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Abstract—We investigate the ability of an overlay network to
compensate for “careless” routing in the native network layer, i.e.,
for network-layer routes not optimized for a given cost function or
traffic matrix. We consider cost/traffic-dependent, overlay rout-
ing on top of an underlay routing based on randomly-generated,
cost/traffic-independent link weights, and determine the extent
to which overlay-over-careless-underlay can achieve performance
close to that attainable when underlay routing is performed in
an optimal cost/traffic-dependent (“careful”) manner. We iden-
tify three graph-theoretic metrics that collectively characterize the
richness of the underlay network: the tightness (characteristic
path length, or CPL), the thickness (cut average) and the weighted
sum of node degrees. We find that only when the underlay graph
is rich, the overlay can compensate for careless underlay. If net-
work links have linear costs, we prove that overlay cost is a linear
increasing function of CPL under some assumptions. Finally, we
investigate heuristics (based on the notion of richness) for choos-
ing a set of overlay nodes of fixed size that is likely to result in good
overlay performance.

I. INTRODUCTION
While much of the past and current research in overlay net-

working has focused on techniques for building overlay net-
works and evaluating their performance(e.g., [2], [13]), several
recent efforts have begun to investigate the interaction between
the underlay network and the overlay network, including the
stability of the interaction between changes in underlay and
overlay routing [11], [15], [16] and the influence of the under-
lay topology [8], [10] on overlay performance.
In this paper, we too consider the interaction between under-

lay and overlay networks, and consider the ability of an over-
lay network to compensate for ”careless” routing in the native
network layer, i.e., for network-layer routes that have not been
optimized for a given cost function or input traffic matrix.
Our work is based on the conjecture that when applications

are able to adapt their routing at the application layer, it is less
important that the network layer optimizes its routing, since this
additional level of control and flexibility allows applications to
compensate for routing inefficiencies at the network layer. In-
deed, we find that this conjecture is often (but not always) true,
and identify characteristics of the underlay topology and under-
lay routing that determine when this conjecture holds true.
A careless underlay1 might arise in several situations. For

example, the underlay might set the physical routes based on
some internal policies [16]. Or the underlay tries to optimize

1We will use the terms underlay and overlay to refer to the underlay routing
controller (or algorithm or protocol) and the overlay routing controller, respec-
tively.

its routes but is unable to achieve it due to deficiencies of its
routing algorithm [6]. Or there might be multiple overlays with
different traffic demands such that it is difficult for the underlay
to optimize physical routes for all of them simultaneously. Or
an inter-AS routing protocol, e.g. BGP, simply follows some
policy which completely ignores the routing performance for
any overlay network. Another situation might be that other con-
siderations such as reliability restrict the underlay’s capability
of making optimal routes.
The central question we address is whether an application

level overlay routing structure can compensate for a careless
underlay. We decompose the central question into two sub-
problems: one for the underlay and the other one for the over-
lay. First, since the overlay is built on top of the underlay net-
work, a logical route on the overlay corresponds to some phys-
ical routes set by the underlay. Thus, we cannot expect that the
overlay can achieve near optimal routes on any arbitrary set of
underlay routes. Thus, the first sub-problem is: what basic re-
quirements should the physical routes satisfy in order for the
overlay to have reasonably good performance. Second, we as-
sume that the overlay is restricted to choosing only a subset of
nodes as relay nodes, then our second sub-problem is: how to
construct an optimal overlay topology on top of a set of under-
lay routes. This overlay topology is optimal in the sense that the
overlay routing algorithm on this topology will have the lowest
cost among all topologies.
Unlike [8], we do not restrict ourselves to improving path

diversity in order to achieve a better failure recovery ratio. In-
stead, we are interested in improving the routing performance
for given traffic matrices. Our work also differs from [10] in
that our goal is not to evaluate specific common overlay topolo-
gies and routing protocols. Instead, we are interested in investi-
gating fundamental topological properties that significantly in-
fluence the routing cost.
We have the following contributions and results.
First. We use randomly generated sub-graphs of the orig-

inal physical network to mimic the carelessness of the under-
lay. Specifically, these sub-graphs are obtained by randomly
assigning link weights and running shortest path (least weight)
routing algorithm. We show that an overlay can always im-
prove on a careless underlay, but it is not necessarily true that
the overlay can achieve near optimal routing performance on
top of any set of underlay routes. Optimal routing performance
is achieved when the total network resource is available to the
overlay, which happens when the overlay includes all physical
nodes and the underlay exposes all physical links to the overlay.



2

Second. To tackle the first sub-problem, we let the over-
lay include all the physical nodes and vary the sub-graphs to
explore the impact on overlay’s routing from the topological
properties of these sub-graphs. We identify three key graph-
theoretic metrics which have the most significant influence on
routing performance. These metrics can be used to measure the
richness of graph in terms of routing performance. Specifically,
we find that the characteristic path length (CPL) of a graph is
a reasonable measure of the tightness of a graph, and the av-
erage cut-set size can measure the thickness of a graph. More
precisely, the CPL of a graph is defined as the average of the
means of the shortest path lengths connecting each vertex to all
other vertices [5]. The average cut-set size is the average size
of all cut-set sizes. Weighted node degree sum (WNDS) is a
weighted sum of all nodes’ degrees of a graph. We give a larger
weight to a node with smaller degree since the smaller degree
node is more likely to have its links to be highly utilized.
We study two link cost functions. One is a linear cost func-

tion, for which we prove that there is a linear functional rela-
tionship between overlay routing cost and the CPL (tightness)
when the traffic matrix is homogeneous (all nodes have equal
amount of traffic demands to all other nodes) and link capaci-
ties are homogeneous. We also show that this linear function
asymptotically holds true with probability one even if the traf-
fic matrix has variation. The other cost function is a piece-wise
linear convex increasing function (an approximation of M/M/1
queuing delay function[6].) For this function, we find experi-
mentally that the thickness of the graphs should also be consid-
ered. We find that when the load level is either light or heavy,
the CPL is strongly correlated with the routing performance,
and there exists an almost perfect monotonic decreasing func-
tion relationship between routing performance and the CPL.
This is also true for average cut-set size, except that it is an
increasing function. However, when the load level is moder-
ate, weighted node degree sum must be considered in order to
predict routing performance. Thus, in order to provide richness
for routing, we recommend that the underlay should generate
sub-graphs having low CPL and high average cut size and low
weighted node degree sum. We investigate both homogeneous
and bimodal traffic matrix [12], and ten different load levels
from light link utilization to utilization above one. Our results
hold in a large range of traffic matrix variation that is introduced
by varying the coefficient of variation (ratio of the standard de-
viation to the mean) of the bimodal traffic matrix.
Third. Based on the findings we recommend a heuristic

to construct an overlay topology with good richness when this
overlay cannot have all nodes included. Experiments on some
inferred real ISP topologies demonstrate the effectiveness of
our heuristic.
In summary, our answer to the central question is affirmative

given that the careless underlay provides a rich sub-graph and
the overlay constructs a rich topology.
The rest of the paper is organized as follows. Routing mod-

els and analysis are presented in Section II. In Section III we
present the experimental study on identifying the key graph-
theoretic metrics. In section IV, a overlay constructing heuris-
tic is given and its effectiveness is demonstrated through exper-
iments on some inferred ISP topologies. Related work is given

in Section V. Finally, we conclude the paper in Section VI.

II. MODELS AND ANALYSIS
In this section, we first present the overlay and underlay rout-

ing models studied in this paper. Then, we introduce several
graph-theoretic metrics related to overlay routing performance.
Following that, we then give some analytic results on relating
routing performance to graph-theoretic metrics.

A. Network routing models
We model the physical network as a connected undirected

graphG = (V, E) with node set V and edge or link set E. The
overlay network is denoted by another connected undirected
graph Go = (Vo, Eo). We have Vo ⊆ V but logical link set
Eo may not be a subset of E. In fact, logical link (s, t) ∈ Eo

may correspond to one or multiple physical paths (sequences of
physical links) in G. This is determined by the underlay rout-
ing controller. Take a physical link e, we use f (s,t)

e to denote the
fraction of traffic rate on logical link (s, t) allocated on physical
link e. In [11], f (s,t)

e is a real number in [0, 1] because the traffic
is treated as splittable fluid. However, in this paper, f (s,t)

e only
evaluates to either 0 or 1, 2 namely, the traffic is not splittable.
Suppose that there is a traffic matrix TM consisting of traffic

demands for multiple source and destination (SD) node pairs.
Let d(s,t) denote the traffic demand between SD pair (s, t) in
TM . d(s,t) includes the demand of the overlay r (o,d) (if overlay
node pair (o, d) is the same as (s, t)) and all other non-overlay
demand d(s,t)non−over . That is,

d(s,t) = d(s,t)non−over + r(o,d); if (o, d) = (s, t)

The objective of an overlay routing algorithm is to allocate
r(o,d) on logical links so as to minimize cost. The resulting
allocation g(o,d)

(s,t) · r(o,d) will be interpreted as traffic demands
by the underlay. Here, g (o,d)

(s,t) is the fraction of traffic demand
r(o,d) allocated to logical link (s, t). Let d(s,t)over denote the
traffic rate on logical link (s, t) from all overlay source destina-
tion pairs, after the overlay runs its routing algorithm. That is,
we have d(s,t)over =

∑
(o,d) g(o,d)

(s,t) · r(o,d). Then, the total traf-
fic demand for each node pair of the underlay can be denoted
as d(s,t)under = d(s,t)non−over + d(s,t)over. Let TMunder de-
note the underlying traffic matrix, TM under = [d(s,t)under].
Note that d(s,t)under might not be the same as d(s,t). TMunder

is the traffic matrix to the underlay after the overlay runs its
routing algorithm, whereas TM is the original traffic matrix
when the overlay does not run its routing algorithm. If there
is no overlay demand (r(o,d) = 0, ∀(o, d) ∈ Vo × Vo), then
d(s,t) = d(s,t)under = d(s,t)non−over.
In this paper, we are interested in a situation where the un-

derlay modifies its routes infrequently and the overlay routes
the original traffic matrix TM on top of the physical routes
set by the underlay. Furthermore, we assume that the under-
lay does not have as its objective to optimize its routes for any
given TM , but that the overlay does have this objective subject

2This is valid for OSPF in intra-AS graph and BGP in inter-AS graph.
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to the constraint that it must work on the logical level on top of
the given physical routes set by the underlay.
Link cost functions. The flow rate on physical link e is:

le =
∑

(s,t)

f (s,t)
e [d(s,t)non−over + d(s,t)over ] (1)

This flow will incur some delay or cost on physical link e. We
consider two link cost functions. One is a linear cost function,
defined as

Φe(le) = a · le/Ce (2)

where a > 0 is common to all links.
The other is a piece-wise linear approximation of M/M/1 de-

lay function [6], [11], [15], defined as

Φe(le) =






le , le/Ce ∈ [0, 1/3)
3le − 2/3Ce , le/Ce ∈ [1/3, 2/3)
10le − 16/3Ce , le/Ce ∈ [2/3, 9/10)
70le − 178/3Ce , le/Ce ∈ [9/10, 1)
500le − 1468/3Ce , le/Ce ∈ [1, 4/3)
5000le − 19468/3Ce, le/Ce ∈ [4/3,∞)

(3)

Underlay Routing Optimizer.
Its objective is to minimize the overall cost

∑
e∈E Φe. The

decision variable is f (s,t)
e (recall (1)).

Careless Underlay Routing Controller (Careless Underlay).
A careless underlay routing controller (or simply called a

careless underlay) is a routing algorithm that does not have the
objective to optimize its routes to minimize the cost of routing
a given traffic matrix. As mentioned in Section I, this might
happen in various situations. For example, an intra-AS routing
algorithmmight have to protect some links for some policy rea-
sons [16], or its routing algorithms (e.g. OSPF) cannot achieve
an optimal routing due to the fundamental deficiency [6]. An-
other case is that an inter-AS routing protocol, e.g. BGP, simply
follows some routing policy which completely ignores the rout-
ing cost for any traffic matrix. 3
In this paper, we use randomly generated sub-graphs of the

original physical network to mimic this carelessness. Specif-
ically, these sub-graphs are obtained by randomly assigning
link weights and running shortest path routing algorithm (in
this sense, it is an OSPF-like shortest path routing [1].) This
careless underlay does not assign weights with the aim to min-
imize the routing cost of a given traffic matrix. We assume
that it assigns link weights uniformly at random. We use W
to denote a weight assignment profile. We hope this will be a
reasonable approximation of the OSPF routing in a single ISP
network where link weights are assigned based on some policy
constraint or some other reasons. For example, [16] mentioned
that an ISP might assign very large weights to some links to
protect them. Note, these link weights are not link capacities.
They might be related to link capacities. For example, Cisco [3]
recommends to set link weights to be the inverses of link capac-
ities. And a physical path obtained by the shortest path routing
of the careless underlay is the least “weight” path, not the least
cost path in terms of the link cost functions defined before.

3Note, a careless underlay is not limited to an intra-AS routing underlay.

Thus, the careless underlay routing cost Φu(G, M, W ) is a
function of the traffic matrix M and a link weight assignment
profileW for a physical networkG.
Overlay Routing Optimizer.
Part of the traffic rate (given in (1)) from the overlay network

on a physical link is:

lover
e =

∑

(s,t)

f (s,t)
e

∑

(o,d)

g(o,d)
(s,t) r(o,d) (4)

The goal of an overlay routing optimizer is to minimize
the overall cost incurred to the overlay, shown as Φo =∑

e Φover
e (lover

e ). The decision variable is g(o,d)
(s,t) .

The careless underlay generates a set of routes such that each
physical node has a shortest path tree to all other nodes in
the physical graph G. If the overlay has a node set Vo (with
Vo ⊆ V ), then the overlay routing cost Φo is computed by the
overlay routing optimizer described before. Each virtual link of
the overlay is mapped to a physical path according to the short-
est path trees. Note, if Vo = V , then all these physical routes
form a sub-graph of the original network, which can also be
thought of as the packing of all these shortest path trees. Thus,
the overlay routing cost Φo is a function of G, M, W, Vo.

B. Overlay compensation is not always effective
In this section, we consider the case where the overlay in-

cludes all nodes in the network. This is the best case for the
overlay. We refer to this as a full-sized overlay. We show
through a simple example that, even in this case, there are some
sets of underlay routes on which the overlay cannot provide
good (near optimal) routing performance. Furthermore, this ex-
ample suggests to us that the topological properties of the sub-
graphs formed by the underlay routes can have large impact on
the overlay routing performance.
First, we know that any physical routes set by the careless

underlay can potentially result in some links being missing in
the reduced sub-graph. This is first observed in [15] in study-
ing selfish routing. Thus, this means that more constraints are
added into the optimization problem to be solved by the overlay.
Adding constraint reduces solution space and then increases the
cost. 4 This implies that the best the underlay can do is to do
“nothing”, i.e., expose all links to the overlay. This is possible
only when all physical links are assigned equal weights, then
the underlay routing becomes a shortest hop-count routing. If
in the mean time, we have Vo = V , then the overlay routing
optimizer can attain the lowest possible cost Φ∗. We refer to
the overlay in this case as the optimal overlay. In this case, the
overlay routing optimizer is equivalent to the underlay routing
optimizer. However, the careless underlay does not expose all
links to the overlay due to various “careless” reasons. Those
sub-graphs formed by different sets of underlay routes can have
quite different topologies. Then, we suspect that the full-sized
overlay can have quite different routing performance on differ-
ent sub-graphs, since different graph topologies produce differ-
ent constraint sets for the overlay routing optimizer. This is
illustrated in the following simple example.

4Note, this is different from Braess’s paradox [17] in which adding more
links might increase the cost.
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We conducted experiments on a 9-node network [15] (Fig-
ure 1) in which all links have the same capacity. We consider
a homogeneous traffic matrix in which there are identical traf-
fic demands between all pairs of nodes. For each link weight
setting, we obtain a reduced sub-graph, and compute the cost
of the shortest path routing Φu. We then let the overlay include
all nodes, and compute the routing cost Φo for each sub-graph.
We run many instances of such careless underlay routing algo-
rithms to get pairs (Φ∗/Φu, Φ∗/Φo), the routing performance
P of both underlay and overlay. By scaling up and down all
link capacities, we distinguish three load settings: light, mod-
erate, and heavy.5 For each load setting, we run 2000 instances
and compute the underlay and overlay routing performances.
As shown in Figure 2, for each instance of underlay routes,

the overlay is always able to achieve better performance than
the underlay, which can be verified by observing that all points
lie above the diagonal line. We also see that some careless un-
derlay routes are so bad that the overlay cannot compensate
much. For example, a large part of the light load curve is be-
low y = 0.6, indicating that the full-sized overlay on those
sub-graphs can only achieve less than 60% performance of the
optimal overlay.

1
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9

Fig. 1. A nine-node underlay net-
work topology.
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Fig. 2. Overlay routing performance ver-
sus underlay routing performance.

To further understand the statistical properties of the care-
less underlay, we classify underlay routes into ten levels based
on their performance, and within each level, we use boxplots to
plot the range of overlay routing performance. These are shown
in Figures 3, 4 and 5. First we note that for most levels, there is
a range of overlay routing performances. This implies that for
a given level of carelessness, there might exist different topolo-
gies such that the overlay is able to achieve better performance
in some topologies than in some other topologies. Thus, it is
important to study the topological properties of the underlay
routing graphs when proposing basic requirements for the un-
derlay. In addition, we notice that in the heavy load setting, the
range of overlay routing performances tends to be smaller. This
is understandable, since in a heavy load setting, the overlay has
less flexibility to improve its performance.

C. Graph-theoretic metrics related to routing performance
Our objective is to identify a minimal set of graph-theoretic

metrics as reasonable predictors of overlay routing perfor-
mance. We mainly consider three metrics: characteristic path
length (CPL)[5], average cut-set size, and weighted node de-
gree sum.

5By light load setting, we refer to the case in which the maximum link uti-
lization is 20%when Φ∗ is achieved. Similarly, for the medium and heavy load
setting, the maximum link utilization is 30% and 40% respectively.

Characteristic Path Length. In [5], the characteristic path
length (CPL) of a graph is defined as the median of the means
of the shortest path lengths connecting each vertex to all other
vertices. More precisely, in a graph G = (V, E), for each node
u ∈ V , let d(u) denote the average shortest path length 6 to
all other possible nodes in V . Then, the CPL is the median of
d(u), ∀u ∈ V . In this paper, we choose to use the average of
d(u). Intuitively, a graph with small CPL produces low routing
cost because traffic traverse short paths on average.
Average Cut-Set Size. Let δ(S, S̄) denote the set of links
of a cut-set (S, S̄) of a graph G = (V, E). Then the av-
erage cut-set size is the average over all cut-set sizes: Ā =

1
2|V |−2

∑
(S,S̄) |δ(S, S̄)|. The average cut-set size gives a rough

measure of the number of available alternative resources for
all demand pairs. The higher the average cut-set size is, the
lower the routing cost will be. Note that we can also define a
generalized version of cut-set size. Let C(S) denote the ag-
gregate link capacity of all links connecting this cut, namely,
C(S) =

∑
e∈δ(S,S̄) Ce. Let D(S) denote the total traffic de-

mand between nodes in S and S̄. Then the generalized average
cut-set size will be meanS⊂V C(S)/D(S). A related metric is
cut sparsity[7], defined as minS⊂V C(S)/D(S). Cut sparsity
is a natural upper bound for the maximum link congestion [7]
in the multi-commodity flow problem, which studies how large
one can increase concurrently all traffic demands of a given traf-
fic matrix on a given network and obey the link capacity con-
straint. However, the routing model studied in this paper differs
from the multi-commodity flow problem in that the routing cost
defined in this paper can be thought of as the average cost for
each traffic demand pair or the average link cost. Thus, average
cut-set size or its generalized version is more closely related to
the routing cost studied in this paper. We are mainly interested
in the average cut-set size instead of its generalized version,
since it is traffic matrix independent. In the rest of the paper,
for brevity, we simply refer to the average cut-set size as cut
average.
Weighted node degree sum (WNDS) is a weighted sum of the
degrees of all nodes of a graph. More precisely, WNDS is

wnds =
∑

u∈V

wu(du)du

where du is the degree of node u and wu(du) is the weight of a
node, a function of its degree:

wu(d) =






1, d ≥ 6
3, d = 5
10, d = 4
70, d = 3
500, d = 2
5000, d = 1

(5)

We give larger weights to nodes with smaller degrees since a
small degree node is more likely to have highly utilized links.
If we know the traffic demand matrix, then we can modify this
metric such that a node will have larger weight if the ratio of
traffic demands over the sum of its degrees is larger.

6Note that the path length is the number of hops and differs from that defined
for the careless underlay for which the path length is the sum of link weights.
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Fig. 3. Boxplot for overlay routing perfor-
mance in ten levels of underlay routes. Load
level is light.
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Fig. 4. Boxplot for overlay routing perfor-
mance in ten levels of underlay routes. Load
level is medium.

0 0"1 0"2 0"3 0"$ 0"> 0"6 0"? 0"& 0"9 1
0

0"1

0"2

0"3

0"$

0">

0"6

0"?

0"&

0"9

1

St
at

ist
i9s

 o
7 o

ve
rla

y 
ro

ut
in

g 
pe

r7o
rm

an
9e

(nderlay routing per7orman9e

Eeavy Load

Fig. 5. Boxplot for overlay routing perfor-
mance in ten levels of underlay routes. Load
level is heavy.

Remarks. First, we note that the characteristic path length
measures the average tightness of a graph, namely, how close
a node is to each other node on average. On the other hand,
the cut average measures the average thickness of a graph, that
is, how many links exist within a graph for a given number of
nodes. Second, finding the cut sparsity of a graph is known to be
NP-hard [7]. In addition, calculating the cut average requires to
check all possible cut-sets, thus, it also takes exponential time.
Thus, we use a sampled average as an approximation.

D. Analysis of linear cost function

In this section, we present an analytic study to relate routing
cost with the characteristic path length (CPL) in the case of
linear cost function.
We show first that the CPL completely determines the cost of

an overlay routing optimizer under some assumptions.
Theorem 1: For the linear link cost function defined in (2),

if all links have the same capacity and the traffic matrix to be
routed by the overlay is homogeneous, and if the overlay in-
cludes all nodes in the network, then the cost of the overlay
routing optimizer is a linear function of the graph’s characteris-
tic path length (CPL).

Proof: Since the overlay includes all nodes, the over-
lay routing optimizer is equivalent to the underlay routing op-
timizer. Thus, in this proof, our arguments are directly on the
physical network.
Suppose that the demand for SD pair i is di. The percent-

age of demand SD pair i allocated on the k-th link of path p j

is f
i,pj

k . This k-th link must be some physical link e in the net-
work. Let v

−(i,pj)
k denote the sum of all other traffic rates of

other SD pairs allocated on this link or the traffic rates of this
SD pair i on different paths also using this link. LetC be the ca-
pacity of all links. Since the link cost function is linear, the cost
of link e can be divided into two parts. One part is contributed
by SD pair i’s path pj :

Φi,pj
e = dif

i,pj

k a/C

The other part of the cost is contributed by v
−(i,pj)
k :

v
−(i,pj)
k a/Ce. Since the link cost function is linear, the out-
come of the overlay routing optimizer will be such that SD pair
i always sends its traffic on the shortest path amongni available

paths. Then, we have

Φi =
ni∑

j=1

Φi,pj = Φi,p∗
= di|mi,p∗

|a/C

where p∗ is the shortest path for SD pair i and |mi,p∗ | is the
length or hop-count of p∗.
Since this is true for all SD pairs, then the total cost of the

overlay routing optimizer is

Φ =
|I|∑

i=1

Φi =
|I|∑

i=1

Φi,p∗
= a

|I|∑

i=1

|mi,p∗
|di/C (6)

where I is the set of all source destination demand pairs.
If all traffic demands are the same, then (6) becomes

Φ = ad|I|m̄/C (7)

where m̄ is the average shortest path length, i.e., the character-
istic path length.
Remarks.
This theorem provides us the underlying reason why the CPL

is important for determining routing cost. Note that the M/M/1
queuing cost function (approximated by a piece-wise linear
function) is approximately equivalent to the linear cost func-
tion when the link utilization is small, which is common in the
current Internet backbones [14], and note that the links in the
backbone are approximately homogeneous. Thus, we believe
the above result is practically meaningful. As we show later in
the experimental studies, when the network load level is light,
indeed we observe a nearly linear functional relationship be-
tween cost and CPL when using the piece-wise linear function.
However, if the link cost function is not linear, then the over-
lay routing optimizer will allocate traffic demand of a SD pair
to multiple paths. Thus, the CPL (tightness) of a graph is no
longer the only factor to affect the routing cost. We might need
to consider the thickness as well. We currently do not have an
analytic solution for this problem, so, we investigate it by using
experimental studies in the following section.
Another interesting question is: is there still a linear func-

tional relationship between routing cost and CPL if there are
variations in traffic demands? We can show that this is actually
true asymptotically with probability one, and that the coeffi-
cient of this linear function can be computed from the sampled
average of traffic demands d̄. If we assume that traffic demands
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are varying but stationary and they are generated from distribu-
tion d, then we can take samples of demand dj (j = 1, 2, ...n)
and compute the sample means d̄n = (

∑n
j=1 dj)/n. Here we

sample from the distribution that generates demands. And if we
assume that the shortest path lengthm between a node pair is a
random variable, then we can also compute the sample means
m̄n = (

∑n
j=1 mj)/n. We assume that d and m are inde-

pendent. The weak law of large numbers indicates that these
sample means converge in probability to the population means.
That is, for all ε > 0,

lim
n→∞

P (|d̄n−E[d]| < ε) = 1; lim
n→∞

P (|m̄n−E[m]| < ε) = 1

Then we get ([18], page 262)

lim
n→∞

P (|d̄nm̄n − E[d]E[m]| < ε) = 1

whereE[d] andE[m] are population means of random variable
d andm. That is, d̄nm̄n converges in probability to E[d]E[m]
(or E[dm] since d and m are independent.) In our case, E[m]
is actually the CPL.
Then the cost computed from the sample means d̄n and m̄n

Φn = (a/C)|I|d̄nm̄n

will converge in probability to the true cost:

Φ = (a/C)|I|E[dm]

This argument indicates that, even if traffic demands vary, the
CPL can still be a reasonably good predictor of the routing cost.
The linear coefficient between cost and CPL is (a/C)|I|d̄n.
This is actually verified in the following experimental studies in
which we find that the linear regression between cost and CPL
models the experimental data almost perfectly, and the slope of
regression function is very close to what we compute from d̄n.

III. EXPERIMENTAL STUDY
We experimentally explore the relationship between the

above graph-theoretic metrics and the overlay routing perfor-
mance. In the case of linear link costs, our experimental re-
sults verify the analysis presented in the previous section. In
the case of piece-wise linear increasing and convex link costs,
we rely on a large number of experiments to study those impor-
tant graph-theoreticmetrics. We believe that these experimental
results provide evidence for the significant correlations between
the above metrics and the overlay routing performance. In all
our experiments, we let the overlay include all nodes of the net-
work. Thus, this is the best case for the overlay to compensate
for the underlay on a given sub-graph produced by the underlay
routes.

A. Experimental methodology
Experiment settings: graphs.
We consider three canonical graphs, and one inferred real ISP

network by Rocketfuel [19]. The first graph is a completely
connected 30-node graph. The second graph is a 30-node
purely random graph (Erdos-Renyi random graph [4]) gener-
ated by GT-ITM [21]. The probability to create a link between

a node pair is 0.2. The third graph is a mesh graph (rectangu-
lar 5 by 5 grid). The inferred ISP topology is Cable&Wireless
ISP with 33 nodes. We expect that the larger number of nodes a
graph has, the more likely we can get rich topology such that the
impact of the graph metrics will be revealed if this impact in-
deed exists. However, we cannot have too large graphs because
of the computation constraints. Recall that the routing cost of
the set of routes generated by the overlay routing optimizer are
obtained by solving a linear programming (LP) problem. The
larger the graph is, the more time-consuming it is to solve a LP
problem. In our simulations, we find that about 30 nodes are
rich enough to find important information.
Experimental settings: network load.
We assume that all traffic demands are routed by the over-

lay. We first consider a homogeneous traffic demand model in
which every node has the same traffic demand d for all other
nodes. The network load level is based on a nominal load com-
puted as the ratio between the aggregate traffic demand over the
aggregate link capacity of the network. More precisely, load
level is

L =
|I|∑

i=1

di/
∑

e∈E

Ce

Based on this nominal load, we classify network load into ten
levels from about 10% to about 100%. 7 We also consider a bi-
modal traffic matrix [12], and use it to generate a large variation
in the demands of the traffic matrix.
Experimental procedures.
A problem instance is a tuple (G, L) whereG is a graph and

L is the load level. For each problem instance (G, L), we as-
sume link weights are from a uniform distribution U(1, 100).
and then determine the shortest paths to get a reduced sub-graph
with all nodes preserved but some links missing. We get 500
sub-graphs from the same graph. For each sub-graph, the over-
lay includes all nodes as overlay nodes and runs the overlay
routing optimizer to obtain overlay routes and the correspond-
ing cost.8 For linear link costs, we only study the relationship
between overlay routing cost and CPL, because it is predicted
to have a linear functional relationship in Theorem 1. For piece-
wise linear costs, we investigate the statistical correlations be-
tween routing performance P with graph metrics CPL and cut
average. Recall P (defined in Section II-B) is the overlay rout-
ing cost normalized by the optimal overlay routing cost. If these
correlations are statistically significant, then we compute their
correlation coefficients r and their confidence intervals. For
each problem instance (G, L), we also visually present the re-
lationships between P and each graph metric by using the scat-
ter plots. Since CPL and cut average only capture the average
behavior of a graph, to investigate some potential bad extreme
cases, we also studied the importance of weighted node degree
sum.

B. Experiments with linear cost function
Homogeneous traffic demands.

7This nominal load is just an average value, so it is very likely that some link
might have over 100% utilization even if this load level is below 100%.

8This overlay routing optimizer is equivalent to the underlay routing opti-
mizer working on the reduced sub-graph.
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Fig. 9. Scatter plot of overlay rout-
ing cost versus CPL when load level
is 1, on 30-node complete graph.
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Fig. 10. Scatter plot of overlay
routing cost versus CPL when load
level is 1, on 30-node random graph.
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Fig. 11. Scatter plot of overlay
routing cost versus CPL when load
level is 1, on 25-node mesh graph.

We have 30 problem instances, based on the combination
of graphs and network load levels. Figure 6 shows the nom-
inal load levels realized in our experiments. For each prob-
lem instance, we generate 500 instances of careless underlay
sub-graphs using the procedure described in Section III-A. We
compute the slope of linear regression and the correlation coef-
ficient between overlay routing cost and the CPL.
Recall that a linear regression relates the dependent variable

y (cost in our case) to independent variable x (CPL in our case)
through a linear function plus a normal random variable ε ∈
N(0,σ2): y = βx + ε. Correlation coefficient measures how
well this linear function models the relationship between y and
x. If the correlation coefficient is close to 1, then we say that
there exists an almost perfect linear correlation between y and
x. In addition, the linear regression technique estimates slope
β to get β̂. The larger the β̂ is, the more impact the x will have
on y.
Figure 7 shows that there are perfect linear correlations be-

tween the overlay routing cost and CPL for all three graphs,
which are also verified by the sample scatter plots in Figure 9,
10 and 11. Recall that Theorem 1 predicts that the slope be-
tween the cost and CPL is β = ad|I|/C. In our experiments,
we choose a = 1.5 and C = 120. For a 30-node graph, I is
870, then for load level 1 with d = 1, we get β = 10.875,
which is what we obtain from the linear programming solver

and is shown in Figure 8. For all other graphs and other load
levels, we can also easily verify these slopes.
Bimodal traffic matrix.
To study the effectiveness of the CPL when the traffic ma-

trix has widely varying demands, we consider a bimodal traf-
fic matrix [12] and vary the coefficient of variation (CV) of
the generated traffic matrix to simulate a large range of vari-
ations. More precisely, coefficient of variation (CV) is defined
as the ratio of the standard deviation to the mean of a random
variable. The bimodal traffic matrix in [12] is generated from
two normal distributions and CVs of these two distributions are
(0.125, 0.05). We scale up the CVs by 1, 5, 10, 15, 20 to cre-
ate five levels of variability. Within each level of variability,
we again conduct experiments on 10 different load levels (500
sub-graphs are generated for each level) as before.
Figure 13 illustrates results for a 30-node complete graph.

First, we see that the sample CVs of different variability levels
vary from 0.48 to 1.05 (shown in the legends of the figure.) Sec-
ond, we note that, for different levels of variability, the correla-
tion coefficients between overlay cost and CPL are consistently
close to 1. And they are similar to those obtained previously
from the homogeneous traffic matrix. These almost perfect lin-
ear functional relationships can also be verified by looking at
an example scatter plot of routing cost versus the CPL when
the CV is the largest and the load level is the smallest, shown
in the fourth plot of Figure 13. These results are also true for a
30-node random graph, shown in Figure 14.
Analysis in Section II-D predicts that the routing cost asymp-

totically exhibits a linear function relationship with average de-
mand d̄n as Φ = (ad̄n|I|/C)m̄. This can be verified for this
complete graph and random graph. Let kn denote the coeffi-
cient (ad̄n|I|/C). For example, Figure 12 shows that the actual
regression slopes and kn(with n = 870) are very close when
the experiments are conducted on the random graph at 4 differ-
ent load levels and when the variability level is the highest. We
find that this is also true for all other settings.

level 1 level 2 level 3 level 4
Regression slope 8.43 16.86 25.29 33.72
Predicted slope 8.39 16.78 25.17 33.56

Fig. 12. Example comparison between slopes obtained by linear regression
and predicted slopes.
In Figure 13 and 14 we see that within each variability level

(a given CV), as load increases, slope of the linear regression
(or coefficient of the linear function between overlay cost and
the CPL) will increase. This is consistent with the homoge-
neous demand case. Furthermore, we see that as variability in-
crease, the slopes increase also, which means that the linear
impact of CPL on routing cost becomes more dramatic. This
is expected for the following reasons. Analysis in Section II-D
predicts that as the average load level increases the coefficient
of the linear function increases also, and we see that the real-
ized load level increases as the variability increases, based on
the first plot on either Figure 13 or 14.

C. Experiments with piece-wise linear convex costs
Homogeneous traffic matrix.
The network load levels in simulations are the same as for

the case of linear costs before. Again, we have 30 problem
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Fig. 13. Experimental results of linear cost function on a 30-node complete graph with bimodal traffic matrices with five different levels of coefficients of
variations (CV). The first plot shows the nominal load levels for each level of CV. The second plot shows the correlation coefficients between the overlay cost and
the CPL. The third plot shows the slopes of the linear regressions between the overlay cost and the CPL. The fourth plot is a scatter plot of routing cost versus the
CPL in the case of the largest variability and load level of 1.
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Fig. 14. Experimental results of linear cost function on a 30-node random graph with bimodal traffic matrices with five different levels of coefficients of variations
(CV). The first plot shows the nominal load levels for each level of CV. The second plot shows the correlation coefficients between the overlay cost and the CPL.
The third plot shows the slopes of the linear regressions between the overlay cost and the CPL. The fourth plot is a scatter plot of routing cost versus the CPL in
the case of the largest variability and load level of 1.

instances. Recall that for piece-wise linear convex link cost
function, the overlay routing optimizer will very likely split the
demand of a SD pair on multiple paths. Thus, we need also to
examine the thickness (average cut-set size) of the graph.
For each problem instance, we compute the correlation co-

efficients between the normalized overlay routing performance
P and two metrics: CPL and cut average, shown in Figures 15
and 16. For all problem instances, these two graph metrics are
significantly correlated with overlay routing performance P .
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Fig. 15. Correlation coefficient (with
95% confidence interval) between rout-
ing performance and the CPL.
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Fig. 16. Correlation coefficient (with
95% confidence interval) between rout-
ing performance and cut average.

Figure 15 shows that when load level is low, for all three
graphs, both CPL and cut average have close to one correlation
with P which indicates that there exist almost perfect linear
functional relationships between P and these metrics. We also
observe that, for the complete graph, there is a peak when the
load level is at 50%. To understand this, we provide scatter
plots for all load levels in Figure 17. Notice that when the load
level is low (1, 2, 3), overlay routing performance exhibits an
almost perfect linear correlation with the CPL. This is similar
to the case of linear costs in the last section. As the load level
increases up to 50%, some sub-graphs with really bad perfor-
mance appear. When the load level is moderate (L = 5, 6, 7, 8),

all sub-graphs divide into two clusters: one with good perfor-
mance (called the good cluster) and one with bad performance
(called the bad cluster). However, within each cluster, there
are still strong correlations between performance and these two
metrics. And the graphs in the bad cluster in general have worse
performance than those graphs in the good cluster. As the load
level increases, graphs in the good cluster shift to the bad clus-
ter. Eventually, as the load level becomes high, only the bad
cluster is left and within this cluster the correlation is still very
strong. We will revisit this cluster phenomenon later. Similarly,
Figure 16 shows that there is a large correlation coefficient be-
tween P and cut average at all load levels, for all three graphs.
This is also verified by the scatter plots in Figure 17.
Strong correlations between overlay routing performance

and the CPL or cut average show that these two metrics suffice
to explain most of the variability of the overlay routing perfor-
mance. However, the presence of two clusters at moderate load
levels indicates that these two metrics are not always sufficient
to predict the performance. Possible reasons are given in the
below.
To understand the two cluster phenomenon, we focus on two

graphs with the same CPL and with dramatically different per-
formance (i.e., they are in separate clusters.) We plot the his-
tograms of node degrees of these two graphs in Figure 18. It
is interesting to note that the graph with bad performance has
a node with degree 1. This means that the utilization on this
link is well above 1. Thus, the cost on this link is dramatically
higher than other links. Recall that when the link utilization is
above 1, the slope of the piece-wise linear cost function is as
large as 5000. Note that the cut sparsity can capture this differ-
ence between these two graphs. However, since finding the cut
sparsity is NP-hard, we propose a related metric to capture this
dramatic difference in link utilization. The idea is to compute
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Fig. 17. Completely connected 30-node graph. The left two columns are the scatter plots for overlay performance vs. characteristic path length. The right
two columns are the scatter plots for overlay performance vs. cut average. The y-axes of load level 4 to 10 are in log scale. Note, performance of the original
complete graph is omitted since it is 1, much higher than those of all other sub-graphs.

the weighted node degree sum (WNDS). Recall that we give a
larger weight to a node with small degree since the small degree
node is more likely to have its links to be highly utilized. In-
tuitively, WNDS indicates a weighted influence of node degree
on the routing performance. We can now set different thresh-
old values based on WNDS to divide graphs into different clus-
ters. For example, a graph with WNDS larger than 5000 is very
likely to have a degree one node. As shown in Figure 19, 5000
seems to be a reasonable threshold to classify graphs into two
clusters (good and bad performance graphs) when the load level
is moderate. Only 3% of the graphs are mis-classified by this
metric. Thus, WNDS can be used together with CPL and cut
average to differentiate graphs when the load level is moderate.
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Bimodal traffic matrices
We use the same bimodal traffic matrices as those in studying
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linear link costs. Recall that we generate five levels of variabil-
ity. Within each level of variability, we conduct experiments
on 10 different load levels. Figure 20 illustrates the results on
a 30-node complete graph. We note that, for different levels
of variability, the correlation patterns between overlay perfor-
mance and CPL (or cut average) are very similar. And they
are similar to those obtained previously from the homogeneous
traffic matrix. Similarly, experimental results on a 30-node ran-
dom graph are shown in Figure 21. We again see that the cor-
relation coefficients between CPL (or cut average) and overlay
performance show consistent patterns across different variabil-
ity levels of traffic matrices.
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Fig. 20. Experimental results on a 30-node complete graph with bimodal
traffic matrices with five different levels of coefficients of variations (CV). The
first plot shows the correlation coefficients between the overlay performance
and the CPL. The second plot shows the correlation coefficients between the
overlay performance and the cut averages.
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Fig. 21. Experimental results on a 30-node random graph with bimodal traffic
matrices with five different levels of coefficients of variations (CV). The first
plot shows the correlation coefficients between the overlay performance and the
characteristic path length. The second plot shows the correlation coefficients
between the overlay performance and the cut averages.
Remark. Experiments and analysis so far suggest that three
graph metrics, characteristic path length (CPL) and cut average
and weighted node degree (WNDS), are important predictors
for routing performance. In general, a graph will have good
performance if it has small CPL and large cut average and small
WNDS. In the following, we will further verify this conclusion
through experiments on an inferred ISP topology.

D. Experiments on an inferred ISP topology
We consider the pop-level network of Cable&Wireless ISP

inferred by Rocketfuel project [19]. There are 33 nodes and
116 links. All links are OC-12 with capacity of 622Mbps ex-
cept for two links having capacity of 1244Mbps. We consider
piece-wise linear link costs. We use a homogeneous traffic ma-
trix. Let d denote each of these demands. We present results
when network load is light. Specifically, we take d = 5Mbps
and nominal load level of 9.6%. We generate 1000 sets of un-
derlay routes, and then generate optimal routes based on the
sub-graphs. The scatter plots of the routing performance versus
the characteristic path length (CPL) and cut average are shown
in Figure 22. Note that CPL and cut average are both signifi-
cantly correlated with the routing performance. The correlation

structures are very similar to what we observed before for those
three canonical graphs. This verifies that the graph metrics we
choose are reasonable predictors of the routing performance.
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Fig. 22. Cable&Wireless topology. The left column is the scatter plot for
overlay performance vs. characteristic path length. The right column is the
scatter plot for overlay performance vs. cut average. The y-axes of are in log
scale.

E. Requirements to the careless underlay
Based on the previous experiments and analysis, we think

that a routing rich underlay graph should have small CPL, large
average cut-set size, and small WNDS. Here, we avoid giving
any specific threshold values to these three metrics, because the
richness of a reduced sub-graphs also depends on the original
underlay graph.
All of our studies in this section are concerned with the best-

case for the overlay, i.e., the overlay has all nodes in control.
Thus, these studies remove the effect of overlay topologies and
give the basic requirements for the underlay. That is, in order
for the overlay to effectively compensate for the carelessness
of the underlay, the underlay should generate rich sub-graphs,
even though it can ignore the optimal routing for any traffic
matrix.

IV. COMPENSATION WHEN OVERLAY SIZE IS LIMITED

As we mentioned before, the effectiveness of an overlay
compensating for the careless underlay depends on both the
overlay and the underlay. From previous sections, we learn that
three graph metrics are very strongly correlated with routing
performance. Thus, the underlay should choose the richest sub-
graph. Otherwise, the carelessness of the underlay cannot be
effectively compensated by the full-sized overlay (including all
nodes.) On the other hand, when an overlay constructs a vir-
tual routing topology, if it can only choose a subset of physical
nodes, it should make sure that the virtual topology has the best
possible values of these three graphmetrics. This is the problem
studied in this section. We call this kind of overlay size-limited
overlay. In the following, we first formulate this problem and
then illustrate the benefits through experiments on the inferred
Cable&Wireless topology.

A. Problem formulation
Consider a graph G = (V, E). We distinguish two subsets

of the vertex set V . One is a set (Vb) of basic overlay nodes
which have traffic demands to each other. The other is a set (V c)
of available candidate nodes, which are potentially to be cho-
sen by the overlay as relay nodes for overlay traffic. From V c,
an overlay selects a subset Vr as the set of relay nodes. Then
we have a overlay network Go formed by the overlay nodes
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in Vo = Vb
⋃

Vr. As for the overlay link set, we can con-
struct a fully connected overlay graph for a small scale overlay,
whereas, for a large scale overlay, we can choose some set of
logical links. The objective of an overlay is to construct an
overlay topology Go so as to minimize the average cost. If we
do not limit the number of relay nodes available to the overlay,
the best an overlay can do is to select all nodes in Vc as relay
nodes. However, in practice, an overlay may not be able to put
an application level relay node along with each physical router.
To capture this, we let the overlay choose only |Vr| nodes as
relay nodes.
As discussed previously, since a graph with a small CPL,

large cut average, and small WNDS provides good routing per-
formance, the objective of overlay topology construction should
be to optimize these three metrics. Since the overlay cannot
include all nodes to obtain the sub-graph produced by the un-
derlay routes, these metrics cannot be defined directly on the
sub-graph. Thus, we need to re-define them as follows.
First, for an overlay graph Go = (Vo, Eo), we associate a

weight to each virtual link equal to the number of hops of the
corresponding physical path. This weight is determined by the
underlay routes. Then each virtual path length is the sum of
virtual link weights. For each overlay node, we compute its
shortest paths to all other nodes. The average of all those paths’
lengths is recorded as the overlay characteristic path length
cplo. Second, for a cut S ofGo with S ∪ S̄ = Vo, let δS denote
the set of virtual links or physical paths connecting nodes in S
to nodes in S̄. Note that several physical paths might share a
common physical link. We define the size of an overlay cut as
the number of disjoint paths between nodes in S and nodes in
S̄. Then the average of these cut sizes is the overlay average cut
size co. Third, we define the number of disjoint physical paths
from an overlay node to all other overlay nodes as the degree
of that overlay node. Then, we can define the weighted node
degree sum wndso similarly as in last section. It can be veri-
fied that these definitions for size-limited overlay are consistent
with those for full-sized overlay.
Then, constructing a rich size-limited overlay topology is

equivalent to searching for a topology with a small cplo, large
co, and small wndso. Recall that, for linear cost or nonlinear
convex cost with light load, the CPL alone can determine rout-
ing cost. However, in other cases, we need to consider all three
metrics. Thus, an ideal measure of richness might be some
combination of all three metrics. We do not have a complete
solution for this at this time and choose it as a future research
topic. Nevertheless, we still can show the benefits of consider-
ing richness by just looking at cplo and wndso. To this end, we
give a randomized heuristic as follows.

B. A randomized heuristic and experimental results
A randomized heuristic. If the overlay can afford |Vr| relay
nodes, then it can exhaustively search all possible combinations
to find out the best topology, which can take exponential time.
So, we rely on a randomized heuristic shown in Figure 23. The
idea is to randomly pick a set of nodes from the candidate set
to form a potential overlay node set, and compute its cpl o. This
process executes a pre-determined number of times. We keep
a record of the set of graphs with the smallest cplo and then

pick the one with the lowest wndso. Here, we assume that the
overlay graph is always fully connected.
input:
G: graph on which to setup overlay
Vb: set of basic overlay nodes
Vc: set of candidate overlay nodes
n: number of loops
δ: relaxation factor in (0, 1)
output:
V opt

o = Vb
⋃

Vr: set of overlay nodes with the best richness
start:

= ∅: initialize the set of candidate node sets;
1. repeat n times
2. randomly choose a set V ′

r of nodes from set Vc;
4. construct overlay topology with V ′

o = Vb
⋃

V ′
r ;

5. compute weight for each virtual link;
6. compute the cplo for this topology;
7. add V ′

o into ;
8. find the V ′

o with the smallest cplo,min;
9. remove any V ′

o in if its cplo > (1 + δ)cplo,min;
10. find V opt

o with minimum wndo in ;
11. return V opt

o

Fig. 23. Randomized heuristic for constructing overlay topology.
Experiments on Cable&Wireless network. To demonstrate
the benefit of considering richness when constructing a size-
limited overlay topology, we experiment with the inferred Ca-
ble&Wirelss network. We randomly choose 5 nodes as basic
overlay nodes and all nodes have the same demands to each
other. Suppose that we want to choose another 5 nodes as relay
nodes from the remaining 33 nodes. First, we use the proposed
random heuristic to construct the richest overlay topology. We
only consider minimizing cplo in this example since the net-
work load is light. Then, we randomly choose 5 relay nodes
to generate 100 random overlay topologies. For each topology,
we compute the routing cost for five different load levels.
The average cost of all 100 random overlay topologies and

the cost of the richest constructed overlay topology are plotted
in Figure 24. We see that the heuristically identified richest
overlay topology is always better than the average overlay cost.
In Figure 25, we plot the percentile of the richest overlay’s cost
among all overlay topologies. We see that the richest overlay
always has a very low cost compared with other topologies at
all load levels.
This example demonstrates the usefulness to consider the

richness when constructing a size-limited overlay topology.
Further study is still needed to refine these metrics and con-
structing better algorithms.

V. RELATED WORK
Many works recently have focused on the routing problems

associated with underlay networks or overlay networks. These
works can be differentiated from each other as follows: 1) per-
formance objective, either minimizing the average cost (delay)
or finding better alternative for a source destination pair; 2)
inter-AS or intra-AS routing; 3) layers, either underlay network
or overlay network. Regarding the underlay routing in a single
ISP, [6] proposes a technique to optimize OSPF link weights for
achieving optimal routing of a given traffic matrix. Following
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that, there have been many works on this topic. As for overlay
routing, most of the works concentrate on finding better alter-
nate paths across different ISPs (e.g. RON [2].) There are also
some works considering the underlay topology in constructing
the overlay topology. For example, [8] studies how to place
overlay nodes to maximize path independence without degrad-
ing performance (the fraction of successfully recovered path
outrages.) [10] considers two overlay routing protocols (link-
state and feedback) and several common topologies. They use
simulations to evaluate all possible combinations of topologies
and protocols in terms of failure recovery ratio, routing over-
head, and overlay path penalty. The interaction between the
overlay routing and the underlay routing is introduced by [15]
in which performancemeasure is either the average cost or cost
of the traffic equilibrium (i.e. selfish routing [17]). [11] studies
this interaction problem in a game-theoretic framework. [16]
studies a similar problem by using simulations on both intra-
and inter-AS underlay networks.
Since our work is concerned with topological issues, we find

several works on network topology quite relevant, e.g., [5],
[20]. There are also some works relating the network topol-
ogy with the routing performance. For example, [7] presents
some results relating some graph-theoretic metric with multi-
commodity flow problem, in which they study how large one
can scale up all traffic demands simultaneously on a given net-
work and obey link capacity constraint. The performance mea-
sure is the maximum scaling factor. This performance measure
is also used in [9] to evaluate several ISP topologies at the router
level.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study whether an overlay routing controller
can compensate for a careless underlay routing controller.
The careless underlay is modeled as a shortest path routing

algorithm applied to a network graph with randomly assigned
link weights independent of network cost and link capacities.
We have identified three graph-theoretic metrics that collec-
tively characterize the richness of the sub-graphs formed by the
physical routes set by the careless underlay. They are the char-
acteristic path length (CPL, or tightness), the average cut-set
size (or thickness), and the weighted node degree sum. For lin-
ear link cost function, we have proved that the CPL can deter-
mine the cost of the overlay routing optimizer through a linear
function under some assumptions. These results are verified
in our experimental studies. For piece-wise linear convex in-
creasing costs (approximations of nonlinear convex costs), our

experimental studies have revealed a significant correlation be-
tween the overlay routing cost and the CPL (and the average
cut-set size.) When the network load is light or heavy, the corre-
lation structures associated with the piece-wise linear link costs
are similar to those with the linear link costs. However, when
the network load is moderate, the nonlinearity of the cost func-
tion requires us to consider node degree as well, since highly
utilized links contribute significantly more cost than lightly uti-
lized links. Finally, we study how to apply the notion of rich-
ness to the constructing of a fixed size overlay topology. We
show that a simple heuristic considering richness helps to im-
prove the overlay performance dramatically on some inferred
ISP topology.
Our study is a starting point for further investigation on this

topic. There are many interesting open questions. For example,
an analytic study of the nonlinear cost function is needed to find
better metrics to more precisely characterize the richness. It is
also interesting to extend our study to inter-AS graphs.
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