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Abstract—A camera sensor network is a wireless network of
cameras that are designed for ad-hoc deployment. The camera
sensors in such a network need to be properly calibrated by
determining their location, orientation, and range. This paper
presents Snapshot, an automated calibration protocol that is
explicitly designed and optimized for camera sensor networks.
Snapshot uses the inherent imaging abilities of the cameras
themselves for calibration. Further, unlike some vision-based
techniques that require tens of reference points for calibration,
Snapshot can determine the location and orientation of a camera
sensor using only four reference points. Our techniques are based
on principles from optics and geometry and are designed to work
with low-fidelity, low-power camera sensors that are typical in
sensor networks. As experimental evaluation of our prototype
implementation shows that Snapshot yields an error of 1-2.5
degrees when determining the camera orientation and 5-10cm
when determining the camera location. We show that this is
a tolerable error in practice since a Snapshot-calibrated sensor
network can track moving objects to within 11cm of their actual
locations. Finally, our measurements indicate that Snapshot can
calibrate a camera sensor within 20 seconds, enabling it to
calibrate a sensor network containing tens of cameras within
minutes.

I. INTRODUCTION

A. Motivation
Recent advances in embedded systems technologies have

made the design of camera sensor networks a reality. A camera
sensor network is an ad-hoc wireless network of low-power
imaging sensors (cameras) that are connected to networked
embedded controllers. Today, available camera sensors range
from tiny, low-power cameras such as CMUcams and Cyclops
to “cell-phone-class” cameras and from inexpensive web-cams
to high-resolution pan-tilt-zoom cameras.
Typical applications of camera sensor networks include

active monitoring of remote environments and surveillance
tasks such as object detection, recognition, and tracking. These
applications involve acquisition of images and video from mul-
tiple camera sensors and real-time processing of this data for
recognition, tracking, and camera control. Video acquisition
and processing involves interaction and coordination between
multiple cameras, for instance, to hand-off tracking responsi-
bilities for a moving object from one camera to another. Pre-
cise calibration of camera sensors is a necessary pre-requisite
for such interactions and coordination. Calibration of a camera
sensor network involves determining the location, orientation,

and range of each camera sensor in three dimensional space as
well as the overlap and spatial relationships between nearby
cameras.
Automated camera calibration is well studied in the com-

puter vision community [20], [21], [22], [24]. Many of these
techniques are based on the classical Tsai method—they
require a user to specify reference points on a grid whose
true locations are known in the physical world and use the
projection of these points on the camera image plane to
determine camera parameters. However, such vision-based
calibration techniques may not be directly applicable to camera
sensor networks for the following reasons. First, the vision-
based systems tend to use high-resolution cameras as well
as high-end workstations for image and video processing;
consequently, calibration techniques can leverage the avail-
ability of high-resolution images and abundance of processing
power. Neither assumption is true in sensor networks. Such
networks may employ low-power, low-fidelity cameras such
as the CMUcam [16] or Cyclops [12] that have coarse-grain
imaging capabilities; at best, a mix of low-end and a few
high-end cameras can be assumed for such environments.
Further, the cameras may be connected to nodes such as the
Crossbow Motes [13] or Intel Stargates [18] that have one or
two orders of magnitude less computational resources than PC-
class workstations. Calibration techniques for camera sensor
networks need to work well with low-resolution cameras and
should be computationally efficient.
Second, vision-based calibration techniques have been de-

signed to work with a single camera or a small group of
cameras. In contrast, a camera sensor network may comprise
tens or hundreds of cameras and calibration techniques will
need to scale to these larger environments. Further, camera
sensor networks are designed for ad-hoc deployment, for
instance, in environments with disasters such as fires or floods.
Since quick deployment is crucial in such environments, it is
essential to keep the time required for calibrating the system to
a minimum. Thus, calibration techniques need to be scalable
and designed for quick deployment.
Third, vision-based camera calibration techniques are de-

signed to determine both intrinsic parameters (e.g., focal
length, lens distortion, principal point) and extrinsic param-
eters (e.g., location and orientation) of a camera. Due to the
large number of unknowns, the calibration process typically



involves many tens of measurements of reference points and
is computationally intensive. In contrast, calibrating a camera
sensor network involves only determining external parameters
such as camera location and orientation, and may be amenable
to simpler, more efficient techniques that are better suited to
resource-constrained sensor platforms.
Automated localization techniques are a well-studied prob-

lem in the sensor community and a slew of techniques have
been proposed. Localization techniques employ beacons (e.g.,
IR [1], ultrasound [2], RF [3]) and use sophisticated triangu-
lation techniques to determine the location of a node. Most of
these technique have been designed for general-purpose sensor
networks, rather than camera sensor networks in particular.
Nevertheless, they can be employed during calibration, since
determining the node location is one of the tasks performed
during calibration. However, localization techniques are by
themselves not sufficient for calibration. Cameras are direc-
tional sensors and camera calibration also involves determin-
ing other parameters such as the orientation of the camera
(where a camera is pointing) as well as its range (what it can
see). In addition, calibration is also used to determine overlap
between neighboring cameras. Consequently, calibration is a
harder problem than pure localization.
The design of an automated calibration technique that is

cost-effective and yet scalable, efficient, and quickly deploy-
able is the subject matter of this paper.

B. Research Contributions

In this paper, we propose Snapshot a novel wireless protocol
for calibrating camera sensor networks. Snapshot advances
prior work in vision-based calibration and sensor localization
in important ways. Unlike vision-based techniques that require
tens of reference points for calibration and impose restrictions
on the placement of these points in space, Snapshot requires
only four reference points to calibrate each camera sensor and
allows these points to be randomly chosen without restrictions.
Both properties are crucial for sensor networks, since fewer
reference points and fewer restrictions enable faster calibra-
tion and reduce the computational overhead for subsequent
processing. Further, unlike sensor localization techniques that
depend on wireless beacons, Snapshot does not require any
specialized positioning equipment on the sensor nodes. In-
stead, it leverages the inherent picture-taking abilities of the
cameras and the onboard processing on the sensor nodes to
calibrate each node. Our results show Snapshot yields accura-
cies that are comparable those obtained by using positioning
devices such as ultrasound-based Cricket on each node.
Our techniques can be instantiated into a simple, quick

and easy-to-use wireless calibration protocol—a wireless cal-
ibration device is used to define reference points for each
camera sensor, which then uses principles from geometry,
optics and elementary machine vision to calibrate itself. When
more than four reference points are available, a sensor can use
median filter and maximum likelihood estimation techniques
to improve the accuracy of its estimates.

We have implemented Snapshot on a testbed of CMU-
cam sensors connected to wireless Stargate nodes. We have
conducted a detailed experimental evaluation of Snapshot
using our prototype implementation. Our experiments yield
the following key results:
1) Feasibility: By comparing the calibration accuracies of
low and high-resolution cameras, we show that it is
feasible to calibrate low-resolution cameras such as
CMU-cams without a significant loss in accuracy.

2) Accuracy: We show that Snapshot can localize a camera
to within few centimeters of its actual location and
determine its orientation with a median error of 1.3–
2.5 degrees. More importantly, our experiments indicate
that this level of accuracy is sufficient for tasks such as
object tracking. We show that a system calibrated with
Snapshot can localize an external object to within 11
centimeters of its actual location, which is adequate for
most tracking scenarios.

3) Efficiency: We show that the Snapshot algorithm can be
implemented on Stargate nodes and have running times
in the order of a few seconds.

4) Scalability: We show that Snapshot can calibrate a
camera sensor in about 20 seconds on current hardware;
Since a human needs to only specify a few reference
points using the wireless calibration device—a process
that takes a few seconds per sensor—Snapshot can scale
to networks containing tens of camera sensors.

The rest of this paper is structured as follows. Section II
presents the Background and Problem Formulation of our
problem. Sections III, IV and V present the design of Snapshot
design, its instantiation into a protocol and an application. The
implementation of Snapshot is described in Section VI and the
experimental evaluation in Section VII. Section VIII describes
related work and Section IX presents our conclusions.

II. BACKGROUND AND PROBLEM FORMULATION
A camera sensor network is defined to be a wireless network

of camera sensors, each connected to an embedded controller.
A typical realization of a camera sensor node consists of a
low-power camera such as the CMUcam [16] or Cyclops [12]
connected to an embedded sensor platform such as the Berke-
ley Mote [13] or the Intel Stargate [18]. The sensor platform
consist of a programmable microprocessor, memory, and a
wireless interface for communication. Not all cameras in the
system are homogeneous; in general, a small number of higher
resolution cameras may be deployed to assist the low-fidelity
cameras in performing their tasks. Thus, a mix of camera
sensors, each with different capabilities may be expected.
Consider an ad-hoc deployment of N heterogeneous cam-

era sensor nodes in an environment. An ad-hoc deployment
implies that cameras are quickly placed without a priori
planning. Given such an ad-hoc deployment, the location,
orientation and the range of each camera sensor needs to be
automatically determined. The goal of our work is to design a
wireless protocol to automatically derive these parameters for
each camera node. Specifically, the calibration protocol needs



to determine the (x, y, z) coordinates of each camera, which is
defined as the coordinates of the center of the camera lens. The
protocol also needs to determine the camera orientation along
the three axes, namely the pan, tilt and roll of the camera.
The pan angle α is defined to be the camera rotation along
the Z axis, the tilt angle β is the rotation along the X axis, and
the roll angle γ is the rotation along the Y axis. Finally, the
protocol needs to determine the field of view of each camera
(i.e., what it can see) and use the field of view to determine the
degree of overlap in neighboring cameras (i.e., the common
areas visible to both cameras).
Our work assumes that the focal length f of camera lens

is known to the calibration protocol. This is a reasonable
assumption since lens parameters are typically published in
the camera specifications by the manufacturer or they can be
estimated offline for each camera prior to deployment [20],
[21]. Further, sensor nodes are assumed to lack specialized
positioning devices such as GPS receivers. Instead, our goal is
to devise a protocol that exploits the inherent imaging abilities
of each camera and the onboard processing on each sensor
node to determine the above calibration parameters.

III. SNAPSHOT DESIGN
The basic Snapshot protocol involves taking pictures of a

small randomly-placed calibration device. To calibrate each
camera sensor, at least four pictures of the device are neces-
sary, and no three positions of the device must lie along a
straight line. Each position of the calibration device serves as
a reference point; the coordinates of each reference point are
assumed to be known and can be automatically determined
by equipping the calibration device with a locationing sensor
(e.g., GPS or ultra-sound Cricket receiver). In what follows,
we describe how Snapshot uses the pictures of the calibration
device together with the coordinates of each position to
estimate the camera location, orientation, and range. We also
discuss how the estimates can be refined when additional
reference points are available.

A. Camera Location Estimation
We begin with the intuition behind our camera location

estimation approach. Consider a camera sensor C whose
coordinates need to be determined. Suppose that four reference
points R1, R2, R3 and R4 are given along with their coor-
dinates for determining the camera location. No assumption
is made about the placement of these points in the three
dimensional space, except that these points be in visual range
of the camera and that no three of them lie along a straight
line. Consider the first two reference points R1 and R2 as
shown in Figure 1. Suppose that point objects placed at R1

and R2 project an image of P1 and P2, respectively, in the
camera’s image plane as shown in Figure 1. Further, let θ1 be
the angle incident by the the reference points on the camera.
Since θ1 is also the angle incident by P1 and P2 on the camera
lens, we assume that it can be computed using elementary
optics (as discussed later). Given θ1, R1 and R2, the problem
of finding the camera location reduces to finding a point in
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Fig. 2. Geometric representation of possible camera locations.

space where R1 and R2 impose an angle of θ1. With only two
reference points, there are infinitely many points where R1 and
R2 impose an angle of θ1. To see why, consider Figure 2(a)
that depicts the problem in two dimensions. Given R1 and R2,
the set of possible camera locations lies on the arc R1CR2 of
a circle such that R1R2 is a chord of the circle and θ1 is the
angle incident by this chord on the circle. From elementary
geometry, it is known that a chord of a circle inscribes a
constant angle on any point on the corresponding arc. Since
we have chosen the circle such that chord R1R2 inscribes an
angle of θ1 on it, the camera can lie on any point on the arc
R1CR2. This intuition can be generalized to three dimensions
by rotating the arc R1CR2 in space with the chord R1R2 as
the axis (see Figure 2(b)) . Doing so yields a three dimensional
surface of possible camera locations. The nature of the surface
depends on the value of θ1: the surface is shaped like a football
when θ1 > 90◦, is a sphere when θ1 = 90◦, and a double
crown when θ1 < 90◦. It is clear that the camera can lie on
any point of this surface.
Next, consider the third reference point R3. If we consider

reference points R1 and R3, we obtain another surface that
consists of all camera possible locations such that R1R3

impose a known angle θ2 on all points of this surface. Since
the camera must lie on both surfaces, it follows that the set
of possible locations is given by the intersection of these two
surfaces. The intersection of two surfaces is a closed curve and
the set of possible camera locations is reduced to any point
on this curve.
Finally, if we consider the pair of reference points R2 and

R3, we obtain a third surface of all possible camera locations.
The intersection of the first surface and the third yields a
second curve of possible camera locations. It follows that the
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camera location lies on the intersection of these two curves,
and two curves can intersect in multiple points. The number
of possible camera locations can be reduced further to at most
4 by introducing the fourth reference point R4.
Although 4 reference points give us up to 4 possible

camera locations, we observe that, in reality, only one of these
locations can generate the same projections as R1, R2, R3, and
R4 on the image plane. Using elementary optics, it is easy to
eliminate the false solutions and determine the true and unique
location of the camera.
With this intuition, we now present the details of our

technique. Consider a camera C placed at coordinates
(x, y, z), and four reference points R1, ..., R4 with coordinates
(x1, y1, z1) . . . (x4, y4, z4). with each of these reference point
defines a vector. For instance, as shown in Figure 3(a), the
line joining C and R1 defines a vector

−−→
CR1, denoted by %v1.

The components of v1 are given by

%v1 = −−→
CR1 = {x1 − x, y1 − y, z1 − z}

Similarly, the vector joining points C and Ri, denoted by %vi,
is given as

%vi = −−→
CRi = {xi − x, yi − y, zi − z} 1 ≤ i ≤ 4

As shown in Figure 3(a), let θ1 denote the angle between
vectors %v1 and %v2. The dot product of vectors %v1 and %v2 is
given as

%v1 · %v2 = |%v1||%v2| cos θ1 (1)

By definition of the dot product,

%v1 · %v2 = (x1−x)(x2−x)+(y1−y)(y2−y)+(z1−z)(z2−z)
(2)

The magnitude of vector %v1 is given as

|%v1| =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

The magnitude of %v2 is defined similarly. Substituting these
values into Equation 2,we get

cos(θ1) =
(x1 − x)(x2 − x) + (y1 − y)(y2 − y) + (z1 − z)(z2 − z)

|"v1| · |"v2|
(3)

Let θ2, through θ6 denote the angles between vectors %v1 and
%v3, %v1 and %v4, %v2 and %v3, %v2 and %v4 and %v3 and %v4 respectively.
Similar expressions can be derived for θ2, θ3, . . . θ6.

The angles θ1 through θ6 can be computed using elementary
optics and vision, as discussed next. Given these angles and the
coordinates of the four reference points, the above expressions
yield six quadratic equations with three unknowns: x,y, and
z. A non-linear solver can be used to numerically solve for
these unknowns.
Estimating θ1 through θ6: We now present a technique

to compute the angle between any two vectors %vi and %vj .
Consider any two reference points R1 and R2 as shown in
Figure 3 (a). Figure 3 (b) shows the projection of these points
through the camera lens onto the image plane. The image
plane in a digital camera consists of a CMOS sensor that
takes a picture of the camera view. Let P1 and P2 denote
the projections of the reference points on the image plane as
shown in the Figure 3(b), and let f denote the focal length
of the lens. For simplicity, we define all points with respect
to the camera’s coordinate system: the center of the lens is
assumed to be the origin in this coordinate system. Since
the image plane is at a distance f from the lens, all points
on the image plane are at a distance f from the origin. By
taking a picture of the reference points, the coordinates of
P1 and P2 can be determined. These are simply the pixel
coordinates where the reference points project their image on
the CMOS sensor; these pixels can be located in the image
using a simple vision-based object recognition technique.1 Let
the resulting coordinates of P1 and P2 be (−px1,−f,−pz1)
and (−px2,−f,−pz2) respectively. We define vectors %u1 and
%u2 as lines joining the camera (i.e., the origin C) to the points
P1 and P2. Then, the angle θ1 between the two vectors %u1

and %u2 can be determined by taking the dot product of them.

cos(θ1) =
%u1 · %u2

| %u1|| %u2|
The inverse cosine transform yields θ1, which is also the angle
incident by the original reference points on the camera.
Using the above technique to estimate θ1–θ6, we can then

solve our six quadratic equations using a non-linear optimiza-
tion algorithm [6] to estimate the camera location.

B. Camera Orientation Estimation
We now describe the technique employed by Snapshot to

determine the camera’s orientation along the three axes. We
assume that the camera location has already been estimated
using the technique in the previous section. Given the camera
location (x, y, z), our technique uses three reference points to
determine the pan, tilt, and roll of the camera. Intuitively, given
the camera location, we need to align the camera in space so
that the three reference points project an image at the same
location as the pictures takes by the camera. Put another way,
consider a ray of light emanating from each reference point.
The camera needs to be aligned so that each ray of light pierces
the image plane at the same pixel where the image of that
reference point is located. One reference point is sufficient to
determine the pan and tilt of the camera using this technique

1In Snapshot the calibration device contains a colored LED and the vision-
based recognizer must locate this LED in the corresponding image.



and three reference point are sufficient to uniquely determine
all three parameters: pan, tilt and roll. Our technique uses
the actual coordinates of three reference points and the pixel
coordinates of their corresponding images to determine the
unknown rotation matrix R that represents the pan, tilt and
roll of the camera.
Assume that the camera is positioned at coordinates (x, y, z)

and that the camera has a a pan of α degrees, a tilt of β
degrees, a roll of γ degrees The pan, tilt and roll rotations
can be represented as matrices, and can be used to calculate
locations of points in the camera’s coordinate space. The
composite matrix for the pan, tilt and roll rotations of the
camera that results in its orientation is given by

R =

[
cos(γ) 0 sin(γ)

0 1 0
− sin(γ) 0 cos(γ)

]
×

[
1 0 0
0 cos(β) sin(β)
0 − sin(β) cos(β)

]
×

[
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 0

]

=

[
r11 r12 r13
r21 r22 r23
r31 r32 r33

]
(4)

If an object is located at (xi, yi, zi) in the world coordinates,
the object’s location in the camera coordinates (x

′

i, y
′

i, z
′

i) can
be computed via Equation 5.




x

′
i

y
′
i

z
′
i



 = R ×

[
xi − x
yi − y
zi − z

]
(5)

where the composite rotation matrixR is given by Equation 4.
Intuitively, we can construct and solve a set of linear

equations (see Equation 6) where (x1, y1, z1), (x2, y2, z2), and
(x3, y3, z3) are the world coordinates of 3 reference points, and
(x

′

1, y
′

1, z
′

1), (x
′

2, y
′

2, z
′

2), and (x
′

3, y
′

3, z
′

3) are the corresponding
camera coordinates to estimate R, and then estimate α, β, and
γ from R. It is easy to see that as these three reference points

are not co-linear, the matrix




x1 − x y1 − y z1 − z
x2 − x y2 − y z2 − z
x3 − x y3 − y z3 − z





is a non-singular matrix, and hence, the three sets of linear
equations in Equation 6 have unique solution for RT .

[
x1 − x y1 − y z1 − z
x2 − x y2 − y z2 − z
x3 − x y3 − y z3 − z

]
× RT =




x

′
1 y

′
1 z

′
1

x
′
2 y

′
2 z

′
2

x
′
3 y

′
3 z

′
3



 (6)

As shown in Figure 4, an object’s location in the camera
coordinates and the projection of the object on the image plane
have the following relation:




x

′
i

y
′
i

z
′
i



 =
Di

Dp
×

[
pxi

f
pzi

]
(7)

where:
Di =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 and

Dp =
√

px2
i + f2 + pz2

i
Di and Dp represent the magnitude of the object to camera
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center vector and the projection on image plane to camera
center vector respectively.
Therefore, we can compute the location of an object in

the camera coordinate system using Equation 7, given the
camera location and focal length, and the object location and
its projection. The actual location of each reference point and
its location in the camera coordinates can then be used in
Equation 6 to determine the rotation matrix R. Given R, we
we can obtain pan α, tilt β, and roll γ using Equation 4 as
follows:

α =






arctan( r21
r22

) − 180◦ if r21
cos(β) < 0 and r22

cos(β) < 0
arctan( r21

r22
) + 180◦ if r21

cos(β) >= 0 and r22
cos(β) < 0

arctan( r21
r22

) otherwise
β = arcsin(r23) (8)

γ =






arctan( r13
r33

) − 180◦ if r13
cos(β) < 0 and r33

cos(β) < 0
arctan( r13

r33
) + 180◦ if r13

cos(β) >= 0 and r33
cos(β) < 0

arctan( r13
r33

) otherwise

Eliminating False Solutions: Recall from Section III-A
that our six quadratic equations yields up to four possible
solutions for the camera location. Only one of these solution
is the true camera location. To eliminate false solutions, we
compute the pan, tilt and roll for each computed location using
three reference points. The fourth reference point is then used
to eliminate false solutions as follows: for each computed
location and orientation, we project the fourth reference point
onto the camera’s image plane. The projected coordinates are
then matched to the actual pixel coordinates of the reference
point in the image. The projected coordinates will match the
pixel coordinates only for the true camera location. Thus, the
three false solutions can be eliminated by picking the solution
with the smallest re-projection error. The chosen solution is
always guaranteed to be the correct camera location.



C. Determining Visual Range and Overlap

Once the location and orientation of each camera have
been determined, the next task is to determine the visual
range of each camera and the overlap of viewable regions
between neighboring cameras. The overlap between cameras
is an indication of the redundancy in sensor coverage in the
environment. Overlapping cameras can also be used to localize
and track moving objects in the environment.
The visual range of a camera can be approximated as a

polyhedron as shown in Figure 5. The apex of the polyhedron
is the location of the camera C (also the lens center) and
height of the pyramid is the maximum viewable distance of
the camera. An object in the volume of the polyhedron is in
the visual range of the camera.
Although a camera can view infinitely distant objects, such

objects will appear as point objects in any picture taken by the
camera and are not useful for tasks such as object detection
and recognition. Thus, it is necessary to artificially restrict the
viewable range of the camera; the maximum viewable distance
is determined in an application-specific manner and depends
on the sizes of the objects being monitored (the larger the
object, the greater is the maximum viewable distance of each
camera). Assuming that this distance is determined offline,
Snapshot can then precisely determine the polyhedron that
encompasses the viewable range of the camera (assuming no
obstacles such as walls are present to cut off this polyhedron).
Assume that the camera location (x, y, z) is given. We

also assume that the size of the camera CMOS sensor is
known (specifications for digital cameras typically specify
the size of the internal CMOS sensor). Since the CMOS
sensor is placed at a focal length distance from the lens, the
coordinates of the four corners of the sensor can be determined
relative to the camera location (x, y, z). As shown in Figure 5,
the polyhedron is fully defined by specifying vectors −−→

CP ,−−→
CQ, −→CR and −→

CS which constitute its four edges. Further,−−→
CP = d

f · −→AC, where AC is the line segment joining the
edge of the CMOS sensor to the center of the lens, and d
is the maximum viewable distance of the camera. Since the
coordinates of points A and C are known, the vector −→AC is
known, and −−→

CP can then be determined. The four edges of
the polyhedron can be determined in this fashion.
To determine if two cameras overlap, we need to determine

if their corresponding polyhedrons intersect (the intersection
indicates the region in space viewable from both cameras).
To determine if two polyhedrons intersect, we consider each
surface of the first polyhedron and determine if one of the
edges on the other polyhedron intersects this surface. For
instance, does the line segment CP intersect any of the
four surfaces of the other polyhedron? If any edge intersects
a surface of the other polyhedron, then the two cameras
have overlapping viewable regions. The intersection of a line
segment with a plane can be easily represented in vector
algebra using vector cross and dot products [11] and we omit
specific details due to space constraints.

D. Iterative Refinement of Estimates
While Snapshot requires only four reference points to

calibrate a camera sensor, the estimates of the camera location
and orientation can be improved if additional reference points
are available. Suppose that n reference points, n ≥ 4, are
available for a particular sensor node. Then

(n
4

)
unique subsets

of four reference points can be constructed from these n points.
For each subset of four points, we can compute the location
and orientation of the camera using the techniques outlined
in the previous sections. This yields

(n
4

)
different estimates of

the camera location and orientation. These estimates can be
refined to obtain the final solution using one of three methods:
Least Square Method: This technique picks one solution

from the
(n
4

)
solutions that most accurately reflects the camera

location and orientation. To do so, the technique uses each
computed camera location and orientation to re-project all
reference points on the camera image plane and chooses the
solution that yields the minimum error between the projected
coordinates and the actual coordinates in the image. The
solution that yields the minimum error is one that minimizes
the following expression

n∑

i=1

|| f

y
′
i

×




x

′
i

y
′
i

z
′
i



 − Pi||2. (9)

where




x

′

i

y
′

i

z
′

i



 is the location of reference point i in camera

coordinates according to Equation 5, and Pi =




pxi

f
pzi



 is

the real projection of reference point i.
Median Filter Method: This method simply takes the

median of each estimated parameter, namely x, y, z, pan
α, tilt β, and roll γ. These median values are then chosen
as the final estimates of each parameter. Note that while the
least squares method picks one of the

(n
4

)
initial solutions as

the final solution, the median filter method can yield a final
solution that is different from all

(n
4

)
initial solutions (since the

median of each parameter is computed independently, the final
solution need not correspond to any of the initial solutions).
The median filter method is simple and cost-effective, and it
performs well when n is large.
Maximum Likelihood Estimation: The MLE method [9]

uses the initial estimates as its initial guess and searches
through the state space to choose a solution that minimizes
an error term. We choose the same error function as the least
squares method: the search should yield a solution that yields
the least error when projecting the reference points on the
camera image plane.
Minimizing Equation 9 by searching through the parameter

state space is a non-linear minimization problem, that can be
solved numerically using the Levenberg-Marquardt algorithm.
The algorithm requires an initial guess of R and (x, y, z): our
estimates from Snapshot can be used as this initial guess. Note
that, MLE is computationally more expensive that the median
filter method or the least squares method. While its advantage



diminishes when n is large, it can yield better accuracy when
n is small.
Choosing between these methods involves a speed versus

accuracy tradeoff. In general, the first two methods are more
suitable if calibration speed is more important. The MLE
method should be chosen when calibration accuracy is more
important or if n is small.

IV. A SELF-CALIBRATION PROTOCOL

In this section, we describe how the estimation techniques
presented in the previous section can be instantiated into a
simple wireless protocol for automatically calibrating each
camera sensor. Our protocol assumes that each sensor node
has a wireless interface that enables wireless communication to
and from the camera. The calibration process involves the use
of a wireless calibration device which is a piece of hardware
that performs the following tasks. First, the device is used
to define the reference points during calibration—the location
of the device defines a reference point, whose coordinates
are automatically determined by equipping the device with
a positioning sensor (e.g., ultrasound-based Cricket). Second,
the device also also serves as a point object for pictures
taken by the camera sensors. To ensure that the device can
be automatically detected in an image by vision processing
algorithms, we equip the device with a bright LED sensor
(which then serves as the point object in an image). Third, the
devices serves as a “wireless remote” for taking pictures during
the calibration phase. The devices is equipped with a switch
that triggers a broadcast packet on the wireless channel. The
packet contains the coordinates of the device at that instant and
includes a image capture command that triggers a snapshot at
all camera sensors in its wireless range.
Given such a device, the protocol works as follows. A hu-

man assists the calibration process by walking around with the
calibration device. The protocol involves holding the device at
randomly location points and initiating the trigger. The trigger
broadcast a packet to all cameras in the range with a command
to take a picture (if the sensor node is asleep, the trigger first
wakes up a node using a wakeup-on-wireless algorithm). The
broadcast packet also includes the coordinates of the current
position of the device. Each camera then processes the picture
to determine if the LED of the calibration device is visible to
it. If so, the pixel coordinates of the device and the transmitted
coordinates of the reference point are recorded. Otherwise
the camera simply waits for the next trigger. When at least
four reference points become available, the sensor node then
processes this data to determine the location, orientation and
range of the camera. These parameters are then broadcast
so that neighboring cameras can subsequently use them for
determining the amount of overlap between cameras. Once a
camera calibrates itself, a visual cue is provided by turning on
an LED on the sensor node so that the human assistant can
move on to other sensors.
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Fig. 6. Object localization using two cameras.

V. AN OBJECT LOCALIZATION AND TRACKING
APPLICATION

In general, the accuracy desired from the calibration phase
depends on the application that will subsequently use this
calibrated sensor network. To determine how calibration errors
impact application accuracy, we consider a simple object local-
ization and tracking example. This scenario assumes that the
calibrated sensor network is used to detect external objects and
track them as they move through the environment. Tracking is
performed by continuously computing the coordinates of the
moving object. A camera sensor network can employ triangu-
lation techniques to determine the location of an object—if an
object is simultaneously visible from at least two cameras,
and if the locations and orientations of these cameras are
known, then the location of the object can be calculated by
taking pictures of the object and using its pixel coordinates to
compute its actual location.
To see how this is done, consider Figure 6 that depicts an

object O that simultaneously visible in cameras C1 and C2.
Since both cameras are looking at the same object, the lines
connecting the center of the cameras to the object, should
intersect at the object O. Since the locations of each camera
is known, a triangle C1OC2 can be constructed as shown in
the figure. Let D1 and D2 denote the distance between the
object and the two cameras, respectively, and let D12 denote
the distance between the two cameras. Note that D12 can be
computed as the Euclidean distance between the coordinates
C1 and C2, while D1 and D2 are unknown quantities. Let
θ1, θ2 and φ denote the internal angles of the triangle as
shown in the figure. Then the Sine theorem for a triangle from
elementary trigonometry states that

D1

sin(θ1)
=

D2

sin(θ2)
=

D12

sin(φ)
(10)

The angles θ1 and θ2 can be computed by taking pictures
of the object and using its pixel coordinates as follows.
Suppose that the object projects an image at pixel coordinates
(−px1,−pz1) at camera C1, Let f1 denote the focal length of
camera C1. Then projection vector %v1 = (px1, f, pz1) is the
vector joining the pixel coordinates to the center of the lens
and this vector lies along the direction of the object from the
camera center. If %v is the vector along the direction of line
connected the two cameras, the the angle θ1 can be calculated
using the vector dot product:

%v. %v1 = |%v| × |%v1| × cos(θ1) (11)



(a) Calibration Device (b) CMUcam+Stargate

Fig. 7. Snapshot hardware components.

The angle θ2 can be computed similarly and the angle φ is
next determined as (180 − θ1 − θ2).
Given θ1, θ2 and φ and the distance between two cameras

D12, the values of D1 and D2 can be computed using the Sine
theorem as stated above.
Given the distance of the object from the cameras (as given

byD1 andD2) and the direction along which the object lies (as
defined by the projection vectors %v1 and %v2), the object location
can be easily computed. Note that the orientation matrices of
the cameras must also be accounted for when determining the
world coordinates of the object using each camera. In practice,
due to calibration errors, the object location as estimated by
the two cameras are not identical. We calculate the mid–point
of the two estimates as the location of the object.
Thus, two overlapping cameras can coordinate with one

another to triangulate the location of an external object. We
will use this object localization application in our experimental
evaluation to quantify the impact of calibration errors on the
application tracking error.

VI. SNAPSHOT IMPLEMENTATION

This section describes the prototype implementation of
Snapshot.

A. Hardware Components

The Snapshot wireless calibration device is a Mote sensor
node equipped with a Cricket ultrasound receiver (see Figure
7(a)). We assume that the environment is equipped with
Cricket reference beacons, which are used by a Cricket re-
ceiver to compute the location coordinates of the Mote during
calibration [14]. We also enhance the Mote by equipping it
with a LED that turns itself on during calibration. Empirical
results have shown that Cricket-based positioning has an error
of few centimeters and our experiments quantify the impact
of this error on calibration accuracy.
We use two types of camera sensors in our experiments: the

CMUcam vision sensor [5] and a Sony webcam. The CMUcam
comprises of a OV6620 Omnivision CMOS camera and a
SX52 micro–controller and has a resolution of 176x255. In
contrast, the Sony webcam has a higher resolution of 640x480.
We use the high resolution webcam to quantify the loss in
accuracy when calibrating low-resolution cameras such as the
CMUcam. Although beyond the scope of the current paper, our

ongoing work focuses on calibrating a second low-resolution
camera sensor, namely the Agilent Cyclops [12].
All camera sensors are connected to Intel Stargates [18]

(see Figure 7(b)), which is a PDA-class sensor platform and
s equipped with a 400MHz XScale processor. Each Stargate
also has a Crossbow Mote [13] connected to it for wireless
communication with our Mote-based calibration device.
Finally, we use a digital compass, Sparton 3003D [8], to

quantify the orientation error during calibration. The compass
has resolution of 0.1 degrees and accuracy of 0.3 degrees.

B. Software Architecture
Our Mote-based calibration device runs TinyOS [19] with

the Cricket toolkit. The Snapshot software on the Mote is
simple: each human-initiated trigger causes the Mote to de-
termine its coordinates using Cricket and these coordinates
are embedded in an “image-capture” trigger packet that is
broadcast to all nodes. using the wireless radio.
Camera Calibration Tasks: Each Stargate runs the Linux

operating system. Every time a trigger packet is received from
the calibration device, the Stargate sends a set of commands
over the serial cable to capture an image from the CMUcam.
The image is processed using a vision-based recognition
algorithm; our current prototype uses background subtraction
and a connected components algorithm [15] to detect the
presence of the calibration device LED. If the device is found,
the pixel coordinates of the LED and the Cricket coordinates
of the Mote are stored as a new reference point. Otherwise
the image is ignored.
Once four reference points become available, the Stargate

estimates the location, orientation and range of the camera
A non–linear solver based on the interior–reflective Newton
method [6], [7] is used to obtain the location estimate of
the camera. Since the technique yields multiple solutions
for the camera location, we compute the camera orientation
for each location and then filter out false solutions by re-
projecting the four reference point and comparing it to the
actual coordinates. The solution that results in the least error
between the computed projection and the real projection is
chosen as the final estimate. The estimates can be further
refined using as discussed in Section III-D if more than four
reference points become available.
Object Localization and Tracking: Finally, we implement

our object localization and tracking (described in Section V)
application on the Stargates. If an object is simultaneously
viewed by two cameras, the cameras exchange their param-
eters, location and orientation, and the objects projection
coordinates on its image place. This information is used by
each camera to localize the object and estimate its location.
Continuous localization can be used at each node to track an
object of interest.

VII. EXPERIMENTAL EVALUATION
In this section we present a detailed experimental evaluation

of the Snapshot protocol. Specifically, we evaluate the accu-
racy of Snapshot to estimate the camera parameters of location



and orientation and also study some of the parameters that
can affect its accuracy. We also evaluate the accuracy of the
localization application which uses parameters determined by
Snapshot and study the runtime scalability of Snapshot.

A. Experimental Setup

The setup to evaluate the accuracy and sensitivity to system
parameters of Snapshot consisted of placing the two types
of cameras, CMUcam and the Sony MotionEye webcam, at
several locations. To simplify accurate location measurements
we marked a grid to place the position sensor objects. Each
camera took several pictures to estimate the parameters. The
difference between the estimated parameter value and the
actual value is reported as the measurement error. The Cricket
sensors on the objects received beacons from a set of pre–
calibrated Cricket sensor nodes placed on the ceiling of a
room. The digital compass was attached to the two cameras
in order to measure the exact orientation angles.

B. Camera Location Estimation Accuracy

To evaluate Snapshot’s performance with camera location
estimation, we place tens of reference points in the space, and
take pictures of these reference points at different locations
and orientations. We measure the location of these reference
points by hand (referred as without Cricket) which can be
considered as the object’s real location and by Cricket [14]
(referred as with Cricket) where we observed a 2–5cm error.
For each picture, we take all the combinations of any four

reference points in view (not any 3 points in the same line),
and estimate camera’s location accordingly. We consider the
distance between the estimated camera’s location and the real
camera’s location as the location estimation error.
As shown in Figure 8(a), our results show: (i) the median

errors using webcam without Cricket and with Cricket are
4.93cm and 9.05cm, respectively; (ii) the lower quartile and
higher quartile errors without Cricket are 3.14cm and 7.13cm;
(iii) the lower quartile and higher quartile errors with Cricket
are 6.33cm and 12.79cm; (iv) the median filter (referred as
M.F. in figures) improves the median error to 3.16cm and
7.68cm for without Cricket and with Cricket, respectively.
Figure 8(b) shows: (i) the median errors using CMUcam

without Cricket and with Cricket are 6.98cm and 12.01cm,
respectively; (ii) the lower quartile and higher quartile errors
without Cricket are 5.03cm and 10.38cm; (iii) the lower
quartile and higher quartile errors with Cricket are 8.76cm
and 15.97cm; (iv) the median filter improves the median error
to 5.21cm and 10.58cm for without Cricket and with Cricket,
respectively.
1) Effect of Iteration on Estimation Error: As our protocol

proceeds, the number of available reference points increases.
As a result, the number of combinations of any four reference
points also increases, and we have more location estimations
available for the median filter. Consequently, we can eliminate
tails and outliers better. In this section, we study the effect
of the iterations of our protocol’s runs on camera location
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Fig. 8. Empirical CDF of error in estimation of camera location.
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Fig. 9. Effect of number of reference points and focal length on location
estimation error.

estimation error by plotting the median versus the number of
available reference points.
Figure 9(a) shows: (i) the median errors using webcam

drop from 4.93cm to 2.13cm and from 9.05cm to 6.25cm
as the number of reference points varies from 4 to 16 for
without Cricket and with Cricket, respectively; (ii) the median
errors using webcam drop from 6.98cm to 2.07cm and from
12.01cm to 9.59cm as the number of reference points varies
from 4 to 16 for without Cricket and with Cricket, respectively.
The difference in the location estimation errors (with and
without Cricket) are due to the position error estimates of
the Cricket and also due errors in values of camera intrinsic
parameters.

C. Sensitivity to Lens Focal Length
Several intrinsic camera parameters can affect the estimation

of the extrinsic parameters. To illustrate, we study the effect
the focal length estimate on the estimated location of the
camera. Figure 9(b) plots the median location estimation error
of a camera with changing focal length. The X axis plots the
deviations from the real focal length and show that even with
small deviations the error in the estimate changes significantly.
When the focal length is off by 0.1mm the error difference
between a CMUcam with Cricket and without Cricket is 8cm,
as compared to 5cm at the exact focal length. A similar trend,
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Fig. 10. Empirical CDF of error in estimating pan, tilt and roll orientations,
with the CMUcam camera.

is seen with the webcam, where the error difference increase
with deviation in focal length value from the real value. From
the figure, both cameras without using Cricket, have minimum
error at the real focal length. The minimum is shifted in the
case of using Cricket, due to introduction of positioning errors.
The experiment demonstrates the sensitivity of calibrating

the extrinsic parameters to a intrinsic parameter, the focal
length. Thus, the intrinsic parameters should be accurately
measured a priori to estimate the extrinsic parameters.

D. Camera Orientation Estimation Error

Next, we evaluate Snapshot’s accuracy with estimation of
camera orientation parameters. We used the two cameras,
the CMUcam and the Sony MotionEye webcam, to capture
images of reference points at different locations and different
orientations of the camera. We used estimated location of
the camera based on exact locations on reference points and
Cricket–reported locations of reference points to estimate the
orientation parameters of the camera. The orientation of the
camera was computed using the estimated camera location. We
compared the estimated orientation angles with the measured
angles to calculate error. Figure 10(a) shows the CDF of the
error estimates of the pan, tilt and roll orientations respectively
using the CMUcam camera. Figure 10(b) show the CDF of
the error of the three orientations using Cricket for location
estimation. The cumulative error plots follow the same trends
for each of the orientation angles. The median roll orientation
error using Cricket and without Cricket for camera location
estimations is 1.2 degrees. In both cases, the 95th percentile
error is less than 5 degrees for the pan and tilt orientation
and less than 3 degrees for the roll orientation. The slight
discrepancies in the error measurement of the two cases is
due to the use the digital compass to measure the orientation
of the camera.
Thus, we conclude the Cricket sensor’s positioning errors do

not add significant errors in estimation of camera orientation
parameters. In our experiments, we find that a median location
estimation error of 11cm does not affect the orientation
estimation significantly.
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Fig. 11. Effect of reference point distance from camera on estimated
parameters for the webcam.

E. Effect of distance of reference points

Since the measurement error of a point’s projection can
be a function of its distance from the camera, we study the
effect of this distance on the estimated camera parameters.
We plot the error in camera location and camera orientation
estimation using Cricket with varying distance of the reference
location. Since, the camera location estimation requires four
reference points, we choose the maximum distance from the
camera for the plot. As shown in Figure 11(a), the location
error using the webcam is uniformly distributed in terms of
distance from the camera. A similar trend is observed in the
pan rotation estimates of the camera as seen in Figure 11(b).
These results imply that the error in estimating the parameters
is not sensitive to the distance of reference points measured
in our experiments.
Other cameras and other rotations (tilt and roll) have similar

results, and thus we omit those results in the interest of size
limit, and refer readers to our technical report for more details.

F. Effect of Projection Location

In this work, we do not estimate the internal parameters of
the camera (e.g.: lens distortion and scale factor) which have
an impact on the object’s projection on the image plane, and
thus can affect the accuracy of camera calibration. In general,
the lens distortion has the largest impact on the object’s
projection on the image plane, and the closer the projection
to the CCD boundary, the larger the impact.
In order to show this impact, we plot the error in camera

location and camera orientation estimation using Cricket with
varying distance of the projections to the CCD boundary in
Figure 12. For the reason of easier understanding, we normal-
ized the distance of the projections to the CCD boundary into
the range [0, 1] with 0 at the center of CCD, and 1 right on
the boundary. Since, our camera calibration technique requires
four reference points, we choose the reference points closest
to the CCD boundary.
As shown in Figure 12, the location and pan orientation

errors of the webcam are larger for reference points located



 0

 10

 20

 30

 40

 50

 60

 70

 0  0.2  0.4  0.6  0.8  1

E
rr

or
 (c

m
)

Normalized Distance to CCD Boundary

(a) Location Error

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

E
rr

or
 (D

eg
re

e)
Normalized Distance to CCD Boundary

(b) Pan Error

Fig. 12. Effect of projection distance to CCD boundary on estimated
parameters for the webcam.
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closer to the CCD boundary. A similar trend has been observed
for the tilt and roll error, and for the CMUcam.

G. Object Localization
In this section, we study the performance of object local-

ization using Snapshot. We use Snapshot to estimate camera
locations and their orientations, and then in turn use the
calibrated parameters to triangulate an object via the technique
described in Section V. Similar to Section VII-B, we use the
empirical CDF of object’s location estimation error to measure
the performance.
Our results (see Figure 13) show that: (i) object localization

using webcams achieve median errors of 4.94cm and 5.45cm
without Cricket and with Cricket, respectively; (ii) object lo-
calization using CMUcams achieve median errors of 11.10cm
and 11.73cm without Cricket and with Cricket, respectively;
(iii) object localization without using Cricket outperforms
object localization using Cricket for all cameras; (iv) object
localization using webcam outperforms object localization
using CMUcam irrespective of using the Cricket.

H. Runtime Scalability
Using our prototype implementation of we measure the

runtime of the Snapshot protocol. Table I reports the runtime of
different tasks of the Snapshot calibration protocol executing
on the Intel Stargate platform with the camera attached to a
USB connector (the transfer of an image on the serial cable
with the CMUcam requires additional time). As seen from

Task Duration(ms)
Snap Image 178 ± 2

Recognize Object Location 52 ± 0.1
Location Estimation 18365 ± 18

TABLE I
RUNTIME OF DIFFERENT CALIBRATION TASKS.

the table, the location estimation task which uses a non–linear
solver, has the highest execution time. The time to calibrate
an individual camera is, 4 × (178 ms + 52 ms) – time to
snap four images and recognize the location of object in
each and 18365 ms for the location and orientation estimation
algorithms, which is total time of 19.285 seconds. Thus, with a
time of approximately 20 seconds to calibrate a single camera,
Snapshot can easily calibrate tens of cameras on the scale of
a few minutes.

I. Summary of Key Results
The key results based on the implementation and experi-

mental evaluation of Snapshot are as follows:
• Feasibility: By comparing the calibration accuracies of
low and high-resolution cameras, we show that it is
feasible to automatically calibrate low-resolution cameras
such as CMUcams without significant loss in accuracy.
The median error of location estimation of a CMUcam
is 11 cm as compared to a webcam with a median error
of 8 cm.

• Accuracy: Snapshot can localize a camera to within
few centimeters of its actual location and determine its
orientation with a median error of 1.3–2.5 degrees. More
importantly, our experiments indicate that this level of
accuracy is sufficient for tasks such as object tracking. We
show that a system calibrated with Snapshot can localize
an external object with a median error 11 cm, which is
adequate for most tracking scenarios.

• Efficiency: The Snapshot protocol is computationally fea-
sible on Stargate nodes and has running times in the order
of a few seconds.

• Scalability: Snapshot can calibrate each camera sensor
within 20 seconds on current hardware. Since a human
needs to only specify a few reference points using the
wireless calibration device—a process that takes a few
seconds per sensor, Snapshot can easily scale to networks
containing tens of camera sensors.

VIII. RELATED WORK

Camera calibration using a set of known reference points
is well studied in the computer vision community. Methods
developed in [20], [21], [24] are examples of techniques that
estimate both the intrinsic and extrinsic parameters of a camera
using a set of known reference points. The goal of these efforts
is to estimate a complete set of about twelve parameters of the
camera. As a result, the methods require a larger number of
reference points, are compute-intensive, and require multiple



stages to determine all parameters. Snapshot is designed to
estimate only the extrinsic parameters and requires only four
known reference locations to estimate a camera’s parameters.
A recent effort [22] has proposed techniques to estimate
only the extrinsic parameters and also requires four reference
points. The technique requires three out of the four reference
locations to be colinear. Snapshot is a more general technique
and does impose such a requirement. Further, unlike [22], we
demonstrate the feasibility of our approach through a detailed
experimental evaluation.
Localization is well studied in the sensor networks commu-

nity [10], [17], [23]. All these techniques assume a sensor
node cable of position estimation. For example, a temperature
sensor can use its RF wireless communication link to send
and receive beacons for location estimation. Snapshot does
not require any position estimation capability on the nodes
and directly uses the imaging capability of the cameras for
localization and calibration.
Several positioning and self-localization systems have been

proposed in the literature. Active Badge [1] is a locationing
system based in IR signals, where badges emit IR signals
are used for location estimation. A similar successor system
based on ultrasound signals is the Active Bat [2] system.
Several other systems use RF signal strength measurements,
like RADAR [3], for triangulation based localization. While
most of these techniques are used indoors, GPS [4] is used
for outdoor localization. While any of these methods can be
used by the Snapshot calibration device instead of the Cricket,
each has its own advantages and disadvantages. Based on
the environment and desired error characteristics a suitable
positioning system can be chosen.

IX. CONCLUSIONS

In this paper, we argued that prior vision-based techniques
are not directly suitable for calibrating a camera sensor
network and presented Snapshot, an automated calibration
protocol that is explicitly designed and optimized for sensor
networks. Snapshot uses the inherent imaging abilities of the
cameras for calibration. Further, unlike techniques that require
tens of reference points for calibration, Snapshot can determine
the location and orientation of a camera sensor using only
four reference points. Our techniques are based on principles
from optics and geometry and are designed to work with
low-fidelity, low-power camera sensors that are typical in
sensor networks. As experimental evaluation of our prototype
implementation showed that is feasible to employ Snapshot
to calibrate low-resolution cameras and it is computationally
feasible to run Snapshot on resource-constrained sensor nodes.
Specifically, our experiments showed that Snapshot yields an
error of 1-2.5 degrees when determining the camera orientation
and 5-10cm when determining the camera location. We argued
that this is a tolerable error in practice since a Snapshot-
calibrated sensor network can track moving objects to within
11cm of their actual locations. Finally, our measurements
showed that Snapshot can calibrate a camera sensor within 20

seconds, enabling it to calibrate a sensor network containing
tens of cameras within minutes.
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