4 × 10−5 69.07
10−2 271.61 270.90 3 × 10−3 67.25

1 354.23 288.87 2 × 10−1 49.28

TABLE I
OPTIMIZATION RESULT WITH DIFFERENT ατ S

We have seen how the degree of penalty influences the solution of the original problem. On the other hand, the node-based
penalty function may lead to more balanced resource usage. We compare nodes utilization using three optimization results
with ατ = 10−4, 10−2, 1 respectively. (Reminds that a node utilization is at most 2/3, see (18)). Figure 4 plots utilization of
all 11 top-utilized nodes (above 25%) in any of the three optimization results. We clearly see that the node utilization gets
more balanced as ατ increases. The highest node utilization is reduced from 63% to 35% as we increases ατ from 10−4 to 1.
Further exploring this tradeoff between the original cost function D and the balance of node resource usage by adjusting

the degree of penalty may be an interesting problem. In the above examples, when ατ = 10−2, compared to ατ = 10−4, the
gain is only slightly reduced by 3%, while the highest node utilization drops substantially from 63% to 49%.

VIII. CONCLUSION
In this paper, we have developed an optimal distributed algorithm for joint resource allocation and routing for so-called

node-based wireless networks. Previous works [1] [8] have been focusing on distributed algorithms for routing optimization in
wired networks where link capacities are fixed. We generalize them to take resource allocation into consideration as well. We
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have been able to prove the convergence of the algorithm. This is a significant theoretical improvement over the algorithms
proposed for wired networks. We have demonstrated that our algorithm can be used to jointly optimize routing and resource
allocation on a wide range of node-based wireless data networks, such as FDMA and TDMA type of wireless networks. We
have also investigated issues such as faster algorithm adaptation to the change of network, and the impact of barrier method
used in the algorithm to the original optimization goal.
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IX. APPENDIX A
Next is the proof for Theorem 2.1. It was proved in [1]. We include it for completeness.
Proof:

Without loss of generality, take the destination node j to be the nth of the n nodes and drop the argument j from (1),

ti = ri +
n−1∑

l=1

tlφli, 1 ≤ i ≤ n. (A1)
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Summing both sides over i, we see that any solution to (A1) satisfies

tn =
∑

i

ri. (A2)

Temporarily let φni = ri/tn and substitute this in (A1).

ti =
n∑

l=1

tlφli. (A3)

Any solution to (A2) and (A3) satisfies (A1) and vice versa. Let Φ̂ be the n × n matrix with components φli. Φ̂ is stochastic
(i.e., φli ≥ 0 for all l, i and

∑
i φli = 1 for all l) and (A3) is just the formula for steady-state probabilities in a Markov chain.

It is well know that if Φ̂ is irreducible, then (A3) has a unique solution, aside from a scale factor determined by (A2), and
ti > 0, 1 ≤ i ≤ n. The matrix Φ̂ is irreducible; however, if for each i, k there is a path i.l, m, . . . , p, k such that φil > 0,
φlm > 0, . . . , φpk ≥ 0. If ri > 0 for 1 ≤ i ≤ n − 1, then node n has a path to each i, 1 ≤ i ≤ n − 1. By the definition of
routing variables, each i has a path to n and consequently Φ̂ is irreducible. Thus (A1) has a unique solution, with positive ti,
if ri > 0 for 1 ≤ i ≤ n − 1.
Now let t = (t1, . . . , tn−1), r = (r1, . . . , rn−1)and let Φ be the n−1×n−1 matrix with components φli(1 ≤ i, l ≤ n−1).

Equation (A1) for 1 ≤ i ≤ n− 1 is then t(I −Φ) = r. Since this equation has a unique solution for ri > 0, I −Φ must have
an inverse, and

t = r(I − Φ)−1 (A4)

Since the components of t are positive when the components of r are positive, components of t are nonnegative when the
components of r are nonnegative. Differentiating (A4), we get the continuous function of Φ

∂ti
∂rl

= [(I − Φ)−1]li (A5)

Using (A5) in (A4), the solution to (A1) is conveniently expressed, for any r, as

ti =
∑

l

∂ti
∂rl

rl (A6)

Finally, differentiating (A1) with respect to φkm, we get

∂ti
∂φkm

=
n−1∑

l=1

∂tl
∂φkm

φli + tkδim

where δim = 1 for i = m and 0 and otherwise. For fixed k, m, this is the same of equations as (A1), so that the solution,
continuous in φ, is

∂ti
∂φkm

=
∂ti
∂rm

tk (A7)

X. APPENDIX B
Next is the proof for Theorem 6.1.
Proof:

First we show that (34), repeated below with the destination node again taken to be n, has a unique solution.

∂Aφ(φ)
∂ri

=
∑

k

φik

[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂rk

]
(B1)

Let bi =
∑

k φik∂Af (f)/∂fik and let b the column vector (b1, . . . , bn−1). Let ∇ • Aφ be the column vector (∂Aφ(φ)/∂r1,
. . . , ∂Aφ(φ)/∂rn−1) Then (B1) can be rewritten as

∇ • Aφ = b + Φ(∇ • Aφ). (B2)
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We saw in the proof of Theorem 2.1 that I −Φ has a unique inverse with components given by (A5). Thus the unique solution
to (B2) is

∂Aφ(φ)
∂ri

=
∑

l

∂tl
∂ri

∑

m

φlm
∂Af (f)
∂flm

(B3)

=
∑

l,m

∂flm

∂ri

∂Af (f)
∂flm

(B4)

Differentiating ∂Aφ(φ) directly with (2) and (3), we get the same unique solution, which, from Theorem 2.1, is continuous in
φ.
Finally we calculate ∂Aφ(φ)/∂φik directly using (2) and (3),

∂Aφ(φ)
∂φik

=
∑

l,m

∂Af (f)
∂flm

φlm
∂tl
∂φik

+
∂Af (f)
∂fik

ti

= ti

[ ∑

l,m

∂Af (f)
∂flm

φlm
∂tl
∂rk

]
+ ti

∂Af (f)
∂fik

= ti

[
∂Aφ(φ)
∂rk

+
∂Af (f)
∂fik

]
(B5)

We have used (A7) and (B3) to derive (B5), which is the same as (35). This is clearly continuous in φ given the continuity
of ti and ∂Aφ(φ)/∂ri, and the proof is complete.

XI. APPENDIX C
Next is the proof for Theorem 6.2.
Proof:

First we show that (36) is a necessary condition to minimize Aφ by assuming that φ does not satisfy (36). This means that
there is some i, j, k and m such that

φik(j) > 0,
∂Aφ(φ)
∂φik(j)

>
∂Aφ(φ)
∂φim(j)

(C1)

Since these derivatives are continuous, a sufficiently small increase in φim(j) and corresponding decrease in φik(j) will
decrease Aφ, thus establishing that φ does not minimize Aφ.
Next we show that (37), repeated below, is a sufficient condition to minimize Aφ.

∂Af (f)
∂fik

+
∂Aφ(φ)
∂rk(j)

≥ ∂Aφ(φ)
∂ri(j)

, all i, j, k. (C2)

Suppose that φ satisfies (C2) and has link data rates f and node data rates t. Let φ∗ be any other set of routing variables
with link data rates f∗ and node data rates t∗. Define

f(λ) = (1 − λ)f + λf∗ (C3)

Af (λ) = Af (f(λ)) (C4)

Since Af is a convex, non-decreasing function of the flow rate sets f , therefore Af (λ), is convex in λ, and hence

dAf (λ)
dλ

∣∣∣∣
λ=0

≤ Aφ(φ∗) − Aφ(φ) (C5)

Since φ∗ is arbitrary, proving that dAf (λ)/dλ ≥ 0 at λ = 0 will complete the proof. From (C3) and (C4),

dAf (λ)
dλ

∣∣∣∣
λ=0

=
∑

i,k

∂Af (f)
∂fik

(
f∗

ik − fik

)
(C6)



CMPSCI TECHNICAL REPORT 05-43 17

We now show that
∑

i,k

∂Af (f)
∂fik

f∗
ik ≥

∑

j,k

rk(j)
∂Aφ(φ)
∂rk(j)

(C7)

Note from (C2) that

∑

k

∂Af (f)
∂fik

φ∗
ik(j) ≥ ∂Aφ(φ)

∂ri(j)
−

∑

k

∂Aφ(φ)
∂rk(j)

φ∗
ik(j) (C8)

Multiplying both sides of (C8) by t∗i (j), summing over i, j, and recalling that f∗
ik =

∑
j t∗i (j)φ∗

ik(j) (see (2)) , we obtain

∑

i,k

∂Af (f)
∂fik

f∗
ik ≥

∑

i,j

t∗i (j)
∂Aφ(φ)
∂ri(j)

−
∑

i,j,k

t∗i (j)φ
∗
ik(j)

∂Aφ(φ)
∂rk(j)

(C9)

From (1),
∑

i t∗i (j)φ∗
ik(j) = t∗k(j) − rk(j). Substituting this into the rightmost term of (C9) and canceling, we get (C7).

Note that the only inequality used here was (C8), and that if φ is substituted for φ∗, this becomes an equality from the equation

for ∂Aφ(φ)
∂ri(j)

in (34). Thus
∑

i,k

∂Af (f)
∂fik

fik =
∑

j,k

rk(j)
∂Aφ(φ)
∂rk(j)

(C10)

Substituting (C7) and (C10) into (C6), we see that dAf (λ)/dλ ≥ 0 at λ = 0, completing the proof.

XII. APPENDIX D
We prove Theorem 6.3 through a sequence of seven lemmas. The first five establish the descent properties of the algorithm,

the sixth establishes a type of continuity condition, showing that if φ does not minimize Aφ, the for any φ∗ in a neighborhood of
φ, Aφ(Γm(φ∗)) < Aφ(φ) for some m. The seventh lemma is a global convergence theorem which does not require continuity
in the algorithm Γ; Lemmas 12.6 and 12.7 together establish Theorem 6.3.
Let φ be an arbitrary set of routing variables satisfying Aφ(φ) < A0 for some A0. Let φ1 = Γ(φ) and let t, f, t1, f1 be the

node and link data rates corresponding to φ and φ1, respectively. Let fλ, (0 ≤ λ ≤ 1) be defined by fλ
ik = (1− λ)fik + λf1

ik,
and let

Af (λ) = Af (f(λ)) (D1)

From the Taylor remainder theorem,

Aφ(φ1) − Aφ(φ) =
dAf (λ)

dλ

∣∣∣∣
λ=0

+
1
2

d2Af (λ)
dλ2

∣∣∣∣
λ=λ∗

(D2)

where λ∗ is some number, 0 ≤ λ∗ ≤ 1. The continuity of the second derivative above will be obvious from the proof of

Lemma 12.4, which upper bounds that term. The first three lemmas deal with dAf (λ)
dλ |λ=0.

Lemma 12.1:
dAf (λ)

dλ

∣∣∣∣
λ=0

=
∑

i,j,k

−∆ik(j)aik(j)t1i (j) (D3)

Proof: Using the definitions of aik(j) and ∆ik(j) in (39) and (40),

∑

k

∆ik(j)aik(j) =
∑

k !=kmin(i,j)

[φik(j) − φ1
ik(j)]

{
∂Af (f)

∂fik
+

∂Aφ(φ)

∂rk(j)
− min

m/∈Bi(j)

[
∂Af (f)

∂fim
+

∂Aφ(φ)

∂rm(j)

] }

=
∑

k

[φik(j) − φ1
ik(j)]

[
∂Af (f)

∂fik
+

∂Aφ(φ)

∂rk(j)

]
(D4)

=
∂Aφ(φ)

∂ri(j)
−

∑

k

φ1
ik(j)

[
∂Af (f)

∂fik
+

∂Aφ(φ)

∂rk(j)

]
(D5)
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In (D4), we have used (41) to extend the sum over all k and in (D5), we have used (34). Multiplying both sides of (D5) by
t1i (j), summing, and using (1) and (2), we get

∑

i,j,k

∆ik(j)aik(j)t1i (j) =
∑

i,j

t1i (j)
∂Aφ(φ)
∂ri(j)

−
∑

i,k

f1
ik

∂Af (f)
∂fik

−
∑

k,j

[
t1k(j) − rk(j)

] ∂Aφ(φ)
∂rk(j)

= −
∑

i,k

f1
ik

∂Af (f)
∂fik

+
∑

k,j

rk(j)
∂Aφ(φ)
∂rk(j)

(D6)

=
∑

i,k

(fik − f1
ik)

∂Af (f)
∂fik

(D7)

= −dAf (λ)
dλ

∣∣∣∣
λ=0

(D8)

We have used (C10) to get (D7), and (D8) from (D1), completing the proof.
Lemma 12.2:

dAf (λ)
dλ

∣∣∣∣
λ=0

≤ − 1
η(n − 1)3

∑

i,j

∆2
i (j)t

2
i (j) (D9)

where
∆i(j) =

∑

k

∆ik(j) (D10)

Proof: From the definition of ∆ik(j) in (40), −aik(j) ≤ −ti(j)∆ik(j)/η. Substituting this into (D3) yields

dAf (λ)
dλ

∣∣∣∣
λ=0

≤ −1
η

∑

i,j,k

∆2
ik(j)ti(j)t1i (j)

≤ − 1
(n − 1)η

∑

i,j

∆2
i (j)ti(j)t

1
i (j) (D11)

where (D11) follows from Cauchy’s inequality, (
∑

k αkβk)2 ≤ (
∑

α2
k)(

∑
β2

k), with αk = 1, βk = ∆ik(j), and the sum over
k #= i.
Now define t∗i (j) as the total flow at node i destined for j if the routing variables φik(j) (for k #= kmin(i, j)) are reduced

by ∆ik(j) but φik(j) for k = kmin(i, j) is not increased. Mathematically t∗i (j) satisfies

t∗i (j) =
∑

l

t∗l (j)[φli(j) − ∆li(j)] + ri(j) (D12)

This has a unique solution because of the loop freedom of φ. Subtracting (D12) from (1) results in

ti(j) − t∗i (j) =
∑

l

[tl(j) − t∗l (j)]φli(j) +
∑

l

t∗l (j)∆li(j) (D13)

From (A6), using
∑

l t
∗
l (j)∆li(j) for ri(j),

ti(j) − t∗i (j) =
∑

l

∂ti(j)
∂rl(j)

∑

k

t∗k(j)∆kl(j) (D14)

Since φ is loop-free, ∂ti(j)/∂rl(j) ≤ 1. Also if ∂ti(j)/∂rl(j) > 0, then l is upstream of i for destination j and φil(j) (and
hence ∆il(j)) is zero. Thus

ti(j) − t∗i (j) ≤
∑

l

∑

k '=i

t∗k(j)∆kl(j) =
∑

k '=i

t∗k(j)∆k(j) (D15)

Multiplying the left side by ∆i(j) ≤ 1 preserves the inequality, yielding

ti(j)∆i(j) ≤
∑

k

t∗k(j)∆k(j) (D16)
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Since the right-hand side of (D14) is nonnegative, we also have ti(j)∆i(j) ≥ t∗i (j)∆i(j). We interrupt the proof now for
a short technical lemma, which was proved by [1]. We include it here for completeness. The lemma will be used for further
proof.
Lemma 12.3: Let αi, βi(1 ≤ i ≤ m) be nonnegative numbers satisfying αi ≤

∑
k βk; αi ≥ βi for 1 ≤ i ≤ m. Then

m∑

i=1

αiβi ≥
1

m2

∑

i

α2
i (D17)

Proof:
∑

i

αiβi ≥
∑

i

β2
i ≥ 1

m
(
∑

βi)2 (D18)

where we have used αi ≥ βi and then Cauchy’s inequality. Since
∑

βi ≥ αk for all k,

∑

i

αiβi ≥
1
m

α2
k, for all k. (D19)

This implies (D17), completing the proof of Lemma (12.3).
Now let αi = ti(j)∆i(j) and βi = t∗i (j)∆i(j). Since these terms are nonzero only for i #= j, we can take m = n−1. Since

the conditions of the lemma are satisfied for this choice,
∑

i

∆2
i (j)ti(j)t

∗
i (j) ≥

1
(n − 1)2

∑

i

∆2
i (j)t

2
i (j). (D20)

Since t∗i (j) ≤ t1i (j), we can substitute (D20) into (D11), getting (D9) and completing the proof of Lemma (12.2).

Lemma 12.4: Let M be an upper bound of ∂2Af (fλ)
∂fλ

l1m1
∂fλ

l2m2
over all l1, m1, l2, m2 and over 0 ≤ λ ≤ 1. Then for any λ,

0 ≤ λ ≤ 1,
d2Af (λ)

dλ2
≤ M(n + 2)(n − 1)2n2

∑

j,k

∆2
k(j)t2k(j) (D21)

Proof: The bound M must exist because ∂Af (λ)
∂fλ

l1m1
∂fλ

l2m2
is a continuous function of λ over the compact region 0 ≤ λ ≤ 1.

Taking the second derivative, we get

d2Af (λ)
dλ2

=
∑

l1,m1

∑

l2,m2

∂2Af (λ)
∂fλ

l1m1
∂fλ

l2m2

(f1
l1m1

− fl1m1)(f
1
l2m2

− fl2,m2)

≤
∑

l1m1

∑

l2m2

M |f1
l1m1

− fl1m1 ||f1
l2m2

− fl2m2 |

≤
∑

i,k

M |E||f1
ik − fik|2

≤
∑

i,k

Mn(n − 1)|f1
ik − fik|2 (D22)

We now upper bound |f1
ik − fik| by first upper bounding |t1i (j) − ti(j)|. As in the proof of Lemma 12.2, we have

t1i (j) − ti(j) =
∑

l

[t1l (j) − tl(j)]φ1
li(j) +

∑

l

tl(j)[φ1
li(j) − φli(j)]

=
∑

l

∂t1i (j)
∂rl(j)

∑

k

tk(j)[φ1
kl(j) − φkl(j)] (D23)

Since 0 ≤ ∂t1i (j)/∂rl(j) ≤ 1, we can upper bound this by

t1i (j) − ti(j) ≤
∑

k

tk(j)∆k(j)
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We can lower bound (D23) in the same way, considering only terms in which φ1
kl(j) − φkl(j) < 0, and this leads to

|t1i (j) − ti(j)| ≤
∑

k

tk(j)∆k(j) (D24)

f1
ik − fik =

∑

j

[t1i (j) − ti(j)]φ1
ik(j) + ti(j)[φ1

ik(j) − φik(j)]

|f1
ik − fik| ≤

∑

j

∑

l

tl(j)∆l(j)φ1
ik(j) +

∑

j

ti(j)|φ1
ik(j) − φik(j)| (D25)

The double sum in (D25) has at most (n− 1)2 nonzero terms (j #= i, l #= j) and the second sum at most n− 1 terms. Using
Cauchy’s inequality on both terms together, we get

|f1
ik − fik|2 ≤ n(n − 1)





∑

j,l

t2l (j)∆
2
l (j)[φ

1
ik(j)]2 +

∑

j

t2i (j)[φ
1
ik(j) − φik(j)]2






∑

k

|f1
ik − fik|2 ≤ n(n − 1)





∑

j,l

t2l (j)∆
2
l (j) + 2

∑

j

t2i (j)∆
2
i (j)




 (D26)

Summing over i and substituting the result in (D22),we get (D21) completing the proof.
Lemma 12.5: For given A0, define

M = max
l1,m1,l2,m2

max
f :Af (f)≤A0

∂2Af (f)
∂fl1m1∂fl2m2

(f) (D27)

η = [Mn8]−1. (D28)

Then for all φ such that Aφ(φ) ≤ A0,

Aφ(φ1) − Aφ(φ) ≤ − 1
2η(n − 1)3

∑

i,j

∆2
i (j)t

2
i (j). (D29)

Proof: Temporarily let M be as defined in Lemma 12.4. Combining Lemma 12.2 and Lemma 12.4,

Aφ(φ1) − Aφ(φ) ≤
[
− 1

η(n − 1)3
+

Mn2(n − 1)2(n + 2)
2

] ∑

i,j

∆2
i (j)t

2
i (j). (D30)

For η = [Mn8]−1, the second term in brackets above is less than half the magnitude of the first term, yielding (D29). It
follows that Aφ(φ1) ≤ Aφ(φ) ≤ A0. By convexity then Af (fλ) ≤ A0 for 0 ≤ λ ≤ 1. Thus M as given in (D27) satisfies the
condition on M in Lemma 12.4, completing the proof.
Lemma 12.6: Let the scale factor η satisfy (D28) for a given A0 and let φ be an arbitrary set of routing variables that does

not minimize Aφ and satisfies Aφ(φ) ≤ A0. Given this φ, there exists and ε > 0 and an m, 1 ≤ m ≤ n, such that for all φ∗

satisfying |φ− φ∗| < ε,
Aφ(Γm(φ∗)) < Aφ(φ) (D31)

Proof: We consider three cases. The first is the typical case in which no blocking occurs and Aφ(Γ(φ)) < Aφ(φ), the
second is the case in which blocking occurs, and the third is the case in which Aφ(Γ(φ)) = Aφ(φ).
Case 1: No blocking; ∆i(j)ti(j) > 0 for some i, j. If no nodes are blocked for φ, then by the definition of blocking (42),

there is a neighborhood of φ∗ around φ for which no blocking occurs. In this neighborhood,

aik(j) =

[
∂Af (f)

∂fik
+

∂Aφ(φ)
∂rk(j)

]
− min

1≤m≤n

[
∂Af (f)
∂fim

+
∂Aφ(φ)
∂rm(j)

]
(D32)

which is continuous in φ. It follows from (40) that ∆ik(j) is continuous in φ, and the upper bound to Aφ(Γ(φ)) − Aφ(φ) in
(D29) is continuous in φ. Since by assumption the bound in (D29) is strictly negative, there is a neighborhood of φ∗ around
φ for which

Aφ(Γ(φ∗)) − Aφ(φ∗) < − 1
4η(n − 1)3

∑

i,j

∆2
i (j)t

2
i (j) (D33)
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where ∆i(j) and ti(j) correspond to the given φ. Choose ε small enough so that (D33) is satisfied for |φ− φ∗| < ε and also
so that

|Aφ(φ∗) − Aφ(φ)| <
1

4η(n − 1)3
∑

i,j

∆2
i (j)t

2
i (j)

Combining this with (D33), we have (D31) for m = 1.
Case 2: Blocking occurs. For any φ, we can use (34) to lower bound aik(j) by

aik(j) ≥ ∂Af (f)
∂fik

+
∂Aφ(φ)
∂rk(j)

− ∂Aφ(φ)
∂ri(j)

(D34)

∆ik(j)ti(j) ≥ min

{
φik(j)ti(j), η

[
∂Af (f)

∂fik
+

∂Aφ(φ)
∂rk(j)

− ∂Aφ(φ)
∂ri(j)

]}
(D35)

The lower bounds above are continuous functions of φ. Since blocking occurs in φ, there is some i, j, k such that both

∂Aφ(φ)
∂rk(j)

− ∂Aφ(φ)
∂ri(j)

≥ 0 (D36)

and

φik(j)ti(j) ≥ η

[
∂Af (f)
∂fik

+
∂Aφ(φ)
∂rk(j)

− ∂Aφ(φ)
∂ri(j)

]
(D37)

Combining (D35) to (D37)

∆ik(j)ti(j) ≥ η
∂Af (f)
∂fik

(D38)

Since the right-hand side of (D35) is continuous in φ, there is a neighborhood of φ∗ around φ for which

∆∗
ik(j)t∗i (j) ≥

η

2
∂Af (f)
∂fik

(D39)

Equation (D31), for m = 1, now follows in the same way as in case 1.
Case 3: ∆ik(j)ti(j) = 0 for all i, j, k. Let Φ3 be the set of φ for which ∆ik(j)ti(j) = 0 for all i, j, k. Let φ(l) = Γl(φ) for

the given φ and let m ≥ 2 be the smallest integer such that φ(m−1) /∈ Φ3. We first show that m ≤ n. Note first that for any
φ ∈ Φ3, Γ changes φik(j) only for i, j such that ti(j) = 0 and thus the node data rates t and link data rates f cannot change.
∂Aφ/∂ri(j) can change, however, and as we shall see later, must change for some i, j if φ does not minimize Aφ.
Now consider φ(l) (0 ≤ l ≤ m− 2, where φ(0) denotes the original φ). Since φ(l) ∈ Φ3, ∆

(l)
ik (j) > 0 implies that ti(j) = 0.

From (40), φ(l)
ik (j) = ∆(l)

ik (j) and φ(l+1)
ik (j) = 0. For a given i, j, all φ(l)

ik (j) are reduced to 0 except for the k which minimizes
∂Af (f)

∂fik
+ ∂Aφ(φ(l))

∂rk(j) . Thus, using (34),

∂Aφ(φ(l+1))
∂ri(j)

= min
k

[
∂Af (f)
∂fik

+
∂Aφ(φ(l))
∂rk(j)

]
≤ ∂Aφ(φ(l))

∂ri(j)
(D40)

Since this equation is satisfied for all l, 0 ≤ l ≤ m − 2, we see that ∂Aφ(φ(l))/∂ri(j) can be reduced on iteration l only
if ∂Aφ(φ(l−1))/∂rk(j) is reduced on iteration l − 1 for some k such that ∂Aφ(φ(l−1))/∂rk(j) < ∂Aφ(φ(l))/∂ri(j). This
reduction at node k however implies a reduction at some node k′ of smaller differential cost at iteration l − 2 and so forth.
Since this sequence of differential costs is decreasing with decreasing l and since (from (D40)) the differential cost at a given
node is nondecreasing with decreasing l, each node in the sequence must be distinct. Since there are n − 1 nodes other than
the given destination available for such a sequence, the initial l in such a sequence satisfies l ≤ n − 2. On the other hand, if
∂Aφ(φ(l))/∂ri(j) is unchanged for all i, j, we see from (D40) that φ(l) satisfies the sufficient conditions to minimize Aφ and
then φ also minimizes Aφ contrary to our hypothesis; thus we must have m ≤ n.
Now observe that the middle expression in (D40), for l = 0, is a continuous function of φ and consequently ∂Aφ(φ(1))/∂ri(j)

is a continuous function of φ for all i, j. It follows by induction that ∂Aφ(φ(l))/∂ri(j) is a continuous function of φ for all
i, j and for l ≤ m − 1. Finally φ(m−1) /∈ Φ3, so it must satisfy the conditions of case 1 or 2; it will be observed that the
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analysis there apply equally to φ(m−1) because of the continuity of ∂Aφ(φ(m−1))/∂ri(j) as a function of φ. This completes
the proof.
Our last lemma will be stated in greater generality than required since it is a global convergence theorem for algorithms that

avoids the usual continuity constraint on the algorithm. (See Luenberger [13]) for a good discussion of global convergence).
Lemma 12.7: Let Φ be a compact region of Euclidean N space. Let Γ be a mapping from Φ into Φ and let Aφ be a

continuous real valued function in Φ. Assume that Aφ(Γ(φ)) ≤ Aφ(φ) for all φ ∈ Φ. Let Aφ
min be the minimum of Aφ over

Φ and let Φmin be the set of φ ∈ Φ such that Aφ(φ) = Aφ
min. Assume that for every φ ∈ Φ − Φmin, there is an ε > 0 and

an integer m ≥ 1 such that for all φ∗ ∈ Φ satisfying |φ− φ∗| < ε, we have Aφ(Γm(φ∗)) < Aφ(φ). Then for all φ ∈ Φ,

lim
m→∞

Aφ(Γm(φ)) = Aφ
min. (D41)

Proof: See [1].
Proof of Theorem 6.3: Let Φ be the set of loop-free routing variable φ such that Aφ(φ) ≤ A0. We have verified that Γ

maps loop-free routing variables into loop-free routing variables, and from Lemma 12.5, Aφ(Γ(φ)) ≤ Aφ(φ) for φ ∈ Φ. Thus
Γ is mapping from Φ into Φ. It is obvious that Φ is bounded and easy to verify that any limit of loop-free variables with
Aφ(φ) ≤ A0 is also loop-free with Aφ(φ) ≤ A0. Thus φ is compact. The final assumption of Lemma 12.7 is established by
Lemma 12.6. Thus Lemma 12.7 asserts the conclusion of Theorem 6.3.


