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Abstract

In this paper, we argue that techniques employed to load-
balance large-scale storage systems do not optimize for the
scale of the reconfiguration—the amount of data displaced to
realize the new configuration. The scale of the reconfigura-
tion determines the downtime for an offline reconfiguration,
or the duration of performance impact on foreground applica-
tions for an online reconfiguration. We propose and experi-
mentally evaluate algorithms which take object sizes and the
current configuration into account to minimize the amount of
data moved during load-balancing. Results from a simulation
study suggest that for a variety of system configurations our
novel approach reduces the amount of data moved to remove
the hotspot by a factor of two as compared to other approaches.
The gains increase for a larger system size and magnitude of
overload. We also implement our techniques in the Linux ker-
nel. We observe that our kernel measurement based techniques
correctly identify workload hotspots. Furthermore, the kernel
enhancements do not result in any noticeable degradation in
application performance.

1 Introduction

1.1 Motivation
The configuration and management of large scale storage sys-
tems is a complex task. While storage has become cheap,
the need for data storage in enterprise-scale storage systems
continues to spiral. To handle their spiraling storage needs
such systems employ multiple storage sub-systems and com-
prise a large number of storage devices. In these systems,
object placement—the mapping of storage objects to storage
devices—is crucial as it dictates the performance of the storage
system. Consequently, extreme care is taken during capacity
planning and initial configuration of such systems [3, 4].

Although the initial configuration may be load-balanced,
over time, growth in storage space usage and changes in work-
load can cause load imbalances and workload hotspots. This
in turn may necessitate a reconfiguration.

Hotspots in storage systems can occur for one of two rea-
sons. Incorrect or insufficient workload information during

storage system configuration may result in heavily accessed
objects being mapped to the same set of storage devices thus
resulting in hotspots. Long term workload changes or addi-
tion of a new object to a balanced system may also induce
hotspots. Hotspots result in increased response times and a
loss in throughput for applications accessing the storage sys-
tem. When hotspots do occur, the mapping of objects to stor-
age devices needs to be revisited to ensure that the bandwidth
utilization of all devices is below a certain threshold so that ap-
plications see acceptable performance. Such a reconfiguration
is undesirable because it is concomitant with a downtime or
a potential performance impact on the applications accessing
the storage system while the reconfiguration is in progress.

Sophisticated enterprise storage sub-systems come with
tools to facilitate the process of load-balancing to address
hotspots [1]. These allow for load-balancing to be either car-
ried out manually or in an automated fashion. For manual
reconfiguration, administrators use information from a work-
load analyzer component which collects performance data and
summarizes the load on the component storage devices. The
tool also provides the potential performance impact of moving
an object so that the user can make an informed decision. The
automated load balancing component, on the other hand, is
self-driven, runs continuously, and uses the information from
the workload analyzer to swap hot and cold objects when nec-
essary.

Drawbacks of a manual process are that they require human
oversight. Moreover, the procedure can be error-prone and hu-
man errors during the reconfiguration process may worsen per-
formance. While an automated process addresses these draw-
backs, a simple approach which swaps hot and cold objects
will work all the time only if objects are of similar size. If ob-
jects are of different sizes then more sophisticated strategies
are required. This motivates the need for more sophisticated
approaches that search for a configuration with no hotspots.

Moving the system to a new configuration involves execut-
ing a migration plan, which is a sequence of object moves.
The reconfiguration itself could be carried out either online or
offline. In both cases, the scale of the reconfiguration i.e., the
amount of data that needs to be displaced, is of consequence.
While for an offline reconfiguration the scale of the reconfigu-
ration determines the duration of the reconfiguration and hence
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the downtime, for an online reconfiguration it determines the
duration of performance impact on foreground applications.

Existing approaches do not optimize for the scale of the re-
configuration, possibly moving much more data than required
to remove the hotspot. This motivates the need for a load-
balancing approach that takes sizes of objects and their current
mapping to storage devices into account. This is the subject
matter of this paper.

1.2 Research Contributions
In this paper, we develop algorithms to minimize the amount
of data displaced during a reconfiguration to remove hotspots
in large-scale storage systems. This work has led to several
research contributions.

Rather than identifying a new configuration from scratch,
which may entail significant data movement, our novel ap-
proach uses the current object configuration as a hint; the goal
being to retain most of the objects in place and thus limit the
scale of the reconfiguration.

The key idea in our approach is to greedily displace excess
bandwidth from overloaded to underloaded storage devices.
This is achieved in one of two ways, (i) displace, which in-
volves reassigning objects from overloaded devices to under-
loaded ones, and (ii) swap, which involves swapping objects
between overloaded and underloaded devices. The swap step
is useful when the spare storage space on the underloaded de-
vices is insufficient to accommodate any additional objects,
and an object reconfiguration, short of a reconfiguration from
scratch, would have to entail a swapping of objects, or groups
of objects, between storage devices.

To minimize the amount of data that needs to be moved we
use the bandwidth to space ratio (BSR) as a guiding metric. For
example, by selecting high BSR objects for reassignment in the
displace step, we are able to displace more bandwidth per unit
of data moved. Here, bandwidth (space) refers to the band-
width (storage space) requirement of the storage object. We
propose various optimizations, including searching for multi-
ple solutions, to counter the pitfalls of a greedy approach.

We also describe a simple measurement-based technique
for identifying hotspots and for approximating per-object
bandwidth requirements.

Finally, we evaluate our techniques using a combination of
simulation studies and an evaluation of an implementation in
the Linux kernel. Results from the simulation study suggest
that for a variety of system configurations our novel approach
reduces the amount of data moved to remove the hotspot by
a factor of two as compared to other approaches. The gains
increase for a larger system size and magnitude of overload.
Experimental results from the prototype evaluation suggest
that our measurement techniques correctly identify workload
hotspots. For some simple overload configurations considered
in the prototype our approach identifies a load-balanced con-
figuration which minimizes the amount of data moved. More-
over, the kernel enhancements do not result in any noticeable
degradation in application performance.

The rest of the paper is structured as follows. In Section
2, we describe the problem addressed in this paper. Section 3
presents object remapping techniques for load-balancing large
scale storage systems. Section 4 presents the methodology
used for measuring object bandwidth requirements and for
identifying hotspots. Section 5 presents the details of out pro-
totype implementation and Section 6 presents the experimen-
tal results. Section 7 discusses related work, and finally, Sec-
tion 8 presents our conclusions.

2 Problem Definition

2.1 System Model
Large scale storage systems consists of a large number of disk
arrays. We assume, as is typically the case, that each disk
array consists of disks of the same type. Different disk arrays,
however, could have disks of different types. The disks in a
disk array are grouped into some number of logical units (LU);
an LU is a set of disks combined using RAID techniques [12].

An object configuration indicates the mapping of storage
objects to storage devices. Here, an object is an equivalent
of a logical volume (LV), such as a database or a file system,
and is allocated storage space by concatenating space from one
or more LUs. From here on, we use the terms LV and object
interchangeably.

In our model, we assume that all the LUs an LV is striped
over are similar i.e., they have the same RAID level, and com-
prise disks of the same type. This is generally true in practice,
since it ensures the same level of redundancy and similar ac-
cess latency for all the stripe units of an LV. We further make
the simplifying assumption that if any two LVs have an LU in
common, they have all their component LUs in common. This
assumption is also generally true in well-planned storage sys-
tem configurations, as in such a configuration each object is
subject to uniform inter-object workload interference on all of
its component LUs. With this assumption, the set of LUs an
LV is striped over can be thought of as a single logical device
for load balancing purposes. From here on, we refer to such a
logical device as a logical array or array for short. Figure 1
illustrates the system model.

2.2 Problem Formulation
Assuming the above system model, let us now formulate the
problem addressed in this paper. Consider a storage system
which consists of arrays, . There are LVs,

which populate the storage system. Each LV is
mapped to a single array. Each array , has storage capacity

, and a bandwidth capacity . Similarly, each LV has
storage requirement and bandwidth requirement . For a
balanced configuration, which is defined to be a configuration
without any hotspots, it is required that the percentage band-
width utilization of each array , not exceed some threshold

( ). The space and the bandwidth constraint on an
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The figure shows two disk arrays each comprising four LUs. Each LU consists of five
disks. The disk array on the top comprises of one logical array over which three LVs have
been striped. The second disk array comprises of two logical arrays, each comprising of
two LUs and three LVs striped over each logical array.

Figure 1: System model.
array is given by the following equations:

(1)

(2)

Here, is a mapping parameter that denotes whether object
is mapped to array — equals 1 if array holds the ob-

ject , and is 0 otherwise. Although the space constraint is a
hard constraint and cannot be violated, an array may observe
a violation of the bandwidth constraint if the bandwidth re-
quirements of the objects mapped to the array increase. If the
bandwidth utilization on an array exceeds the corresponding
bandwidth threshold, it is considered overloaded, otherwise it
is underloaded.

Moving the system to a new configuration results in a
change of mapping parameters. Let and denote the
mapping parameter for LV on array in the old and new con-
figurations, respectively. If denotes the absolute value of

, then we have if the mapping of store
has changed, and is equal to 0 otherwise. The cost of the re-
configuration, defined as the amount of data moved to realize
the new configuration, is then given by:

(3)

Let be the set of overloaded arrays in a configuration. The
bandwidth violation for an overloaded array is

. The cumulative bandwidth violation, defined as the sum
of the bandwidth violation over all overloaded arrays, is then
given by:

(4)

Given an object configuration with some overloaded arrays
and some underloaded arrays, the goal is to identify a bal-
anced configuration which can be realized at the least cost.
Given two new configurations, both of which satisfy the space
and bandwidth constraints on all arrays, the one that can be
realized at a lower cost is preferable.

For cases where a balanced configuration cannot be found,
the goal of load balancing is a policy decision. One may re-
quire that (equation 4) be minimized, but when dis-
placing excess bandwidth from overloaded arrays, the band-
width constraint on the underloaded arrays should not be vi-
olated and that the utilization on an already overloaded array
should not increase further. In some cases, absolute load bal-
ancing may be desirable, thus requiring that the maximum per-
centage bandwidth violation across all arrays be minimized.
We refer to the approaches that adhere to the the former policy
as fair, and the ones that conform with the latter as absolute.
Another dimension in this context is the cost. Absolute load
balancing may incur a significantly higher cost. A complete
evaluation of the tradeoffs of gains (balance achieved) versus
cost (amount of data moved) of these policies is beyond the
scope of this paper.

In this paper, the goal is to design a reconfiguration algo-
rithm for identifying a balanced configuration which has the
least cost.

3 Object Remapping Techniques

There are two kinds of approaches to load balancing, (i) those
that reconfigure from scratch, and (ii) those that start with the
current configuration and aim to minimize the cost of recon-
figuration. We refer to the former class of approaches as cost
oblivious and the latter as cost aware.

In the following, an assignment of an object to an array is
said to be valid if the new object could be accommodated on
the array without any constraint violations (equations 1 and 2).

3.1 Cost Oblivious Object Remapping
In this section, we present two cost-oblivious object remap-
ping algorithms to remove hotspots in large scale storage sys-
tems. We first present a randomized algorithm, and then an-
other, which is deterministic in nature.

3.1.1 Randomized Packing

Heuristics based on best-fit bin-packing have been used in [3]
for initial storage system configuration. There the goal was to
identify a configuration which uses the least number of devices
to meet the space and bandwidth requirements of a given set of
objects. In our problem, the number of devices is a given, and
the goal is to identify a valid packing which can be realized
at the least cost. We first present a randomized algorithm and
then present two variations of the same.

Initially, all the objects are unassigned. A random permu-
tation of the objects is created, and the objects are assigned to
arrays picked at random from the set of all arrays. All arrays
may need to be tried for an object in the worst case. If all
the objects could be validly assigned to some array, we have a
balanced configuration. The procedure could be repeated mul-
tiple times, with different permutations of objects, and of mul-
tiple trials which result in a balanced configuration, one with
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the least cost is chosen. Note that this makes the approach
semi cost aware.

As opposed to the completely randomized approach, where
both the objects and the arrays are chosen randomly, two partly
randomized variants of interest are described next. In a best-
fit version, of all possible valid assignments for an object, the
object is assigned to the array such that new bandwidth utiliza-
tion across all arrays as a result of this assignment is a maxi-
mum. A complementary approach is also possible, worst fit,
where of all possible valid assignments, the array picked is
such that the new bandwidth utilization across all arrays as a
result of this assignment is a minimum. Whereas best-fit may
fare better in finding a balanced configuration in bandwidth
constrained scenarios, worst fit may yield a configuration with
similar bandwidth utilization on all arrays. Consequently, in
less bandwidth constrained scenarios, when the arrays have
utilization values well below their corresponding threshold,
worst fit may be advantageous, since with more headroom,
arrays can absorb workload variations better.

3.1.2 BSR-based Approach

Bandwidth to Space Ratio (BSR) has been used as a metric for
video placement [5]. These derive from the heuristics based
on value per unit weight used for knapsack problems. The
knapsack heuristic involves greedily selecting items ordered
by their value per unit weight in order to maximize the value
of the items in the knapsack. The approach described next
uses BSR as a guiding metric, but as explained later, for slightly
different reasons.

The BSR of an object is defined to be the ratio of its band-
width requirement to its space requirement. We define the
spareBSR of an array as the ratio of its spare bandwidth ca-
pacity to its spare space capacity. So, the spareBSR of an array
is a dynamic quantity which depends on the objects currently
assigned to it.

Initially, all the objects are unassigned. Objects are picked
in order of their BSR from the set of all objects and assigned
to arrays picked in order of their spareBSR from the set of all
arrays. If a valid assignment is found for all the objects, we
have a balanced configuration. Note that the spareBSR of the
array an object is assigned to is updated appropriately after
each valid assignment.

The intuition behind using BSR as a metric is that assign-
ing high BSR objects to arrays with a high spareBSR possibly
results in a better utilization of bandwidth per unit space in
the system, and hence a tighter packing. A tighter packing
increases the likelihood of finding a balanced configuration.

3.2 Cost-aware Object Remapping
In this section, we present two cost aware algorithms for
searching a balanced configuration. The first of these is a ran-
domized algorithm and the second is a deterministic greedy
algorithm. Both approaches start with the current configura-
tion and change the mapping of the objects incrementally until

a balanced configuration is achieved. Thus, these approaches
use the current configuration as a hint, and aim to retain most
of the objects in place, possibly resulting in a lower cost of
reconfiguration.

3.2.1 Randomized Object Reassignment

This approach is similar in principle to the randomized ap-
proach described in Section 3.1.1, except it starts with the cur-
rent configuration. Given the current configuration, a random
permutation of objects on all the overloaded arrays is created.
These objects are then assigned, in order, to underloaded ar-
rays picked at random from the set of all underloaded arrays.
It is possible that all the underloaded arrays need to be tried
before a valid assignment is found for an object. This is done
until a fraction of objects have been considered, or the
system has reached a balanced configuration.

Once an overloaded array becomes underloaded, the ob-
jects on the now underloaded array are not considered for re-
assignment. The overloaded array is now considered as un-
derloaded for load balancing purposes. This procedure could
be repeated multiple times, with different permutations, and
of multiple trials which result in a balanced configuration, the
one with the least cost is chosen.

Again, as opposed to a completely randomized approach,
there is a best-fit and a worst fit variant of the algorithm.
The variants are similar to that described for the approach in
Section 3.1.1.

Drawbacks
In Section 3.1 we presented two approaches which did not
take the current configuration into account while searching
for a balanced configuration and are typically associated with
a large cost of reconfiguration. However, they are useful
for initial storage system configuration. The randomized
object reassignment approach described above starts with the
current configuration. This approach, however, also has two
drawbacks:

1. Possibly high reconfiguration cost: In this approach, the
object which is to be reassigned, is picked at random.
Since, the search is not exhaustive it can still result in
a large amount of data being moved or may fail to find a
balanced configuration.

Even though an exhaustive search is not feasible,
choosing an object as well as the array to which it is to
be assigned carefully, taking into account their respective
space and bandwidth attributes, could be beneficial.

2. Simple reassignment: If the storage system does not have
the right combination of spare space and spare bandwidth
on the constituent arrays, a simple reassignment of ob-
jects may not yield a balanced configuration. Barring
a reconfiguration from scratch, which may entail a high
cost, a low cost reconfiguration in such scenarios would
have to involve swapping objects, or groups of objects,
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between arrays. The diverse space and bandwidth re-
quirements of the objects, coupled with diverse space and
bandwidth constraints on arrays that comprise the storage
system, makes this non-trivial.

In the following section, we present an approach to address
these drawbacks.

3.2.2 Displace and Swap

The key idea in this approach is to greedily displace excess
bandwidth from overloaded arrays to underloaded arrays. The
goal is to identify a set of objects, while taking into account
their sizes, that need to be moved from their original location
in order to attain a balanced configuration. BSR is used as a
guiding metric in order to minimize the amount of data that
needs to be displaced. Here, by object size we refer to the
storage space requirement of an object.

There are two basic steps which comprise this approach.
The first is referred to as displace and involves reassigning
objects from overloaded arrays to underloaded arrays. The
second step, referred to as swap, involves swapping objects
between overloaded and underloaded arrays. The second
step is invoked only if the first step alone does not yield a
balanced configuration. The goal is to first offload as much
excess bandwidth on an overloaded array using one way
object moves (displace), and if this does not suffice, search
for two way object moves (swap). The intuition is that one
way object moves, on the average, would require less data
movement than a solution involving two way object moves.
One way object moves are also preferable to two way object
moves as they do not require any scratch space1 to achieve the
reconfiguration.

I. Displace
In this step, the goal is to use any spare space on the under-
loaded arrays to accommodate objects from overloaded arrays
and thus offload excess bandwidth. Only underloaded arrays
with spare space are considered as potential destinations
during object reassignment.

Since the goal is to remove excess bandwidth from each
overload array while moving the least amount of data, we con-
sider objects from each overloaded array one by one. This
allows us to optimize for the amount of data displaced from
each overloaded array.

The overloaded arrays themselves could be considered in
any order. To achieve a balanced configuration, the bandwidth
utilization on all the overloaded arrays needs to be reduced
below the corresponding threshold. So, we consider the over-
loaded arrays in descending order of the magnitude of band-
width violation ( ). This has the advantage that
if the displace step is unable to identify a balanced configura-
tion, there is less bandwidth that needs to be moved off each
overloaded array, on the average, in the swap step.

1Swapping objects between arrays with little spare storage space may re-
quire using scratch storage space.

Finally, for a given overloaded array, objects on the array
are considered for reassignment in descending order of their
BSR. This is in order to minimize the amount of data displaced,
as of all objects, the object with the maximum BSR displaces
the most bandwidth per unit of data moved. The destination
underloaded array for reassigning an object is chosen to be the
one with the maximum spareBSR. The reason is similar to that
for the approach in Section 3.1.2. This completes the essence
of the displace step.

Object reassignments that remove the hotspot on an over-
loaded array could be single-object or multi-object. Any valid
single object reassignment that can remove the hotspot on the
overloaded array is referred to as a soloSoln. Any reassign-
ment comprising multiple objects that removes the hotspot is
referred to as a grpSoln. Any reassignment comprising one or
more objects that is not able to remove the hotspot is referred
to as a semiSoln. We refer to both grpSoln and semiSoln as
soln for short.

It is possible that choosing objects for reassignment strictly
in order of BSR, as described above, results in a soloSoln
appearing as a part of a grpSoln. So, we identify all soloSolns
before searching for grpSolns.

Identifying a soloSoln: Any object on the overloaded ar-
ray that can be validly assigned to some underloaded array,
and also removes the hotspot, classifies as a soloSoln. Any
object that can be validly assigned, but does not remove the
hotspot, is put in a set . The set , which is devoid of
soloSolns, is used to identify grpSolns in the next step.

A minor optimization is possible here. If the set con-
sists of objects all of which are larger than the smallest size
soloSoln, there is no need to execute the following. This is
because any grpSoln would only have a higher cost.

Identifying a soln: In this step we search for a grpSoln
using BSR as the guiding metric. Given a set of objects,
objects picked in descending order of BSR are assigned to
underloaded arrays chosen in descending order of spareBSR.
This is done until either all the objects on the overloaded array
have been considered, or the set of reassignments so far is
able to remove the hotspot. If the hotspot could be removed,
we have a grpSoln, else we have a semiSoln.

In the above step, for identifying a soln, the objects were
selected greedily based on their BSR. However, such a greedy
approach could make some wrong choices. These could result
in (i) a higher cost solution, or (ii) inability to remove the
hotspot on the overloaded array. While an exhaustive search is
infeasible, the following optimizations try to address at least
some of the wrong choices.

These optimizations essentially involve questioning the
choice of each object that comprises the soln. Any soln can be
thought of as being comprised of two parts. One, the highest
BSR object, referred to as the root. All the remaining objects
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in the soln, if any, comprise the second part. Whereas the first
optimization questions the choice of the root, the second ques-
tions the choice of each of the remaining objects that comprise
the soln.

Also, while improving a grpSoln requires finding another
with a lower cost, improving a semiSoln means finding a
grpSoln or another semiSolnwhich displaces more bandwidth.

Optimization 1: Identifying multiple solns: In this opti-
mization, we identify solns with different elements in the set

as root. Note, that for a given root only objects with a
lower BSR than the root are considered for reassignment. This
optimization gives us multiple solns. The number of such
solns equals the number of objects in the set .

Optimization 2: Backtracking: This optimization involves
backtracking on the remaining objects that comprise a soln.
We employ this optimization to improve each of the solns
identified in the optimization above. Each backtracking step
involves searching for a new soln while not considering an
object that is part of the soln. This is done for all the objects
that comprise the soln excepting the root (the root has been
optimized for in the previous step).

If backtracking results in a better soln, backtracking on
the previous soln is discontinued and restarted for this new
soln. It is possible that this procedure continues to yield
successively better solns. To limit the computational costs we
explore only a constant number of these.

Note that the above optimizations result in a strategy
which lies somewhere between a purely greedy approach and
one that exhaustively considers every combination.

If the above results in multiple grpSolns or soloSolns, the
one with the least cost is chosen2. If, however, the above only
results in object reassignments which reduce the bandwidth vi-
olation on the overloaded array (i.e., only semiSolns), the one
which displaces the most bandwidth is chosen3. The mapping
parameters ( s) for the objects to be reassigned are adjusted
appropriately. Note that this modified configuration serves as
the starting configuration for the next overloaded array consid-
ered.

Once all the overloaded arrays have been considered,
and the system is still not balanced, the swap step, which is
described next, is invoked.

II. Swap
Displace works only when there is sufficient storage space
on the underloaded arrays to accommodate objects from the
overloaded arrays. In the absence of sufficient spare space, a
low cost reconfiguration technique would require swapping
objects between arrays. Such swaps could be two-way i.e.,

2Ties are broken by choosing the one which displaces the least bandwidth
as this leaves more spare bandwidth on the underloaded array to accommodate
future object moves.

3In this case, ties are broken by choosing the semiSoln with the least cost.

involve two arrays, or they could be multi-way. In this paper,
we describe a strategy for identifying two-way swaps.

In this step, the goal is to identify valid swaps of objects,
or groups of objects, between overloaded and underloaded ar-
rays, such that the bandwidth utilization on the overloaded ar-
ray is reduced. By successively identifying such swaps, we
can remove the hotspot on an overloaded array.

BSR is again used as the guiding metric. By swapping high
BSR objects on an overloaded array with low BSR objects on a
underloaded array, maximum bandwidth is displaced per unit
of data moved.

Swaps are searched for between a pair of an overloaded ar-
ray and an underloaded array. Since, all arrays need to be un-
derloaded for a balanced configuration, overloaded arrays are
considered in descending order of the magnitude of bandwidth
violation. For each overloaded array, underloaded arrays are
considered in descending order of spare bandwidth. This is
done so that possibly maximum bandwidth is displaced for
each pair considered.

The diverse space and bandwidth attributes of the objects
and arrays make identifying valid swaps non-trivial, so we use
a simple greedy approach guided by the BSR of the objects.
Before we describe how a swap is identified, let us define
what classifies as a valid swap.

Valid swap: While a swap is valid if it does not violate
the constraints on the underloaded array and decreases the
bandwidth utilization on the overloaded array. It is not
useful if this decrease is not significant. So, we define a
parameter ufrac which quantifies the utility of a swap. Let

and be the cumulative bandwidth requirement of
the sets of objects from the overloaded and underloaded array,
respectively, which are to be swapped. Then for a swap to be
valid we require that:

(5)

In other words, the decrease in bandwidth on the overloaded
array as a fraction of the bandwidth moved off the under-
loaded array should exceed a certain minimum.

We classify the constraints that need to be satisfied for a
swap to be valid as follows:
Constraint : The swap should satisfy the bandwidth and
space constraints on the underloaded array.
Constraint : The swap should have a certain minimum
utility (equation 5).
Constraint : The swap should satisfy the space constraint
on the overloaded array.
We now describe the approach for identifying a valid swap.

Identifying a valid swap: While simply considering all
pairs of objects, one each from an overloaded array and an
underloaded array at a time may not result in any valid swap,
considering every combination of objects from the two arrays
is infeasible. We present a simple greedy approach to swap
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the equivalent of a high BSR object from the overloaded array
with the equivalent of a low BSR object from the underloaded
array. Identifying such a swap also displaces more bandwidth
per unit of data moved.

To identify such a swap, objects on the overloaded and un-
derloaded arrays are sorted in descending and ascending order
of BSR, respectively, to give sets and , respectively.
First pairs of objects from these two ordered sets are consid-
ered. Each object in is considered, in order, for each object
in , in order. If a pair meets the constraints for a valid swap
objects are swapped.

If after considering all pairs the array is still overloaded,
we seek to identify contiguous sets of objects from these two
ordered sets which constitute a valid swap. Note, that these
contiguous sets of objects are the equivalent of a high BSR and
low BSR object, respectively.

Ideally it is desirable that contiguous sets of objects from
these two sets be identified. However, it is possible that no
such sets can be identified that satisfy all the constraints for a
valid swap. So, in the procedure described below we first (step
1) identify contiguous sets that satisfy two of the constraints;
if these contiguous sets do not satisfy the third constraint, pos-
sibly non-contiguous objects are picked in order to meet the
constraint (step 2).

Let and denote the sets of objects from the over-
loaded and underloaded arrays, respectively, that are to be
swapped.

1. Satisfy and : Contiguous elements from the ordered
sets and , respectively, are incrementally added
to the sets and , respectively, until and
have been satisfied. This gives a valid swap if is also
satisfied.

2. Satisfy : If has not been satisfied, additional objects
from the set , picked in order, are added to the set

; an object is added only if it does not result in a
violation of or . Objects are added until has been
satisfied. This may result in being comprised of non-
contiguous elements from the ordered set .

3. Given a valid swap, the ordered sets and are
updated to reflect the swap.

4. If a valid swap was not found, the above steps are re-
peated but now with the second element in the ordered
set as the first element added to set , and so on.

5. Swaps are searched for until the hotspot on the over-
loaded has been removed.

If after executing this step, there are no overloaded arrays,
we have a balanced configuration. Note that this simple greedy
approach for swapping contiguous sets of objects between two
arrays may be sub-optimal; however, the parameter ufrac al-
lows some control over the utility of a swap.

Figure 2 and the following example together illustrate dis-
place and swap.
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Figure 2: Illustration of Displace and Swap.
Example The figure illustrates how displace and swap work.
Figure (a) shows two arrays with bandwidth utilizations of
100% and 40%, respectively. Each box with a number indi-
cates an object and an empty box indicates unallocated space.
The number in a box indicates the bandwidth requirement of
the object. For simplicity, all objects are assumed to be of unit
size; so the bandwidth requirement of an object is also its BSR.
The bandwidth overload threshold is assumed to be 75% for
both the arrays. As Array 1 is overloaded the displace and
swap algorithm proceeds as follows.
The displace step is invoked first as the underloaded array

has one unit spare space.
Displace: Figures (b) and (c) illustrate an object being moved
from Array 1 to Array 2. The object selected is one with the
BSR of 20. The object with BSR 70 could not be accommo-
dated on the underloaded array due to bandwidth constraints.
After the displace step since Array 1 is still overloaded the

swap step is invoked.
Swap: Figures (d) and (e) illustrate an object with BSR 10
being swapped with an object with BSR 1. Note that first, pairs
of objects are considered; the object with BSR 70 on Array 1
could not be swapped with any object on Array 2 without any
constraint violations.
Since, both the arrays are now underloaded the algorithm

terminates.

4 Measuring Bandwidth Requirements
and Detecting Hotspots

In the previous section, we presented techniques for iden-
tifying a balanced configuration. The techniques assume
that the bandwidth requirement of the objects is known and
so a hotspot can be identified. In this section, we describe
techniques for measuring bandwidth requirements of objects
and detecting hotspots in a real storage system.

Measuring Bandwidth Requirements
Whereas the space requirement of an object is fixed at object
creation time4, the bandwidth requirement of an object

4Note that the space requirement refers to the size of the corresponding
logical volume and not the the actual storage space in use. Moreover, extend-
ing a logical volume is an infrequent operation and a consequent change in
space requirement is easily accommodated.
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depends on the current workload. Unless the workload access
pattern to the object is well characterized and known a priori
throughout the lifetime of the object, its bandwidth require-
ment needs to be inferred based on online measurements. We
use a simple measurement-based technique to approximate
the bandwidth requirement of each object.

Recall that each object is assumed to be striped across some
number of LUs in a logical array. Given the request size (in
sectors) and the first logical sector requested for each request,
one can infer the number of disks accessed. Note that the
number of disks accessed is upper bounded by the number
of disks which comprise the logical array. This technique re-
quires that the number of disks each object is striped over and
the RAID level of the component LUs be known. Given the
average latency and transfer rate for the underlying disk, if a
request req results in independent disk accesses
and is the number of sectors requested, the
percentage bandwidth utilization of a logical array over a time
window I due to accesses to object is given by:

(6)

Here, the summation is over i.e., requests that ac-
cessed object and completed in the time window I. numDisks
is the number of disks in the underlying logical array. ,

and are the average seek time, average rotational la-
tency and average transfer rate, respectively, for the underlying
storage device. The above expression computes the diskhead
busy time per unit time per disk due to requests accessing ob-
ject in a time duration I, thus giving the array utilization
due to accesses to the object.

We use this utilization figure as a measure of the band-
width requirement of a an object. Note that this is the per-
ceived bandwidth requirement of the object and assumes that
the workload accessing the object is able to express itself in
the presence of inter-object interference i.e., accesses to other
objects on the same logical array. Moving the object to a sim-
ilar array with less load may result in a different bandwidth
utilization.

A limitation of our approach is that it works only for sim-
ilar logical arrays. An approach used in practice is the IOPS
measure for characterizing object bandwidth requirements
and array bandwidth capacity. A limitation, however, of such
a characterization is that it implicitly assumes a basic transfer
size or amount of data accessed for an IO. For objects with
different stripe unit sizes mapped to the same array such a
technique may not be accurate. Our approach does not have
this drawback.

Identifying Hotspots
The above technique gives the bandwidth utilization on an
array due to an object mapped to it. The bandwidth utilization
of the logical array can be now be approximated as the
summation of the bandwidth utilizations of all the objects
mapped to the array. An array is overloaded if its bandwidth

utilization exceeds a certain threshold (equation 2).
An approach which offers flexibility in defining a hotspot is

one using percentiles. The bandwidth utilization is averaged
over an interval I, and an overload is signaled if a percentile
(perc) utilization over the samples in a time window W,
exceed the threshold. Since the utilization for each logical vol-
ume is computed separately (equation 6), one can compute this
percentile for each logical volume and use their summation as
the measure of the bandwidth utilization of the array.

5 Implementation Considerations

We have implemented our techniques in the Linux kernel ver-
sion 2.6.11. Our prototype consists of two components: (i)
kernel hooks to monitor IO completions for each logical vol-
ume, and (ii) a user space reconfiguration module which uses
statistics collected in the kernel to estimate bandwidth require-
ments, computes a new configuration if a hotspot is detected,
and migrates the requisite LVs appropriately.

Our prototype was implemented on a Dell PowerEdge
server with two 933 MHz Pentium III processors and 1 GB
memory that runs Fedora Core 2.0. The server contains an
Adaptec 3410S U160 SCSI Raid Controller Card that is con-
nected to two Dell PowerVault disk packs which comprised
20 disks altogether; each disk is a 10,025 rpm Ultra-160 SCSI
Fujitsu MAN3184MC drive with 18 GB storage.

The kernel portion of the code involved adding appropriate
code and data structures to enable collecting statistics for each
LV. The 2.6 kernel uses bio as the basic descriptor for IOs
to a block device. On IO completion a routine bio endio
is invoked by the device interrupt handler. It is here that we
do the bookkeeping for each LV separately. This is facilitated
as each LV created using the Linux logical volume manager
(LVM) has a separate device identifier; the device identifier for
which the IO was performed is available in the bio descriptor.

The user space reconfiguration module makes a system call
periodically to query the statistics from the kernel. The statis-
tics are namely the sectorCount and IOCount (see Section 4)
which are used to approximate the bandwidth requirement
of an LV. The system call also automatically resets the ker-
nel statistics. We also provide two additional system calls
which allow selective enabling and disabling of statistics col-
lection for an LV. Statistics collection is enabled by default
for an LV when it is activated (in LVM terminology), and is
thus registered with the kernel. Deactivating an LV automat-
ically disables the statistics collection for the same. Finally,
note that the implementation involved using appropriate ker-
nel synchronization primitives since the same data structure is
accessed by the user space reconfiguration module (via sys-
tem calls) when querying statistics and by the device inter-
rupt handler on an IO completion. A separate synchronization
primitive was employed for each logical volume to improve
concurrency.

If the reconfiguration module detects a hotspot, it invokes
appropriate routines to identify a balanced configuration. If a
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balanced configuration is found the logical volumes are mi-
grated appropriately. We use tools provided by the Linux
Logical Volume Manager(LVM), namely pvmove, to achieve
data migration while the LVs are online and being actively ac-
cessed. The user application continues to work uninterrupted
throughout the migration, except for possibly some perfor-
mance impact while the reconfiguration is in progress.

Finally, since we collect statistics only for IOs actually is-
sued to the block device, any hits in the buffer cache are trans-
parently handled. Our current implementation does not ac-
count for hits in other caches (disk cache and controller cache).

It is possible that disk accesses for separate bio requests
get merged at the disk level. This would mean that the value
of IOCount would be overestimated. To account for this, in
our implementation, separate bio requests which correspond
to contiguous logical sectors and complete within a short time
window are treated as one large request. This ensures that the
IOCount estimate is more in tune with the actual value.

6 Experimental Evaluation

In this Section, we first compare different object remapping
techniques using algorithmic simulations. We then present ex-
perimental results from the evaluation of our prototype imple-
mentation. Since, our prototype is limited by the hardware
configuration, algorithmic simulations help exhaustively eval-
uate the performance of different approaches for a variety of
system configurations.

6.1 Simulation Results
We used an algorithmic simulator to compare the different al-
gorithms for object remapping described in Section 3. The
simulator implements all the algorithms and when invoked for
an imbalanced configuration reports the cost of reconfigura-
tion for each.

We seek to study the performance of different algorithms as
different system parameters are varied. The parameters varied
were the system size, the initial system bandwidth and space
utilization, and the magnitude of the bandwidth overload. We
also study the impact of the optimizations developed for the
displace algorithm.

The default storage system configuration in our simulations
comprised four logical arrays, each with 20 18 GB disks. Each
logical array in the system was configured to have an initial
storage space and bandwidth utilization of 60% and 50%, re-
spectively.

To achieve a specified storage space utilization on an array,
objects were assigned to an array until the desired space uti-
lization had been reached. The object sizes were assumed to
be uniformly distributed in the range [1 GB,16 GB]; the ob-
ject size was assumed to be a multiple of 0.25 GB. To achieve
a specified bandwidth utilization, first bandwidth requirement
values were generated, one for each object, and in proportion
to the object size. A random permutation of these values was

then generated and a value assigned to each object in the ar-
ray. This procedure resulted in a configuration with the desired
values of storage space and bandwidth utilization for each ar-
ray and no correlation between object size and object band-
width requirements. Note that the default system parameters
resulted on an average 25 objects assigned to each logical ar-
ray, and thus an average of 100 objects in the storage system
(comprised of four arrays).

To generate an imbalanced configuration, we increased the
bandwidth utilization on half the arrays in the system until a
desired magnitude of overload had been reached. This resulted
in a storage system with half the arrays overloaded and half
with spare storage bandwidth. Here, magnitude of overload
refers to the average of the bandwidth violation across all ar-
rays in the system. To create an overload, we picked an ob-
ject at random from one of the arrays that is to be overloaded,
and increased its bandwidth requirement by an amount ;
for a given system configuration was chosen to be the
bandwidth requirement of the least loaded object in the sys-
tem. This procedure was repeated until the desired magnitude
of overload had been attained. For our experiments, the default
bandwidth violation threshold was chosen to be 80%, and the
default magnitude of overload was fixed at 5%.

For each experiment, the performance figures reported cor-
respond to an average over 100 runs i.e., correspond to the
average cost of reconfiguration for 100 imbalanced configu-
rations for the same choice of system parameters. The nor-
malized data displaced figure reported in the following exper-
iments is the total amount of data displaced (equation 3) as a
percentage of the total data in the system i.e., the storage space
allocated to all the objects put together.

6.1.1 Impact of System Size

In this experiment, we study the impact of the system size on
the cost of reconfiguration. We vary the system size i.e., the
number of logical arrays, from 2 to 10. This resulted in sys-
tems with number of disks ranging from 40 to 200. Figures
3(a) and 3(b) show the performance of the cost-aware and cost-
oblivious approaches, respectively, with varying system size.
The graphs Random Packing and BSR correspond to the cost-
oblivious approaches presented in Sections 3.1.1 and 3.1.2, re-
spectively. The graphs Random Reassign and DSwap correspond
to the cost-aware approaches presented in Sections 3.2.1 and
3.2.2, respectively.

Figure 3(a) shows thatDSwap outperforms Random Reassign.
Moreover, while the normalized reconfiguration cost with an
increase in system size remains constant for the former, it in-
creases for the latter. The higher cost of reconfiguration for
the Random Reassign algorithm is because of the randomized
nature of the algorithm. With increasing system size the num-
ber of possible objects to choose from goes up. The normal-
ized cost remains constant for the DSwap algorithm as objects
are chosen from an overloaded array carefully based on their
BSR values, and so increasing the system size does not increase
the cost. Note, however, that the absolute amount of data dis-
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Figure 3: Impact of system size.
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Figure 4: Impact of bandwidth utilization.
placed does increase with an increase in the system size.

Figure 3(b) shows the cost of the reconfiguration for the
cost-oblivious approaches. Since, both approaches reconfig-
ure the system from scratch, the cost of reconfiguration is
significantly higher as compared to that of the cost-aware ap-
proaches. In both cases, the cost of reconfiguration increases
with an increase in the system size because the probability that
an object gets remapped to its original array decreases. Ran-
dom Packing gives a cost lower than BSR because it is semi cost-
aware (see Section 3.1.1). For the rest of the experiments de-
scribed in this Section, the cost-oblivious approaches resulted
in a similarly high cost of reconfiguration as compared to the
cost-aware approaches and so we do not present the results for
the same.

In our experiments, for the Random Reassign approach we
set the fraction of objects frac (see Section 3.2.1) considered
for reassignment from the set of objects on all the overloaded
arrays to be 1.0 i.e., all the objects were considered. Also, for
both the randomized algorithms, Random Reassign and Random
Packing, the balanced configuration chosen was the one with
the least cost from among 100 runs with different seed values.

6.1.2 Impact of System Bandwidth Utilization

In this experiment, we studied the impact of the bandwidth
utilization on the cost of reconfiguration. Figure 4(a) and 4(b)
show the impact of the initial bandwidth utilization and the
magnitude of bandwidth overload, respectively.

Figure 4(a) shows that as the initial bandwidth utilization
is increased from 50% to 65%, the normalized cost remains
unchanged for both approaches. This is because increasing

the initial system bandwidth utilization merely increases the
initial bandwidth requirement of all the objects in the system
proportionately. This reduces the fraction of objects that can
be reassigned to the underloaded array without any constraint
violations. The normalized cost of reconfiguration, however,
does not change significantly, as each object reassignment, on
the average, now displaces more bandwidth. Note that DSwap
results in a factor of two lower cost as compared to the Random
Reassign approach due to reasons similar to that described in
the previous experiment.

Figure 4(b) shows that with an increase in the magnitude
of overload from 2% to 10%, the cost of reconfiguration in-
creases for both approaches. This is because, on an average,
more data needs to be displaced for a higher magnitude of
overload. The rate of increase in the normalized cost is greater
for Random Reassign, as compared to DSwap, as the objects are
chosen for reassignment at random in the former approach,
while in the latter approach objects are considered for reas-
signment based on their BSR values.

6.1.3 Impact of System Space Utilization

In this experiment, we studied the impact of varying system
space utilization on the cost of reconfiguration. Figure 5(a)
shows that the normalized cost of reconfiguration remains al-
most unchanged for both approaches as the the system space
utilization is varied from 60% to 90%. This can be attributed to
the fact that increasing the system space utilization increases
the number of objects on each array. Consequently, for a
fixed value of the initial bandwidth utilization the bandwidth
requirement of the objects on an array decreases with an in-
crease in the system space utilization. While this may require
that more objects need to be reassigned to remove the same
bandwidth overload, an increase in the system space utilization
results in the normalized cost remaining largely unchanged.
Note that DSwap results in a cost which is a factor of two less
than Random Reassign.

We see a slight increase followed by a slight decrease in the
cost for the Random Reassign approach. This is because an in-
crease in the space utilization increases the number of objects
to choose from for reassignment. The slight decrease that fol-
lows is because at higher space utilizations the number of ob-
jects that can be reassigned decreases as the space constraints
on the underloaded arrays become a significant factor. The
slight decrease in the cost for the DSwap approach is because
with an increase in the system space utilization the fraction of
objects on the overloaded arrays that can be accommodated on
the underloaded arrays decreases.

Figure 5(b) shows the percentage of times a balanced con-
figuration was identified for different imbalanced configura-
tions generated for the same choice of parameters. The BSR
approach, which reconfigures from scratch, fails to find a bal-
anced configuration all the time when the system space uti-
lization is 90% because of its deterministic nature. Random
Reassign fails at 95% system space utilization, as there is lit-
tle spare storage space on the underloaded arrays; recall that
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Figure 5: Impact of space utilization.
this approach only reassigns objects from overloaded arrays to
underloaded arrays. The best-fit and worst-fit variants of this
algorithm performed similarly, and so have not been shown in
the figure.

At 100% system space utilization Random Packing and its
variant Worst-fit Random Packing fail to find a balanced config-
uration all the time. Only, DSwap and Best-fit Random Packing
approaches were able to find a balanced configuration for all
overloaded configurations. As expected the best-fit variant of
Random Packing is able to identify a balanced configuration in
constrained scenarios (see Section 3.1.1). DSwap is able to
identify a balanced configuration as it swaps objects between
arrays. Note that in these experiments ufrac (equation 5) was
chosen to be 0.50.

6.1.4 Impact of Optimizations

In this experiment, we study the impact of the optimizations
developed for the displace step of our approach (see Section
3.2.2). Here, we present the results in the context of varia-
tion of system size. We conducted experiments to study the
impact of the optimizations when various system parameters
were varied; the results were similar to that for the system size
experiment, and so we omit those to avoid repetition.

Recall that the first optimization involved choosing from
among multiple possible groups of objects to remove the over-
load on a underloaded array. The second optimization used
backtracking to improve the soln for each overloaded array.

Figure 6 shows the impact of the various optimizations as
the system size is varied. As can be seen in the figure, DSwap
without any optimizations (NoOpt.) has the maximum normal-
ized cost. Introducing the first optimization (Opt. 1) results in
a marginal improvement in the cost. The improvement is more
pronounced when both the optimizations (Opt. 1 + Opt. 2) are
employed. This is because while the first optimization ques-
tions only the choice of the root of the the soln, the second
optimization uses backtracking to question the choice of each
of the subsequent objects that comprise the soln thus resulting
in more significant gains.

Note, however, that even this marginal improvement can
be significant as the actual amount of data that needs to be
displaced can be significantly different in the three cases as the
system size is increased. Finally, the role of the optimizations
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Figure 6: Impact of optimizations.
can be particularly significant as compared to a purely greedy
approach for some specific imbalanced configurations.

6.2 Prototype Evaluation
In this Section, we demonstrate the effectiveness of our ap-
proach by conducting experiments on our Linux prototype.
The goal in these experiments was two-fold; (i) to show
that the kernel measurement techniques are able to identify a
hotspot, and (ii) to demonstrate that the reconfiguration mod-
ule makes the correct choice when selecting objects and un-
derloaded arrays to remove the hotspot.

In our experiments, we use a simple synthetic workload
which provides us a great degree of control in imposing a de-
sirable amount of IO load on the storage system. The workload
for each logical volume was defined using two parameters, (i)
concurrency , and (ii) mean think time . A workload
with concurrency consists of concurrent clients; each
client issues a request and sleeps for a time interval exponen-
tially distributed with a mean of on request completion
before issuing a new request. The request sizes were assumed
to be fixed and successive requests access random locations
on the logical volume. The request size for client requests was
fixed at 16KB in our experiments. Note, that while the think
time provided control over the load imposed by each client,
the client concurrency allowed us to independently control the
load being imposed on an array due to accesses to an LV.

The characteristics of the host and the storage system in
our prototype were as described in Section 5. We partitioned
the 20 disks in the system to give five striped logical arrays
each comprising four disks and with a stripe unit size of 16KB.
Each array was partitioned into 14 partitions of size four GB
each5. These partitions served as building blocks (in the form
of LVM physical volumes) for the LVs created on each array;
so, the LV size was a multiple of 4 GB. Of the five logical
arrays, one array was configured without any logical volumes
and was used as scratch space when swapping logical volumes
between arrays.

We set the bandwidth overload threshold for all the arrays
to 50% in our experiments. The interval over which the

5Note that each striped array is visible as a SCSI drive on the host. Since
we wanted to utilize maximum possible storage space on each logical array,
and Linux allows only 14 usable partitions for a SCSI drive, we created 14 four
GB partitions for a total of 56 GB allocatable storage space on each array.
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(a) Spare storage space.
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(b) No spare storage space.

Figure 7: Uniform object size
bandwidth utilization was approximated was chosen to be
and the window size over which reconfiguration decisions
were made was chosen to be . Note that these values
are small, and were chosen to speed experimentation. Load-
balancing involving object remapping is a long-term operation
and is typically done only over periods of months or more. Fi-
nally, we used the 70 percentile of the samples accumulated
in the time window as a measure of the bandwidth utiliza-
tion of an LV.

As mentioned before, the data migration could be achieved
either online or offline. While our implementation supports
online data migration, to speed up experimentation, we simply
reconfigure the arrays for the new mapping of logical volumes.
Techniques to control the rate of online data migration to mit-
igate the performance impact on foreground applications have
been presented in [10].

We conducted two sets of experiments, one where the LV
size or object size of all the objects on the system was the
same, and another where the object sizes differed.

6.2.1 Uniform Object Size

For the case of uniform object sizes, we present results from
two experiments, one were the system had spare storage space
in the form of unallocated partitions, and another where the
system had no spare space. While in the former, the displace
step would be invoked, the latter would invoke the swap step.
In both experiments, the size of any LV on an array was 4 GB.

In the first experiment, three arrays were configured with 14
LVs each, and the fourth array was configured to have seven
LVs thus leaving half the array empty with seven allocatable
partitions. For the first 100 seconds all the LVs in the system

were accessed by a workload with a concurrency of two; the
mean think time was fixed at 400ms, 1000ms, 1000ms and
500ms for the workload accessing LVs on the four arrays, re-
spectively. Figure 7(a) shows the estimated average bandwidth
utilization as well as the cumulative average IOPs across all
the LVs for each array as a function of time. The average val-
ues reported are over 10 second intervals.

As can be seen the array utilizations are dictated by the
mean think time values for the workload accessing the com-
ponent LVs; lower mean think times mean higher utilization
values. Also note that the average bandwidth utilization es-
timated using kernel measurements, and the average IOPs on
each array based on measurements at the application level, fol-
low the same trend. This indicates that our kernel measure-
ments correctly track the application behavior.

At we increased the workload on Array 0 by in-
creasing the concurrency of half the clients to nine and that of
the other half to four. This results in an increase in the band-
width utilization on the array. Note that the bandwidth utiliza-
tion on the remaining arrays remains unchanged. At
the reconfiguration module detects that Array 0 is overloaded,
identifies a new balanced configuration, and triggers the ap-
propriate reconfiguration. The reconfiguration involved mov-
ing two LVs from Array 0 to Array 3.

The reconfiguration module correctly identified Array 3 as
the destination for the LVs, even though Array 1 and 2 had a
lower bandwidth utilization, as it was the only array with spare
storage space. Moreover, of the LVs, it correctly chooses two
of the seven logical volumes being accessed by a workload
with concurrency of nine. This choice minimizes the amount
of data displaced.

The graph from to shows the utilization
of the arrays after the reconfiguration. As can be seen, the uti-
lization of Array 0 has decreased to a value close to the over-
load threshold. The utilization of Array 3, which now consists
of two additional logical volumes, has increased appropriately.
In our experiments, we allow for a soft threshold of 2% around
the bandwidth violation threshold, and consequently, no more
reconfigurations are triggered. This is done in order to avoid a
reconfiguration for minor bandwidth violations.

For the second experiment, we configured the storage sys-
tem with no spare space and each array comprised 14 LVs.
The workload for the LVs on Array 0 was the same as in the
previous experiment. The mean think times for workloads on
Arrays 1 through 3, however, were chosen to be 500ms, 500ms
and 1000ms, respectively. The client concurrency of the work-
load was fixed at two. Figure 7(b) plots the bandwidth utiliza-
tion and cumulative average IOPs for each array.

In this case, a reconfiguration is again triggered at
as in the case above. The reconfiguration involved swapping
three heavily accessed logical volumes with three logical vol-
umes on Array 3, the array with the least load in the system.
Note that despite the workload on Array 0 being similar to
that in the first experiment, a slightly different observed uti-
lization due to peculiarities of a real system, result in three
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Figure 8: Variable object size; no spare storage space
logical volumes being swapped, as opposed to two in the first
experiment. Consequently, the drop in bandwidth utilization is
greater in this run. The reconfiguration results in a reduction
in the bandwidth utilization on the array to a value below the
overload threshold.

6.2.2 Variable Object Size

For the case of the storage system configured with LVs with
variable size, we ran experiments for both the case when the
system had spare space and when there was no spare space.
The results for the case the system had spare space were simi-
lar to that in the previous experiment; when a hotspot occurred
the heavily accessed volumes were chosen and moved to an ar-
ray with spare space in order to minimize the amount of data
displaced. To save space, we do not present the results from
that experiment.

For the case the storage system had no spare space, the sys-
tem configuration was as follows. Array 0 and 1 were con-
figured with six LVs each, two LVs each of size 4 GB, 8 GB
and 16 GB, respectively. Array 1 and 2 were configured with
14 LVs each, each of size 4 GB. The mean think times for the
workload accessing the LVs on the four arrays were 300ms,
500ms, 500ms and 1000ms, respectively. For the first 100s of
the experiment, the concurrency for the workload for all the
LVs on the system was fixed at two. Figure 8 shows the band-
width utilization and cumulative IOPs as a function of time.

At we increased the client concurrency for the
workload accessing the LVs on Array 0 and 1 to seven and
four, respectively. As can be see in the figure, this results in
an increases in the bandwidth utilization on both the arrays.
However, only Array 0 observes a violation of the bandwidth
threshold. At the reconfiguration module detects
a hotspot and triggers a reconfiguration. The reconfiguration
involved swapping two 4 GB LVs with two LVs of the same
size from Array 3. So, the reconfiguration module correctly
identifies Array 3 as the array with the least load. Also, since
all the six LVs are configured with the same workload, the two
LVs of size 4 GB are the one with maximum BSR.

The graph from to shows that after the
reconfiguration the utilization on Array 0 has decreased to a
value below the threshold. Array 3 with two new LVs with a
heavier load observes an increase in the utilization.
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Figure 9: Impact on application performance.
6.2.3 Implementation Overheads

Our final experiment aimed to study the overheads introduced,
if any, due to the kernel enhancements on application perfor-
mance. While the computation involved in maintaining statis-
tics was minimal, the synchronization primitives employed
(Section 5) may introduce some overheads. So, in this exper-
iment, we vary the number of logical volumes actively being
accessed on each array and compare the application perfor-
mance for the case statistics collection is enabled, to that of
when statistics collection is disabled in the kernel. The storage
system was configured with 14 LVs, each of size 4 GB, per ar-
ray. The workload accessing each LV had a client concurrency
of two and the mean think time was set to zero. Note, that with
no think time, each client would issue a new IO request imme-
diately after the previously issued request completes. Conse-
quently, the storage system is saturated.

Figure 9 shows the cumulative average IOPs for one of the
arrays as a function of the number of LVs being actively ac-
cessed; each point corresponds to an average value for a two
minute run. The graph for the other arrays was the same. As
can be seen, the average IOPs figure in both the cases is simi-
lar. So, there was not noticeable overhead on application per-
formance. Since, the storage system is saturated, the average
IOPs value does not change significantly as the number of ac-
tive logical volumes is varied. The slight drop in the value in
both cases, with an increase in the number of active LVs, is
because with a larger number of LVs being accessed, the aver-
age seek latency increases. This is because, for each additional
contiguous partition being accessed on an array, the disk heads
on the component disks have to seek over a larger disk surface
when servicing requests.

6.3 Summary of Experimental Results
Our experiments show that for a variety of system configura-
tions our novel approach reduces the amount of data moved
to remove the hotspot by a factor of two as compared to other
approaches. Moreover, the larger the system size or the magni-
tude of overload the greater the performance gap. Results from
our prototype implementation suggested that our kernel mea-
surement techniques correctly track application behavior and
identify hotspots. For simple overload configurations consid-
ered, our techniques correctly remove the hotspot while min-
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imizing the amount of data displaced. Finally, the kernel en-
hancements do not result in any noticeable degradation in ap-
plication performance.

7 Related Work

Algorithms for moving data objects from one configuration to
another in as few time steps as possible have been presented
in [6, 7, 9]. It is assumed that the new final configuration is
known. In our work, we seek to identify the new final config-
uration which requires minimal data movement.

Techniques for initial storage system configuration have
been presented in [2, 3]. Our work assumes that the stor-
age system is online, and presents techniques to reconfigure
the system when workload hotspots occur with minimum data
movement.

Load balancing at the granularity of files has been consid-
ered in [13]. The work assumes contiguous storage space is
available on lightly loaded disks to migrate file extents from
heavily loaded disks. Our work seeks to achieve load bal-
ancing at the granularity of logical volumes and makes no as-
sumptions about the distribution of spare space in the storage
system.

Techniques for moving data chunks between mirrored and
RAID5 configurations within an array based on their load for
improving storage system performance have been proposed in
[15]. Our work seeks to achieve improved performance across
the storage system by moving logical volumes between arrays.

Disk load balancing schemes for video objects has been
presented in [16]. Video objects are assumed to be replicated
and load balancing is achieved by changing the mapping of
video clients to replicas. In our work, logical volumes are as-
sumed to have no replicas across arrays and load balancing
requires that identifying a new mapping of data objects to ar-
rays.

Request throttling techniques to isolate the performance of
applications accessing volumes on a shared storage infrastruc-
ture have been explored in [8, 11, 14]. We present algorithms
to improve storage system performance by migrating entire
logical volumes between arrays.

Finally, while [10] presents techniques for controlling the
rate of data migration to mitigate the instantaneous perfor-
mance impact on foreground applications during online recon-
figuration, our work seeks to optimize for the scale of recon-
figuration which dictates the duration of performance impact.

8 Concluding Remarks and Future Work

In this paper, we argued that techniques employed to load-
balance large scale storage systems do not optimize for the
scale of the reconfiguration—the amount of data displaced to
realize the new configuration.

Reconfiguring the system from scratch can incur significant
data movement overhead. Our novel approach uses the current
object configuration as a hint; the goal being retain most of the

objects in place and thus limit the scale of the reconfiguration.
We also described a simple measurement-based technique for
identifying hotspots and for approximating per-object band-
width requirements.

Finally, we evaluated our techniques using a combination
of simulation studies and an evaluation of an implementation
in the Linux kernel. Results from the simulation study showed
that for a variety of system configurations our novel approach
reduces the amount of data moved to remove the hotspot by
a factor of two as compared to other approaches. The gains
increase for a larger system size and magnitude of overload.
Experimental results from a prototype evaluation suggested
that the measurement techniques correctly identify workload
hotspots. For some simple overload configurations considered
in the prototype our approach identified a load-balanced con-
figuration which minimizes the amount of data moved.

Our current prototype implementation makes the simplify-
ing assumption that all arrays in the storage system are simi-
lar. As future work we would like to develop techniques for
quantifying the bandwidth requirements of objects, as well as
the bandwidth capacities of arrays, for a storage system com-
prising heterogeneous arrays. Secondly, we plan develop opti-
mizations for the swap algorithm in a manner similar to those
developed for the displace algorithm. Finally, we plan to ex-
tend our kernel-measurement based technique to account for
hits in the lower level storage system caches.
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