
Explaining Routing Performance in Disruption Tolerant Networks

Brian Gallagher, David Jensen, and Brian Neil Levine
Dept. of Computer Science, University of Massachusetts, Amherst MA 01003

{bgallag, jensen, brian}@cs.umass.edu

Abstract
Many routing algorithms for both traditional and ad
hoc networks require a complete and contemporaneous
path of peers from source to destination. Disruption
Tolerant Networks (DTNs) attempt to deliver messages
despite a frequently disconnected link layer (e.g., due to
peer mobility, limited communication range, and power
management limitations). While several algorithms have
been proposed for routing in DTNs, this has not yet led
to an understanding of the fundamental issues underly-
ing routing performance in these networks.

In this paper we explain the performance of routing
algorithms for DTNs in terms of their ability to utilize a
set of three no-cost drop criteria. The criteria are neces-
sary and sufficient for identifying messages that may be
dropped without degrading the overall delivery rate.
The criteria identify whether a route exists with suffi-
cient bandwidth, whether a message has been delivered
already, and whether some other peer will deliver the
message. We also use the criteria to design a new rout-
ing algorithm that we call NoCostDrop, which appears
to be the first routing algorithm to take advantage of all
three criteria. We show that NoCostDrop outperforms
existing algorithms over a wide range of network condi-
tions. Most novel in our approach is the use of a dis-
tributed list of delivered messages, which can easily be
combined with existing routing algorithms to improve
their performance.

1 Introduction
Despite the ubiquity of mobile computing devices, users
are rarely able to take full advantage of the communica-
tions resources that they carry. IP destinations must be
connected to the Internet at the moment a message is
sent, and the path of routers that lead from source to
destination must also be contemporaneously connected.
Routing algorithms for ad hoc networks have not seen
wide use or deployment because of these limitations.
The density of wireless access points and always-on
mobile peers has not reached the necessary critical mass
to ensure contemporaneous end-to-end connectivity.

To address these limitations, there is a growing body of
work on disruption tolerant networks (DTNs), which
are networks that allow intermittent link-layer connec-

tions among peers. Solutions are beginning to appear for
the provision of message forwarding services in DTNs.

Recently, a handful of DTN routing algorithms have
been developed [VB00, DFL01, GV03, LDS04, SG04,
BBL05]. However, to our knowledge, only one study
has investigated the underlying issues of routing per-
formance in DTNs [JFP04]. In this study, Jain et al.
focus on scenarios in which topology dynamics are
known in advance, routing is performed in the tradi-
tional store-and-forward fashion, and varying amounts
of external knowledge are available to routing algo-
rithms.

Here, we focus on the more general DTN routing prob-
lem, making the assumptions that external information
is unavailable, that all peers in the system are mobile,
and that contemporaneous paths of length greater than
one are essentially non-existent. In this context, the tra-
ditional routing decision of choosing the next edge
along which a message should be forwarded does not
apply. Instead, routing consists of a series of message
exchanges between pairs of peers as communication
links are established and destroyed. Since each peer has
a finite amount of space for storing others' messages,
routing decisions amount to determining which mes-
sages to forward when meeting with a given peer and
which messages to drop when a peer’s buffer becomes
full.

This paper makes several contributions towards under-
standing the factors affecting the performance of DTN
routing algorithms. Our results are based on the identifi-
cation of three no-cost drop criteria that are necessary
and sufficient for identifying messages that may be
dropped without degrading the overall delivery rate.
These criteria identify whether a route exists with suffi-
cient bandwidth, whether a message has been delivered
already, and whether some other peer will deliver the
message.

We explain the quantitative performance of existing
DTN routing algorithms in terms of their ability to ex-
ploit each of the no-cost drop criteria. For example, no
existing algorithm explicitly attempts to determine if a
message has been delivered already as a criterion for
dropping it from a buffer.

We propose a new routing algorithm, designed to ex-
ploit all three no-cost drop criteria, and we show em-

pirically that this algorithm outperforms previous algo-
rithms under a variety of connectivity assumptions. The
most novel part of our algorithm is the use of delivery
lists. We show that their use alone results in dramatic
increases in performance.

Additionally, we show how the underlying model of
connections among peers affects the relative perform-
ance of certain algorithms. Notably, delivery lists im-
prove performance independent of the underlying con-
nection model.

This work is organized around the above goals. In the
next section, we review related work. In Section 3, we
describe the problem of routing in DTNs in more detail,
including our assumptions. Section 4 explains the no-
cost drop criteria. Section 5 describes the algorithms
that we evaluate, including the new NoCostDrop and
DropDelivered algorithms, and classifies them accord-
ing to their use of the no-cost drop criteria. In Section 6
we describe our evaluation model and in Section 7 we
discuss the details of our evaluation and results. Finally,
in Section 8, we present our conclusions and describe
some interesting new directions for future research that
arise from our work.

2 Related Work
Previous work in this area is based on various assump-
tions regarding connectivity and the availability of envi-
ronmental knowledge and control. In general, algo-
rithms based on stronger assumptions have superior
performance, but their applicability is more limited.

A number of the proposed routing algorithms for DTNs
make weak assumptions and are therefore widely appli-
cable. In general, these algorithms are based solely on
deciding which messages to forward during a meeting
with a given peer and which messages to drop when
buffers reach capacity. The epidemic routing algorithm,
proposed by Vahdat and Becker, manages buffers as
first-in-first-out (FIFO) queues when finite buffers are
assumed and requires no buffer management under the
infinite buffer assumption [VB00]. The Drop Least
Encountered (DLE) algorithm, proposed by Davis et al.,
was the first of a number of algorithms based on the
idea of dropping messages with the lowest likelihood of
delivery [BBL05, DFL01, GV03, LDS04, SG04]. All of
these algorithms approximate delivery likelihood as the
likelihood of a delivery path existing.

Others have taken a more pro-active approach to routing
in DTNs, made possible by stronger assumptions such
as knowledge of geographic location, prior knowledge
of connectivity patterns, and control over peer move-
ment [BBL05, GV03, JFP04, LR00, SG04, ZA03,
ZA04].

3 Generalized Routing Scenario
In this paper, we address the most general DTN routing
problem. We assume no prior knowledge of network
connectivity, no control over peer movement, no
knowledge of geographic location, and no solely sta-
tionary peers. We assume that each peer has an infinite
buffer for messages that they originate, but a fixed-size
buffer for messages originated by other peers.

In general, a DTN routing scenario proceeds roughly in
four stages.

1. Await transfer opportunities. Each peer generates
messages destined for other peers in the system and
carries them until it comes within communication
range of another peer.

2. Exchange message headers. When two peers meet,
they exchange lists of the messages they carry.

3. Apply routing algorithm. Each peer takes the un-
ion of the two message lists, considers the available
buffer space, and makes decisions about which old
messages to drop and which new messages to ac-
cept.

4. Exchange contents of selected messages. For each
message to be exchanged, a copy is created and
passed between peers.

Once messages are exchanged, each peer continues to
carry its new set of messages until the next meeting
occurs. A peer will continue to forward a message to
any number of other peers until its copy of the message
times out or is delivered, or until the message is dropped
due to a full buffer.

The message exchange process can be performed in
fewer steps to account for short transmission opportuni-
ties. However, we are not concerned here with the
properties of the link layer when a transfer opportunity
occurs. We assume that when the channel is up, it is
reliable and of sufficient duration.

4 The No-Cost Drop Criteria
In this section, we present a set of three no-cost drop
criteria, which are necessary and sufficient for identify-
ing messages that may be dropped without degrading
the overall delivery rate. We later use these criteria to
explain the performance of existing DTN routing algo-
rithms and to design the new NoCostDrop algorithm.

Any DTN routing algorithm reduces to a series of local
decisions about which messages forward to other peers
and which messages to drop when buffers reach capac-
ity. The most important performance metric here is the
delivery rate, which depends on which messages are
dropped. Accordingly, it is important to observe that a

peer can drop certain messages without any cost in
terms of the overall delivery rate.

Let a DTN be composed of P peers. A peer, p, may drop
a copy of message m without reducing the overall deliv-
ery rate if and only if it meets one of the following crite-
ria:

1. Cannot-Deliver - Peer p cannot deliver the copy of
message m to its destination through any set of in-
termediate peers no matter how long p chooses to
hold the copy. In other words, no route with suffi-
cient bandwidth will exist between p and m’s desti-
nation during the lifetime of message m.

2. Is-Delivered – A copy of message m has already
been delivered to its destination.

3. Delivered-If-Dropped – No copy of message m has
been delivered, but some copy of m will be deliv-
ered even if peer p drops its copy.

It is easy to prove that these three criteria are necessary
and sufficient to describe the set of messages that can be
dropped by a peer without degrading the overall deliv-
ery rate. First, the three criteria are mutually exclusive;
it is not possible for any message to meet more than one
of them. Second, the only possibility not covered by the
criteria is that m has not been delivered and m can be
delivered, but only if p holds on to m. Clearly, dropping
this type of message may affect the overall delivery rate.

Since the propagation of information in a DTN is rela-
tively slow, a peer will generally not know the values of
Cannot-Deliver, Is-Delivered, and Delivered-if-
Dropped with certainty. However, we can use informa-
tion available in the network to estimate the likelihood
that each criterion is satisfied.

We define a DTN routing algorithm to have two com-
ponents:

(1) One or more estimators. An estimator is simply a
method for (explicitly or implicitly) estimating
the likelihood that one or more of the no-cost
drop criteria are satisfied.

(2) A decision procedure. A decision procedure
takes information from one or more estimators as
input and outputs routing decisions (i.e., deci-
sions about which messages to forward and
which messages to drop).

Seen in this context, what we describe here amounts to a
routing framework in which estimators and decision
procedures are interchangeable components that can be
modified to suit a variety of applications. For instance,
in Section 7.5 we discuss alternative estimators that
make use of external sources of information (e.g., prior
knowledge about networks or out-of-band communica-
tion).

5 Routing Algorithms
In this section, we classify existing algorithms accord-
ing to their use of the criteria introduced in the previous
section. In addition, we propose two new algorithms,
DropDelivered and NoCostDrop. NoCostDrop is the
first algorithm to exploit all three no-cost drop criteria.

5.1 Broadcast
A peer using the Broadcast algorithm floods all its mes-
sages to all other peers it meets. This algorithm assumes
that peers have an infinite message buffer and messages
are not dropped until they time out. This is equivalent to
the epidemic routing algorithm described by Vahdat and
Becker with no limit on buffer size [VB00]. Broadcast
is included strictly for reference as a performance ceil-
ing. This algorithm does not make use of any of the no-
cost drop criteria.

5.2 Random
A peer using the Random algorithm floods all its mes-
sages to all other peers it meets. When a peer's buffer
reaches capacity, it chooses messages for dropping at
random. This algorithm does not make use of any of the
no-cost drop criteria.

5.3 FIFO
A peer using the first-in-first-out (FIFO) algorithm
floods all its messages to all other peers it meets. When
a peer's buffer reaches capacity, it chooses messages for
dropping based on the length of time messages have
been in the peer's buffer. Messages that have been buff-
ered longest are dropped first. This is equivalent to the
epidemic routing algorithm with a buffer size limit
[VB00].

The FIFO algorithm implicitly exploits both the Is-
Delivered and Delivered-if-Dropped criteria. Suppose
that peer p is carrying two messages, m1 and m2. Sup-
pose also that we know m1 has been in p’s buffer for 50
seconds and m2 has been in p’s buffer for 5 seconds. In
general, this also indicates that m1 has been in the net-
work longer than m2. The longer that a message is in the
network, the more chances we expect the source and
intermediaries to have to create multiple message copies
and spread them throughout the network. Thus, all else
being equal, our expectation is that more peers will have
received copies of m1 than m2. Therefore, in general, m1
is more likely than m2 to be delivered by some other
peer even if dropped by p (Delivered-if-Dropped) and
m1 is also more likely than m2 to have already been de-
livered (Is-Delivered).

5.4 DLE
Most work on DTN routing algorithms to date has been
based on the idea of dropping messages with the lowest
likelihood of delivery [DFL01, GV03, LDS04, SG04,
BBL05]. We use Drop Least-Encountered (DLE), pro-
posed by Davis et al., as an algorithm representative of
this class [DFL01]. Using the DLE algorithm, each peer,
p, maintains a meeting value for every other peer in the
network, q. This value estimates the likelihood of a fu-
ture path from p to q. Every time peer p meets peer q, p
adds 1 to its current meeting value for q. In addition, p
adds a portion of q's meeting value for each other peer, r,
to p's current meeting value for r, capturing the likeli-
hood of multi-hop paths as well as one-hop paths. Meet-
ing values also degrade over time, so meetings that oc-
cur more regularly end up with higher values.

Note that DLE, as well as several of the other
algorithms proposed in the literature, employ a
technique that we refer to as selective routing, in which
a peer with a lower likelihood of delivering message m
will never accept m from a peer with a higher likelihood
of delivering m [BBL05, DFL01, LDS04]. There are
several variations on this technique, each of which we
have found to exhibit very similar performance
characteristics. For this work, we use the following
variation: When peers p and q meet, p only offers
messages to q for which q has a higher meeting value
than p. Likewise, q only offers messages to p for which
p has a higher meeting value than q. The exchange then
proceeds as usual, each peer joining its list of buffered
messages with the list of offerings from the other peer.
If p's buffer will not accommodate all messages in the
combined list, the messages with the lowest meeting
values are dropped (if buffered by p) or refused (if
buffered by q).

DLE and similar algorithms exploit the Cannot-Deliver
criterion indirectly by considering the likelihood that a
path will exist along which a message could potentially
be delivered. However, just because such a path exists
does not mean that a message sent along that path will
reach its destination. Messages may be dropped along
the way due to congestion. In order to achieve the most
accurate estimate of delivery likelihood, an estimator
must consider not only the existence of a path, but also
the capacity of that path.

Since DLE and similar algorithms ignore congestion
and focus exclusively on path existence, we could say
that they exploit Cannot-Deliver incompletely. It is easy
to imagine situations in which certain peers are central
to the network in the sense that they have regular meet-
ings with a variety of other peers. These hub peers are
heavily favored by DLE and similar algorithms since
they are involved in many delivery paths. However,
they may also be highly congested for exactly the same

reason. In such a scenario, the performance of DLE and
similar algorithms will suffer. Our results demonstrate
this effect (see Section 7.3).

5.5 DropDelivered
Before we describe the details of the DropDelivered
algorithm, we introduce a new technique for exploiting
the Is-Delivered criterion: delivery lists.

5.5.1 Delivery Lists
To fully exploit the Is-Delivered criterion, a peer must
know when messages it has forwarded have been deliv-
ered. Delivery lists provide a way for peers to notify
each other of message deliveries.

Using this technique, each peer maintains a list of deliv-
ery notifications (message IDs) for messages that have
already been delivered in the network. Initial lists can be
created by each peer since a peer knows with certainty
the messages that it has successfully received as a desti-
nation. Lists can then be exchanged between peers dur-
ing meetings so that a global list propagates throughout
the network. Then, when a peer receives a message that
is on its delivery list, the peer may drop the message
immediately.

The cost of maintaining a delivery list is that it reduces
the buffer space available for messages. If we think of a
buffer in terms of the number of messages it can hold,
the cost of a delivery list of a given length depends on
the size of message IDs relative to the size of messages.
We assume that messages may be uniquely identified by
a 128-bit ID (e.g., from an MD5 hash). In our experi-
ments, we assume that messages range in size from
160 B to 50 KB.

We have observed empirically that the optimal propor-
tion of total buffer space devoted to the delivery list
depends on both the total buffer size and the average
message size. In our evaluation, we fix this proportion
to .15, a value that we have found to perform reasonably
well over a range of parameter settings. Adjusting this
proportion dynamically based on network characteris-
tics would likely yield additional performance increases.
However, this is beyond the scope of this paper.

We manage our delivery lists as FIFO queues. It is pos-
sible that some more sophisticated scheme might further
improve the utility of this technique.

5.5.2 The DropDelivered Algorithm
The DropDelivered algorithm uses delivery lists to drop
delivered messages from buffers as soon as possible.
Whenever a peer receives a new message, it checks its
delivery list. If the delivery list contains the new mes-
sage, the message is dropped immediately and not buff-

ered. Whenever a peer adds a new message ID to its
delivery list, the peer checks its buffer and immediately
drops the corresponding message if it is buffered. If a
peer must drop additional messages due to limited
buffer space, messages are chosen at random for drop-
ping.

5.6 NoCostDrop
The NoCostDrop algorithm drops messages according
to all three no-cost drop criteria. Since there are many
possible estimators for each of the criteria and many
possible decision procedures for combining these esti-
mators, there are many choices for implementing the
NoCostDrop algorithm. For this work, we evaluate a
relatively simple implementation based on a combina-
tion of DLE, FIFO, and DropDelivered. This implemen-
tation works as follows. First, any buffered messages
that appear in a peer's delivery list are dropped immedi-
ately. Then, messages are ranked according to the value
of

DLE.meetingValue -!FIFO.timeEnqueued

Messages with the lowest values are dropped first. We
set !=1.0 based on an empirical study of the perform-
ance of various ! values.

Like DLE, the NoCostDrop algorithm uses selective
routing, but decisions are made with respect to the value
of DLE.meetingValue -!FIFO.timeEnqueued instead of
just the DLEmeeting value.

To the best of our knowledge, NoCostDrop is the first
routing algorithm to take advantage of all three no-cost
drop criteria.

6 Evaluation Model
In this section, we describe the DTN simulations that we
use to evaluate the routing performance of the algo-
rithms described above. First, we discuss the goals of
the simulations and the performance metrics used for
evaluation. Then, we describe the details of our models
of connectivity and communication.

The goal of these simulations is to demonstrate differ-
ences in performance among the routing algorithms we
have described. Specifically, we evaluate two hypothe-
ses:

(1) The NoCostDrop algorithm, which exploits all
three no-cost drop criteria, will have signifi-
cantly better routing performance than DLE or
FIFO alone.

(2) Delivery lists will improve the performance of
all existing algorithms tested, since none of
these algorithms explicitly models Is-Delivered.
Furthermore, delivery lists will improve per-

formance regardless of the underlying connec-
tivity model.

Before we can evaluate these hypotheses, we need a
more precise definition of routing performance. Since
the ultimate goal of these algorithms is to deliver as
many messages as possible, our primary performance
metric is delivery rate, measured as the proportion of
messages generated in the network that are delivered to
their destination. We also consider the latency of deliv-
ered messages, which is the delay from source to desti-
nation.

6.1 Modeling Meetings
The algorithms we evaluate assume no knowledge of
geographic location. Therefore, we simulate peer con-
nectivity instead of peer movements. We create a link
between each pair of peers in the simulation and links
are activated (representing the start of a transfer oppor-
tunity) and deactivated (representing the end of a trans-
fer opportunity) at random. Since previous work is
based on mobility models of peer movements (specifi-
cally, the random waypoint model), we model peer
movement explicitly for some of our simulations and
then convert the movement data into a series of link
activations and deactivations that are imported into our
basic simulator.

We simulate three different types of networks by using
different patterns of link activation: small-diameter net-
works, wide-diameter networks, and random waypoint
networks.

1. Small-Diameter networks: Each peer p has a small
set of preferred peers that it meets with often and fairly
regularly over the course of a simulation. Peer p meets
with the remaining set of peers infrequently or not at all.
These networks are intended to produce varied patterns
of linkage over different pairs of peers that remain rela-
tively consistent over time. The expectation is that this
will give DLE, and other algorithms that exploit Can-
not-Deliver, a regular pattern to learn from.

We create small-diameter networks as follows: Each
pair of peers in the network has a link connecting them.
For each link, we draw a meeting count, c, at random
from an exponential distribution with mean ". For any
links with c < ", we reset c=0. This creates fewer direct
meetings between peers and reduces the number of one-
hop deliveries in the network. Let s represent the dura-
tion of the simulation. We then calculate an inter-
meeting time, i=s/c, for each link independently. The
actual times between meetings during the simulation are
drawn randomly from a Poisson distribution with a
mean of i.

2. Wide-Diameter Networks: In comparison to small-
diameter networks, this second type of network has

longer path lengths and less-varied connectivity patterns
across pairs of peers. In these networks, direct deliveries
are less frequent and propagation times of delivery noti-
fications (i.e., delivery lists) are longer.

We create a long string of peers such that only a single
path exists between any two peers in the network. In
these networks, all links are inactive for the duration of
the simulation except for those between peers p1 and p2,
peers p2 and p3,…, and peers pN-1 and pN. The actual
times between meetings for each link are again drawn
randomly from a Poisson distribution with a mean of
i=s/c, except all links have the same parameter for c.

3. Random Waypoint Networks: We model peer con-
nectivity from movements using the same basic random
waypoint movement scenario described by Vahdat and
Becker [VB00]. Specifically, our peers move in a
1500!300 meter rectangular area. Each peer begins in a
random spot, chooses a destination at random, and
moves there with a speed chosen uniformly from 5 to 20
meters per second. Over the course of our simulations,
the average speed of a peer is approximately 10 m/s.
The communication range of each peer is 250 meters.
Once a peer reaches its destination, a new destination
and speed is chosen at random and so on.

6.2 Modeling Communication
Each peer generates messages independently. The inter-
arrival times of messages are drawn from a Poisson dis-
tribution, and message destinations are drawn uniformly
from among the other peers in the simulation. Choosing
message destinations uniformly assumes as little as pos-
sible about the applications running in our networks.

When peers meet, messages are exchanged as described
in Section 3.

7 Evaluation
In this section, we describe our experimental methodol-
ogy and present our results.

7.1 Methodology
For all experiments, we run 100 experimental trials on
each type of network (small-diameter, wide-diameter,
and random waypoint), unless otherwise noted. For each
trial, we generate peers and create links between them
as described in Section 6.1. We use defaults of 50 peers
per network and a buffer size of 40 messages. We gen-
erate a 1,000-time-step routing scenario, consisting of
message generation and link activation data, and run
each of the routing algorithms against this same sce-
nario. Each peer generates messages as described in
Section 6.2, with a mean interarrival time of 10.0 time-
steps. Messages have a timeout of 100 time steps after
generation.

We use an average meeting count of "=10 along each
link for small-diameter networks and let c=250 for
wide-diameter networks. For the random waypoint
movement scenarios, each time step is equal to one sec-
ond.

For all algorithms employing a delivery list, the propor-
tion of the buffer devoted to the delivery list is fixed
at 0.15. As discussed in Section 5.5.1, this value is not
optimal across all buffer sizes and message size assump-
tions. However, it does perform reasonably well over a
range of parameter settings. For the Drop Least Encoun-
tered algorithm, we use the same parameter values used
by Davis et al. in their work (i.e., using their variable
names: #=0.1, "=0.95,) [DFL01].

We evaluate the following average message size as-
sumptions in our simulations:

" 160 Bytes. This is the size of a GSM phone Short
Message Service (SMS) text message.

" 1 KB. This is the size of a small email. As a point
of reference, an email message with no subject and
no content, created with Apple's Mail application
for OS X, and sent to a single recipient is larger
than 1 KB. A similar message created with the Pine
email application is 0.8 KB.

" 5.86 KB. This is the size of an average email with-
out attachments [T04].

" 50 KB. This is the size of an average email with a
small attachment [T04].

" Infinite. This is intended as a ceiling to demon-
strate the performance limits of delivery lists. When
we make the assumption of infinite (or arbitrarily
large) message sizes, we assume that we can store
any number of delivered message IDs in the space
required to store a single message. Note that this is
different than assuming that the delivery list takes
up no buffer space.

7.1.1 Static vs. Adaptive Algorithms
In our evaluation, we compare two classes of routing
algorithms: static and adaptive. Adaptive algorithms
(DLE, DropDelivered, NoCostDrop) change their be-
havior in response to changing network conditions.
Static algorithms (Broadcast, Random, and FIFO) be-
have in the same way regardless of network conditions
(e.g., FIFO always drops the messages that have been
enqueued the longest, regardless of network topology or
the number of meetings between peers).

Since it may take some time before peers using an adap-
tive algorithm gather sufficient information to behave in
an appropriate way, the performance of these algorithms
generally improves over time. For this reason, re-

searches often include an initial warm up before begin-
ning their evaluation. We have found that the use of a
warm up period has little effect on results over the
course of a 1,000 time-step simulation.

7.2 Baseline Routing Performance
All results presented here are averages over 100 trials.
We assess significance of differences between algo-
rithms using a two-tailed paired t-test.

Figures 1a–1c show the proportion of generated mes-
sages that were successfully delivered by various rout-
ing algorithms on small-diameter, wide-diameter, and
random waypoint networks with varying buffer sizes.
Note the differences in the scale of the y-axis between
the figures.

Figure 1a: Routing performance on small-diameter
networks with 50 peers and varying buffer size.

Figure 1b: Routing performance on wide-diameter
networks with 50 peers and varying buffer size.

We see from these figures that, while the performance
of all other algorithms (except Broadcast) varies across

the range of network types and buffer sizes, NoCost-
Drop is consistently the top performer. We also see that,
in many cases, the performance of DropDelivered is
roughly equivalent to that of NoCostDrop, indicating
that delivery lists can be very effective on their own. In
fact, we have observed that delivery lists of sufficient
size improve the performance of any of the existing
algorithms we test (FIFO, Random, and DLE).

Figure 1c: Routing performance on random way-
point networks with 50 peers and varying buffer size.

However, there are cases where DropDelivered per-
forms poorly. In wide-diameter networks, delivery lists
are much less effective, in general, probably due to
slower propagation of delivery notifications throughout
the network. Note that, even here, the use of delivery
lists (i.e., DropDelivered) does significantly improve
performance over Random at the larger buffer sizes,
though the improvement is small.

For Figure 1a, NoCostDrop is significantly better than
all other algorithms, except at buffer sizes 5 (DLE is
better) and 100 (DropDelivered is better). DropDeliv-
ered is significantly better than all others besides No-
CostDrop, except at buffer size 5. For Figure 1b, No-
CostDrop is significantly better than all others, except at
buffer size 100 (FIFO is equivalent). DropDelivered is
significantly better than Random at buffer sizes 40 and
above. For Figure 1c, NoCostDrop is significantly better
than all others besides DropDelivered, except at buffer
size 5 (Random is significantly better). DropDelivered
is significantly better than all others besides NoCost-
Drop, except at buffer size 5 (Random is equivalent).
DropDelivered is significantly better than NoCostDrop
at sizes 5, 10, and 100. The p-values for all reported
differences are less than 0.005.

Figure 2 shows the performance of NoCostDrop on
small-diameter networks under various message size
assumptions. The results for the other network types are
qualitatively similar. Random and Broadcast are in-

cluded for reference. Recall that as message size in-
creases, we can store an increasing number of delivery
notifications in the buffer space given up by a single
message. We see a substantial increase in performance
between messages $1K in size and messages % 6K in
size. This indicates that the utility of delivery lists will

Figure 2: Routing performance of NoCostDrop on
small-diameter networks with 50 peers, varying
buffer and message size assumptions.

be application dependent. Specifically, for applications
requiring very small messages (i.e., applications with a
small ratio of message size to message ID size), buffer
space may be better used for storing messages them-
selves, rather than delivery notifications.

For Figure 2, all differences are significant, except at
buffer sizes 5 (infinite is better than the rest and all fi-
nite delivery list algorithms are equivalent and better
than Random) and 100 (5.86K, 50K, and infinite are
equivalent and better than all others). The p-values for

all reported differences are less than 0.005. Figure 3
shows the mean latency of successfully delivered mes-
sages. We also measured the mean number of hops to
delivery (average delivery path length), which yielded
qualitatively similar results to those in Figure 1. That is,
it appears that algorithms with higher delivery rates
generally have higher average hop counts.

We see from Figure 3 that the latency for algorithms
employing delivery lists, NoCostDrop and DropDeliv-
ered, are notably low given the significantly higher pro-
portion of messages delivered by these algorithms. In
fact, on small-diameter and random waypoint networks,
NoCostDrop and DropDelivered have the lowest la-
tency overall. On wide-diameter networks, where deliv-
ery lists propagate much more slowly, the latencies for
NoCostDrop and DropDelivered are higher relative to
the other algorithms. DLE’s low latency on wide-
diameter networks is likely due to its ability to perfectly
segment the traffic in this extremely simple topology
(i.e., if the destination is to the left, the peer to our right
will always have a meeting value lower than the peer to
our left).

For Figure 3a, NoCostDrop is significantly better than
all others, except at buffer sizes 5 (FIFO is better) and
100 (DropDelivered is better). DropDelivered is signifi-
cantly better than all others, except at buffer sizes 5 and
10. For Figure 3b, all differences are significant, except
Random and DropDelivered are equivalent at buffer
size 5. For Figure 3c, NoCostDrop is significantly better
than all others, except at buffer sizes 5 (FIFO is better)
and 100 (DropDelivered is better). DropDelivered is
significantly better than all others at buffer sizes 40 and
above. The p-values for all reported differences are less
than 0.005.

Figure 3: Average latency of delivered messages on (a) small-diameter, (b) wide-diameter, and (c) random
waypoint networks with 50 peers and varying buffer size.

7.3 Varying the Number of Peers
Figures 4a-4c show the proportion of generated mes-
sages that were successfully delivered by various rout-
ing algorithms on small-diameter, wide-diameter, and
random waypoint networks with a varying number of
peers. For these experiments, the buffer size was fixed
at 40 messages. Note the differences in the scale of the
y-axis between the figures.

Figure 4a: Routing performance on small-diameter
networks with buffer size 40 and a varying number
of peers.

Figure 4b: Routing performance on wide-diameter
networks with buffer size 40 and a varying number
of peers.

For Figures 4a-4c, the results are averages over 100
trials. For Figure 4a and 4c, NoCostDrop is significantly
better than all other algorithms, except with 10 peers
(DropDelivered is better). DropDelivered is
significantly better than all others besides NoCostDrop

Figure 4c: Routing performance on random way-
point networks with buffer size 40 and a varying
number of peers.

for all numbers of peers. For Figure 4b, NoCostDrop is
significantly better than all others, except with 10 peers
(all algorithms besides Random are equivalent and are
significantly better than Random). DropDelivered is
significantly better than Random, except with 100 peers
(Random is better) The p-values for all reported differ-
ences are less than 0.005.

We see from figures 4a-4c that the results of these ex-
periments are qualitatively very similar to those shown
in Figures 1a-1c. Again NoCostDrop is the top per-
former across the range of conditions and DropDeliv-
ered performs almost as well, except on wide-diameter
networks. However, there is one striking difference. As
the number of peers increases, the performance of DLE
drops sharply on both small-diameter and random way-
point networks. This performance dip is a direct result
of DLE focusing exclusively on path existence and ig-
noring congestion.

In both small-diameter and random waypoint networks,
central hub peers arise naturally due to the non-
uniformity of meetings between pairs of peers. As the
number of peers in the network increases, some hubs
become so central to the network that they become
overwhelmed with traffic and begin dropping messages
at a high rate. Due to the large number of other peers
these hubs meet with, DLE favors passing messages to
these hubs. As congestion increases, messages are
dropped with increasing frequency.

Figure 5 shows the correlation between the number of
messages received and the proportion of those messages
dropped for each peer in small-diameter networks of 25
and 100 peers and in wide-diameter networks of 100
peers. All peers have a buffer size of 40 messages. The

Figure 5: Number of messages received and propor-
tion of messages dropped by peers using DLE.

results shown are for a single experimental trial, but are
representative of our observations over all 100 trials.
Note that the wide-diameter data is bunched in the
lower left-hand corner of the plot.

We see several things from Figure 5. First, we see that
congestion is a problem in small-diameter networks.
Peers in small-diameter networks create a much larger
number of message copies than peers in wide-diameter
networks. In addition, there is a much larger proportion
of received messages dropped in small-diameter net-
works. Small-diameter networks also have larger differ-
ences in the number of messages received across peers,
which indicates the presence of hubs. The peers that are
more hub-like (receive a larger number of messages)
drop a higher proportion of the messages they receive.
This indicates that congestion is more of a problem for
hubs than for less loaded peers. Finally, we see that
these problems are exacerbated as the number of peers
increases. That is, as the number of peers in the network
increases, hubs receive a larger number of messages and,
correspondingly, drop a higher proportion of the mes-
sages they receive. The results for random waypoint
networks have been omitted for readability due to their
similarity to small-diameter network results.

It turns out that the plot shown in Figure 5 looks qualita-
tively similar if we use FIFO to route messages instead
of DLE. This is what we expect since hubs result from
the network topology, not from a particular routing al-
gorithm. So, why doesn't FIFO exhibit the drop in per-
formance we see with DLE on small-diameter networks
of 100 peers (Figure 4a)?

As we have seen, the DLE algorithm is designed to pre-
dict path existence and it does so quite well. With infi-
nite buffers, it makes a lot of sense to route messages
through hubs. However, when hubs become congested,

DLE's performance suffers because it continues to route
messages into the congested hubs. Recall that a peer
using DLE only forwards a message m to peers with a
higher delivery value for m. On the other hand, a peer
using FIFO forwards all of its messages to every peer it
meets. This allows more messages to be routed around
hubs, when possible, and also gives messages more
chances to be routed through hubs by different peers at
different times. This effect is demonstrated in Figure 6.

Figure 6: Distribution of the number of intermediate
peers receiving each message in a small-diameter
network of 100 peers.

Figure 6 shows the distribution of the number of inter-
mediate peers receiving each message in a small-
diameter network of 100 peers using the DLE and FIFO
algorithms. All peers have a buffer size of 40 messages.
The results shown are for a single experimental trial, but
are representative of our observations over all 100 trials.
An intermediate peer for a message m is any peer that is
neither the source nor the destination of m.

We see from Figure 6 that when peers use DLE, the
number of peers that receive a given message varies
almost uniformly over the possible range. Using FIFO,
on the other hand, a significant proportion of messages
make their way to almost every peer in the network.
Although this may not be very efficient, it appears to be
effective, at least in cases where central peers are con-
gested.

7.4 Discussion
As previously discussed, DLE exploits Cannot-Deliver
and FIFO exploits Delivered-if-Dropped and Is-
Delivered. The DropDelivered algorithm also exploits
Is-Delivered. NoCostDrop utilizes all three no-cost drop
criteria.

NoCostDrop dominates both DLE and FIFO in terms of
delivery rate for all network types and conditions tested.

NoCostDrop also has lower latency overall in both
small-diameter and wide-diameter networks. Further-
more, NoCostDrop is robust to a variety of conditions,
including ones that cause its constituents to perform
poorly (e.g., DLE with a large number of peers).

The use of delivery lists to estimate Is-Delivered (i.e.,
DropDelivered) also appears to dramatically improve
performance across a range of conditions. Given large
enough message sizes, algorithms that use delivery lists
deliver a dramatically higher proportion of messages
and have lower average latency than algorithms that do
not. The exception to this is wide-diameter networks,
where the very simple topology limits the propagation
of delivery notifications.

A major reason for the performance boost we get from
delivery lists is their accuracy in estimating the likeli-
hood of the Is-Delivered criterion. Assuming suffi-
ciently fast propagation of delivery notifications and
sufficient storage for these notifications, our estimates
of Is-Delivered are nearly perfect. On the other hand, it
is not apparent how to obtain perfect estimates of the
Cannot-Deliver or Delivered-if-Dropped criteria even
with perfect information available. This issue is dis-
cussed further in the next section. We know that any
message in a delivery list is absolutely safe to drop. For
the other algorithms, we never know the values of the
drop criteria with certainty. Since we cannot determine
each of the criteria with the same degree of certainty, it
is difficult to make conclusions about the relative im-
portance of the three criteria, independent of the tech-
niques used to estimate them.

It is worth noting that delivery lists may be less effec-
tive when fewer messages are delivered, since they do
not provide as much information in these cases. How-
ever, even in such cases, delivery lists should not de-
grade performance, assuming that resources are
allocated appropriately between the message buffer and
delivery list.

As noted above, delivery lists also seem to improve
average latency. Here, we offer an initial explanation,
but this deserves further study. By dropping delivered
messages as soon as possible, we create more space in
message buffers for undelivered messages. This causes
fewer undelivered messages to be dropped on the way
to their destination, thus decreasing average latency. In
addition, delivery lists provide a type of positive feed-
back mechanism. The more messages are delivered, the
more can be dropped, which further improves the deliv-
ery rate and average latency.

7.5 Routing under Relaxed Assumptions
It is likely that NoCostDrop may be improved by using
more sophisticated estimation techniques or more re-

laxed assumptions about the availability of information.
For some applications, it may be practical to carry out
some amount of communication out-of-band. For others,
peers may have knowledge of their geographic location
through the use of technologies such as GPS. In other
cases, peers may have known connectivity patterns or
we may be able to learn a model of connectivity patterns
offline. Finally, for some applications, we may be able
to control the movement of peers for the purposes of
improving routing. We have started an initial explora-
tion of ways to improve estimates of the no-cost drop
criteria by utilizing these additional resources and
sources of information.

We have tried techniques such as running a simulation
once, estimating Cannot-Deliver values based on the
proportion of successful deliveries between pairs of
peers, and then running the simulation again, routing
using the learned Cannot-Deliver values. So far, this has
yielded only minor performance increases relative to the
performance gains achieved through the use of delivery
lists.

On the other hand, it is not difficult to achieve perfect
estimates of Is-Delivered through the use of out-of-band
communication. If we broadcast delivery notifications
to all peers in the system out-of-band, any peers buffer-
ing a delivered message can drop the message immedi-
ately without the need for maintaining delivery lists.
Based on our findings, this would lead to a huge per-
formance increase in situations where out-of-band
communication is possible, independent of assumptions
about message size.

8 Conclusions and Future Work
DLE and FIFO are representative of the existing routing
algorithms for DTNs. We explain the performance of
these algorithms in terms of their ability to exploit a set
of three no-cost drop criteria (Cannot-Deliver, Is-
Delivered, and Delivered-if-Dropped). We have shown
that DLE exploits Cannot-Deliver, although incom-
pletely, and FIFO exploits Delivered-if-Dropped and Is-
Delivered, although indirectly. In this paper, we intro-
duce the DropDelivered algorithm, which also exploits
Is-Delivered.

By utilizing all three no-cost drop criteria, the NoCost-
Drop algorithm outperforms DLE, FIFO, and DropDe-
livered in terms of delivery rate and, in many cases,
latency as well. We also find that the performance of the
extremely simple DropDelivered algorithm is compara-
ble to NoCostDrop in many cases, and that delivery lists
perform quite well in general. Part of the power of de-
livery lists lies in the fact that they can easily be com-
bined with many existing algorithms.

This work represents a first attempt at explaining rout-
ing performance in disruption tolerant networks. Our
findings suggest a number of interesting research ques-
tions and directions, including:

" How can we more accurately estimate the no-cost
drop criteria? For example: Can we leverage the no-
tifications in delivery lists to better estimate Can-
not-Deliver? How much better can we do with re-
laxed assumptions about the availability of infor-
mation in the network (e.g., message deliveries,
connectivity patterns)? Can we modify DLE and
similar algorithms to account for congestion implic-
itly (e.g., by dropping messages stochastically) or
explicitly?

" How can we combine estimates of the no-cost drop
criteria more effectively to create better routing
algorithms?

" All of the messages that do not meet the no-cost
drop criteria for peer p are equal in the sense that
they are all deliverable and all depend on peer p to
deliver them. However, these messages may not be
equal in terms of the resources required to deliver
them (e.g., the number of peers a message must
pass through on the way to its destination). This
suggests a fourth criterion that could be used to fur-
ther improve performance.

" Are there optimizations that can improve the per-
formance of delivery lists? For example, can we
adaptively set the proportion of buffer space de-
voted to undelivered messages and the delivery list?
Can we reduce the space requirements of delivery
lists, for instance, by using Bloom filters [B70]?

9 Acknowledgments
Thanks to members of the UMass Knowledge Discov-
ery Laboratory for helpful comments on this work at
various stages. Special thanks to Cindy Loiselle for her
help revising the paper.

10 References
[B70] B. Bloom. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communications of the ACM, v.13 n.7,
pp.422–426, July 1970.

[BBL05] B. Burns, O. Brock, and B. Levine. MV Routing and
Capacity Building in Disruption Tolerant Networks. In Proc.
IEEE Infocom,March 2005.

[DFL01] J. Davis, A. Fagg, and B. Levine. Wearable Com-
puters And Packet Transport Mechanisms In Highly Parti-
tioned Ad-Hoc Networks. In Proc. Intl. Symposium on Wear-
able Computers, October 2001.

[GV03] M. Grossglauser and M. Vetterli. Locating Peers With
Ease: Mobility Diffusion Of Last Encounters In Ad hoc Net-
works. In Proc. IEEE Infocom, April 2003.

[JFP04] S. Jain, K. Fall, and R. Patra. Routing in a Delay
Tolerant Network. In Proc. ACM SIGCOMM, Aug 2004.

[JM96] D. B. Johnson and D. A. Maltz. Dynamic Source
Routing In Ad Hoc Wireless Networks. In Mobile Computing,
volume 353 of The Kluwer International Series in Engineer-
ing and Computer Science. Kluwer Academic Publishers,
1996.

[LR00] Q. Li and D. Rus. Sending Messages to Mobile Users
in Disconnected Ad hoc Wireless Networks. In Proc. Mobi-
Com, August 2000.

[LDS04] A. Lindgren, A. Doria, and O. Schelén. Probabilistic
Routing in Intermittently Connected Networks. In Proc.
Workshop on Service Assurance with Partial and Intermittent
Resources, August 2004.

[PR99] C. E. Perkins and E. M. Royer. Ad Hoc On-Demand
Distance Vector Routing. In Proc. IEEE Workshop on Mobile
Computing Systems and Applications, pp.90–100, February
1999.

[SG04] N. Sarafijanovic-Djukic and M. Grossglauser. Last
Encounter Routing Under Random Waypoint Mobility. In
Proc. IFIP-TC6 Networking Conference, May 2004.

[T04] T-Mobile Support Knowledge Base.
http://support.t-mobile.com/knowbase/root/public/
tm21399.htm.

[VB00] A. Vahdat and D. Becker. Epidemic Routing for Par-
tially-Connected Ad hoc Networks. Technical Report CS-
2000-06, University of California San Diego, July 2000.

[ZA03] W. Zhao and M. Ammar. Message Ferrying: Proactive
Routing In Highly-Partitioned Wireless Ad Hoc Networks. In
Proc. IEEE Workshop on Future Trends in Distributed Com-
puting Systems, May 2003.

[ZAZ04] W. Zhao, M. Ammar, and E. Zegura. A Message
Ferrying Approach for Data Delivery in Sparse Mobile Ad hoc
Networks. In Proc. ACM Mobihoc, May 2004.

