Autonomous Shaping: Learning to Predict
Reward for Novel States

George Konidaris Andrew Barto

Technical Report 2005-58

Autonomous Learning Laboratory
Computer Science Department
University of Massachusetts at Amherst

15th September 2005

Abstract

We introduce the use of learned shaping rewards in reinforcement learning tasks,
where an agent uses prior experience on a sequence of tasks to learn a predictor that
estimates intermediate rewards, accelerating learning in later tasks that are related
but distinct. Such agents can be trained on a series of relatively easy tasks in order
to develop a more informative measure of reward that allows them to perform
well on more difficult tasks, without requiring hand coded shaping functions. We
use a rod positioning task to demonstrate that this approach significantly improves
performance even after a very brief training period.

1 Introduction

Although reinforcement learning is well suited to many sequential decision problems,
tasks characterised by delayed reward — where a long sequence of unrewarded actions
are required to reach a reward state — remain difficult to solve efficiently, both in terms
of finding initial solutions, and in terms of convergence towards an optimal solution.
One effective way to speed up learning in such cases is to create a more informative
reward signal using shaping rewards (Dorigo & Colombetti, 1998; Ng et al., 1999;
Perkins & Hayes, 1996) or progress indicators (Matari¢, 1997). Unfortunately, this
requires significant design effort, produces less autonomous agents, and may alter the
optimal solution, leading to unexpected behavior.

We propose that agents that must repeatedly solve the same type of problem should
be able to learn their own shaping rewards, and thus learn to solve difficult problems
quickly after a set of relatively easy training problems. This is accomplished by learn-
ing over two separate representations, each in a different space: a reinforcement learn-
ing representation in problem-space that is Markov for the particular task at hand, and
one in agent-space that may not be Markov but that is retained across successive prob-
lem instances (each of which may require a new problem-space, possibly of a different
size). The agent learns to initially estimate reward for novel states from “sensations”
in agent-space in order to speed up reinforcement learning in problem-space.



Although this method also applies to other types of sequential decision problems,
in this paper we focus on goal-directed exploration tasks because they most clearly
illustrate our point, and we present the results of a simple rod positioning experiment
in which our method significantly improves performance after even a brief period of
training.

2 Background

2.1 Sequences of Goal-directed Tasks

In this paper we are concerned with a series of goal directed exploration problems
(Koenig & Simmons, 1996). In each, the agent is in an environment (a set of states .S
with associated action set A) and must get to some goal state s, where it will receive
a positive goal reward, while receiving a movement penalty for each action. We are
interested in the problem of the initial discovery of s’, which is an embodied search
problem (Koenig & Simmons, 1996; Koenig, 1999) where the agent is performing a
search in an unknown environment by moving through it. This is distinct from the
problem of efficiently achieving convergence over the entire state space once the goal
has been found, for which other methods exist (e.g., Thrun (1992)).

We require that the series of goal-directed problems solved by the agent are related
in the sense that the agent is required to solve a sequence of variations on the same type
of task. Therefore the agent experiences a series of Markov Decision Processes (MDPs)
generated by the same underlying environment (or type of environment), so that each
has the same set of actions (because the agent itself does not change) but a different set
of states, transition probabilities and reward function. At each state the agent receives a
sensation, some portion of which is used to build a descriptor that distinguishes Markov
states in a particular task (generating problem-space), and some (possibly overlapping)
portion of which is consistently present across the series of tasks and retains the same
semantics (generating agent-space). This approach is distinct from that taken in prior
reinforcement learning research on finding useful macro-actions across sequences of
tasks (Bernstein, 1999; Pickett & Barto, 2002; Thrun & Schwartz, 1995) or building
structured representations of a state space to speed up later learning in it (Mahadevan,
2005; Van Roy, 1998), where the tasks must be in the same state space but may have
different reward functions. Taylor and Stone (2005) use a hand-coded transfer function
to seed one task’s value function with learned values from another similar task with
a potentially different state space. However, this requires the explicit construction a
transfer function between each pair of value functions, which implies a systematic and
identifiable relationship between problem-spaces. An appropriate sequence of tasks in
our research requires only that the agent-space semantics remain consistent, so each
task may have its own completely distinct state space.

One simple example of such a series would be a sequence of buildings where a
robot that is equipped with pressure, light and temperature gauges and a map is required
to find a heat source while avoiding obstacles. Each state in the problem-space is
uniquely determined by the robot’s map position and pose, but the sensations received
at each state are meaningful across the series, and thus form the agent-space. The robot
could eventually learn to use its temperature gauge as a heuristic measure of proximity
to the source, and thereby be able to solve more difficult maps in less time, even though
this is not in general sufficient to solve the problem by itself (because it is not Markov
in problem-space).



Note that we require that the individual tasks are distinct, or at least not obviously
identical, since otherwise we can simply transplant state or state-action values from
one to the other.

2.2 Shaping

One popular method for speeding up reinforcement learning in general, and goal-
directed exploration in particular, is shaping (Dorigo & Colombetti, 1998). Although
this term has been applied to a variety of different methods, only two are relevant here.
The first is the gradual increase in complexity of a single task toward some given final
level (e.g., Randlgv and Alstrgm (1998), Selfridge et al. (1985)), so that the agent can
safely learn easier versions of the same task and use the resulting policy to speed learn-
ing as the task becomes more complex. Unfortunately, this type of shaping does not
generally transfer between tasks — it can only be used to gently introduce an agent to a
single task, and is therefore not suited to a sequence of separate goal-directed problems.

Alternatively, the agent’s reward function could be augmented through the use of
intermediate shaping rewards (or “progress indicators” (Matari¢, 1997)) that provide
a more informative reinforcement signal to the agent. Ng et al. (1999) proved that
an arbitrary externally specified shaping reward function could be included in a rein-
forcement learning system without modifying its optimal policy, and Wiewiora (2003)
showed that this is equivalent to the use of shaped optimistic initial values (Sutton &
Barto, 1998). The major drawback here is that this requires significant engineering
effort and results in a loss of agent autonomy. However, an agent may be able to learn
its own reward augmentation function from experience across several tasks, without
having to have it specified in advance.

3 Learning Shaping Rewards

We propose that instead of having a very informative but difficult to engineer rein-
forcement signal, agents should be able to learn to augment their reward structures by
learning which sensory patterns predict reward across tasks. This information can then
be used as a shaping function that provides a first estimate for the value of newly dis-
covered states when learning a value function for a new task. Such an agent would start
off with some pre-specified (possibly random or uniform) shaping function, and then
refine it in several related but distinct problem instances over its lifetime. This is an
instance of layered learning (Stone & Veloso, 2000), where learned shaping is used to
make reinforcement learning more efficient.

Previous work on a realistically simulated robot learning to find a puck in a maze
has shown that using training mazes to learn associations between reward and strong
signals at reward states results in a significant improvement in total reward in a novel
maze (Konidaris & Hayes, 2004). In this paper we present a more general mechanism,
where the agent learns a heuristic from all of the states that it has visited.

3.1 A Framework for Learned Shaping Functions

We consider an agent solving a set of n problems, each with its own state space, denoted
S1, ..., Sn, and assume that learning is taking place over states (the state-action case is
similar). We then view the ith state in task S; (s7) to consist of the following attributes:



I ol pd I
<dj,ci,ri,v; >

where dZ.' is the problem-space state descriptor (sufficient to distinguish this state from
the others in S, perhaps just 7), c{ is an agent-space sensation, rz is the reward obtained
at the state and vzj is the state’s value (expected total reward). We are not concerned
here with the form of df , except to note that it may contain or be disjoint from cz ,
and we assume that estimates of the v{ values of previously observed states have been
obtained by a reinforcement learning algorithm, learning the value function V' ;:

/] J
Vi:d] — vy

This function maps from state descriptor to return, but it is not portable between
tasks because the form and meaning of d (as a problem-space descriptor) may change
from one task to another. However, the form and meaning of ¢ (as an agent-space de-
scriptor) does not, so we define a function L that preserves value information between
tasks, and acts as the agent’s internal shaping reward. L estimates return for novel
states, given the agent-space descriptor received there:

L:c{»—)vf

Once an agent has completed task S; and has learned a good approximation of
the value of each state using V;, it can use its < cz , vzj > pairs as training examples
for a supervised learning algorithm to learn L. Alternatively, training could occur
online during each task, although this may result in noisy or unstable shaping functions.
After a reasonable amount of training, L can be used to estimate a value for newly
observed states in problem-space, and thus provide a good initial estimate for V' that
can be refined using a standard reinforcement learning algorithm. Alternatively (and
equivalently), L could be used as a separate external shaping reward function.

4 A Rodworld Experiment

In this section we empirically evaluate the potential benefits of a learned shaping
function in a rodworld (Moore & Atkeson, 1993). A rodworld consists of a square
workspace which contains a rod, some obstacles, and a target. The agent is required to
maneuver the rod (by moving its base coordinate or its angle of rotation) so that its tip
touches the target while avoiding obstacles. An example 20x20 rodworld and solution
path are shown in Figure 1.

Following Moore and Atkeson (1993), we discretize the state space into unit x and
y coordinates and 10° angle increments. Thus, each state in the problem-space can be
described by two coordinates and one angle, and the actions available to the agent are
movement of one unit either along the rod’s axis or perpendicular to it, or a 10 © rotation
in either direction. If a movement causes an agent to collide with an obstacle it results
in no change in state, so the portions of the state space where any part of the rod would
be interior to an obstacle are not reachable. The agent receives a penalty of 1 for each
action, and a reward of 1000 when reaching the goal (whereupon the episode ends).

We augment the rodworld with five beacons, each of which emit a separate signal
that drops off with the square of the distance from a strength of 1 at the beacon to 0 at
a distance of 60 units. The tip of the rod has a sensor array which can detect the values
of each of these signals at an adjacent state, forming the agent-space, and an element
that learns L and uses it to predict reward given an array of five values representing
these signals.



< <

Figure 1: An 20x20 rodworld and one of its solution paths.

4.1 Experimental Structure

In each experiment, the agent is exposed to a sequence of training episodes, during
which it is allowed to update L. After each training episode, it is evaluated in a large
test case, during which it is not allowed to update L.

Each individual training episode places the agent in a small rodworld, randomly
selected from a randomly generated set of 100 such worlds, where it is given sufficient
time to learn a good solution. Once this time is up, the agent updates L using the value
of each visited state and the sensory signal present at it, before it is tested on the much
larger test rodworld. All state value tables are cleared between training episodes.

Each agent performed reinforcement learning using Sarsa(A) (A = 0.9, = 0.1,y =
0.99, ¢ = 0.01) in problem-space and used training rodworlds that were either 10x10
(where it was given 100 episodes to converge in each training rodworld), or 15x15
(when it was given 150), and tested in a 40x40 rodworld. L was either a linear or
quadratic estimator of reward given the five beacon signal levels as input, resulting in
6 and 11 parameters to be learned, respectively. All of these parameters were initially
set to 0, and learning for L was accomplished using gradient descent (Mitchell, 1997)
with @ = 0.001. We used two experiments with different beacon placement schemes.

4.2 Following a Homing Beacon

In the first experiment, we placed the first beacon at the target location, and randomly
distributed the remainder throughout the workspace. Thus a high signal level from
the first beacon predicts high reward, and the others should be ignored. This is a very
informative indication of reward that should be fairly easy to learn, can be well approx-
imated even with a linear L. Figure 2 shows the 40x40 test rodworld used to evaluate
the performance of each agent, and four sample 10x10 training rodworlds.

Figure 3 shows the number of steps (averaged over 50 runs) required to first reach
the goal against the number of training episodes experienced by the agent for the four
types of learned shaping elements (linear and quadratic L, and either 10x10 or 15x15
training worlds), as well as that required by an agent with a uniform initial value of 0
(agents with a uniform initial value of 500 performed similarly when first finding the
goal). Note that there is just a single data point for the uniform initial value agents



—+

*

N =
’ S
S S

Figure 2: The homing experiment 40x40 test rodworld (a) and four sample 10x10
training rodworlds (b). Beacon locations are shown as crosses, and the goal is shown
as a large dot. Note that one of the beacons is on the target in each world.

(in the upper left corner) because their performance does not vary with the number of
training episodes.

Figure 3 shows that training significantly lowers the number of steps required to
initially find the goal in all cases, reducing it after one training episode from over
100, 000 steps to at most just over 70,000, and by six episodes to between 20, 000 and
40, 000 steps. This difference is statistically significant (by a t-test, p < 0.01) for all
combinations of L and training rodworld sizes, even after just a single training episode.
Figure 3 also shows that the complexity of L does not appear to make a significant dif-
ference to the long-term benefit of training (probably because of the simplicity of the
reward indicator), but the size of the training rodworld does. The difference between
the number of steps required to first find the goal for 10x10 and 15x15 training rod-
world sizes is statistically significant (p < 0.01) after 20 training episodes for both
linear and quadratic forms of L, although this difference is clearer for the quadratic
form, where it is significant after 6 training episodes.

Figure 4 shows the average (again over 50 runs) number of steps required to reach
the goal as the agents repeat episodes in the test world, after having been allowed 20
training episodes (L is still never updated in the test world), as well as the number
required by agents with value tables uniformly initialised to 0 and 500. This illustrates
the overall learning performance of the agents over time on a single new task once they
have been fully trained against that of agents using uniform initial values. Figure 4
shows that the learned shaping heuristic significantly speeds up the first few episodes
and does not damage convergence, taking slightly longer than an agent using 0 as a



120000

T T T T T T T T T
Uniform —e—
10Lin ---x---
10Quad -
15Lin @
100000 15Quad --=-
— 80000
©
o
S
2 B
0 \
oy "
® 60000 F /ot g
LA
g v"// ‘»‘\
i A
i 14
40000 %
20000 1

Training Episodes

Figure 3: The average number of steps required to first reach the goal in the homing
task.

uniform initial value but about the same as that of an agent using 500. This suggests
that once a solution is found the agent must then “unlearn” some of its overly optimistic
heuristic estimates to achieve convergence. Note that a uniform initial value of 0 in this
particular domain works well because it is a deterministic one and a low initial value
discourages extended exploration, but such behavior is not always desirable.

4.3 Finding the Center of a Beacon Triangle

In the second experiment, we arranged the first three beacons in a triangle at the edges
of the rodworld, so that the first beacon lay to the left of the target, the second di-
rectly above it, and the third to its right. The remaining two were randomly distributed
throughout the workspace. This provides richer reward information, but should be a
harder function to learn. Figure 5 shows the 10x10 sample training worlds given in
Figure 2 after modification for the triangle experiment. The test world was similarly
modified.

Figure 6 shows the number of steps initially required to reach the goal for the
triangle experiment, again showing that even a single training episode results in a sta-
tistically significant (p < 0.01 in all cases) reduction from the number required by an
agent using uniform initial values, from just over 100, 000 steps to at most just over
25,000 steps after a single training episode. Figure 6 also shows that there is no signif-
icant difference between forms of L and size of training world. This suggests that the
richness of the useful signal more than makes up for it being difficult to learn correctly
— in all cases the performance of agents learning using the triangle beacon arrange-
ment is better than that of those learning using the homing beacon arrangement. Figure



x 10°

12
Unio
Uni500
10Lin
10 10Quad
15Lin
15Quad
8
©
o
(O]
2 gH
(2]
o
Q
»
200 250

Episodes

Figure 4: Steps to reward against episodes in the homing test world after 20 training
episodes.

Figure 5: Sample 10x10 training worlds for the triangle experiment.

7 shows again that the initial few episodes of repeated learning in the test world are
much faster, and that training does not affect convergence, with the total number of
episodes required to converge again lying somewhere between the number required by
an agent initialising its value table to 0 and one initialising it to 500.

4.4 Conclusions

The above two experiments show that an agent that can learn its own shaping rewards
through training can find an initial solution to a problem in a space in which it has not
trained much faster than an agent that uses uniform initial values, even after only a
few training episodes. They also show that such training does not damage the agent’s
convergence characteristics, even after many training episodes.

The results also seem to suggest that a better training environment is helpful but



120000 T T T T T T T T T
Uniform —e—
10Lin ------
10Quad ---%---
15Lin —a
100000 15Quad --m- | 7
80000 B
T
[}
(0]
2 60000 E
[%2]
Q.
Q2
()
40000 B
[
20000 & g
O 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20
Training Episodes

Figure 6: The average number of steps required to first reach the goal in the triangle
task.

that its usefulness decreases as the reward signal becomes richer, and that increasing
the complexity of L does not appear to significantly improve the agent’s performance.
Although this is a very simple domain, it suggests that given a rich signal from which
to predict reward even an inaccurate estimation of reward is sufficient to improve per-
formance.

5 Discussion

The results given above suggest that agents that employ reinforcement learning meth-
ods can be augmented to use their experience to learn their own shaping rewards. This
could result in agents that are more flexible and display more autonomy than those
with pre-engineered shaping functions. It also creates the possibility of training such
agents on easy tasks as a way of equipping them with knowledge that will make harder
tasks tractable, and is thus an instance of an autonomous developmental learning sys-
tem (Weng et al., 2000). In addition, this system provides another example of the use of
layered learning systems (Stone & Veloso, 2000), and of the interesting and potentially
complex behavior that results from the interaction of two learning systems.

However, the ideas presented here have some drawbacks. Determining the form
of c and selecting an appropriate learning method for L creates a potentially difficult
design problem. We expect that most of the difficulty will lie in choosing an appropriate
¢, which will then allow for the use of a relatively simple learning algorithm, which
should in turn allow for rapid learning and short training times.

Another potential concern is the possibility that a maliciously chosen or unfortunate



x 10°

12
Unio
Uni500
10Lin
10 10Quad
15Lin
15Quad
8
©
o
(O]
2 gH
(2]
o
Q
»
200 250

Episodes

Figure 7: Steps to reward against episodes in the triangle test world after 20 training
episodes.

set of training tasks could result in an agent that performs worse than one with no
training, or becomes overly pessimistic. Alternatively, the learning algorithm chosen
for L or the sensory patterns given to it might result in an agent which is completely
unable to learn anything useful. However, we do not expect such an agent to do much
worse than one without any shaping rewards at all.

5.1 Learned Shaping Rewards and Generalisation through Value
Function Approximation

Learned shaping rewards are used to assign initial values to novel states in problem-
space in order to accelerate the learning of accurate values for those states. This is a
form of generalisation, where the shaping function retains knowledge from experience
with the environment and uses it to better predict state values in later tasks. As such it
is strongly related to the use of value function approximation for generalisation across
states.

In a value function approximation system, some compact value function representa-
tion (such as a neural network) is used instead of a value table, and trained to represent
values experienced at visited states. Novel states evaluated with this value function
may therefore be given values based on previous experience in similar states, and thus
already include previously learned knowledge.

The use of learned shaping rewards coupled with a value function table is distinct
for two reasons. First, it only generalises forwards, and not backwards: novel states are

10



given initial values based on generalisation, but the values of previously encountered
states are never disturbed. Therefore although learned shaping values do not generalise
as broadly, they cannot cause an algorithm that would otherwise converge to fail to do
so, which can occur with function approximation (Sutton & Barto, 1998). They may
therefore be considered a safer form of generalisation.

Second, value function approximation usually only generalises within a single task.
An approximated value function that is used to generalise over one MDP may not be
applicable to another related but distinct MDP, because the semantics of each state de-
scriptor may have changed (as a trivial example, consider two MDPs that are identical
to each other but with different goal states), and because the size of the input to the
approximator may have changed. A learned shaping function, by virtue of its split
representation, can be used to generalise across a series of distinct tasks provided the
agent-space semantics are consistent.

There is also an important point that should be made here: there is a formal dif-
ference between an MDP state label in problem-space and the sensory input received
at that state. A problem-space state descriptor should ideally be the smallest piece of
information that is sufficient to discriminate between states, so that the agent is solving
the smallest possible faithful model of the underlying problem. Using sensor input as a
state descriptor might facilitate generalisation, but it also often results in a state space
that is both very large (thus necessitating generalisation) and too small (because it is
not Markov). It may be better to factor the sensory input so that (some function of) a
small subset of it is used as a problem-space Markov state descriptor, and the remainder
used by a learned shaping function or some other separate element for generalisation.

This is most obviously true for navigation problems. Returning to the example of
the robot learning to find a heat source in a map, the map itself is sufficient to distin-
guish the robot’s states, and including its sensor readings into its state descriptor would
vastly increase the size of the state space without changing the size of the underlying
problem. It is much easier, and conceptually much cleaner, to use the compact descrip-
tor given by some discretisation of the map to generate a very small problem-space,
and then use a separate learning element to generalise by learning to estimate novel
state rewards from its remaining sensors.

5.2 Shaping Reward as a Search Heuristic

It is unlikely that in any useful scenario an agent will be able to learn an accurate
measure of value in L — if it could, we could do away with reinforcement learning
altogether and simply ascend L. Instead, we expect to be able to learn a rough approx-
imation of value that functions as a heuristic.

In standard classical search algorithms, such as A*, a heuristic gives an inexact,
rule-of-thumb measure for the distance between a particular node in the search space
and the goal. This is combined with knowledge of how far that node is from the start
node to obtain the total estimated distance from the start node, through the node un-
der consideration, to the goal. During the search process, nodes which have not yet
been considered are opened in order of increasing estimated total distance. Thus,
guided search methods like A* use a heuristic to order the selection of unvisited nodes,
whereas unguided search methods use some arbitrary ordering (e.g., a stack and a queue
for depth- and breadth-first search, respectively) instead.

In an embodied search, the agent must physically search some unknown environ-
ment, and thus can only keep a single node “open” at any one time. In algorithms
like Learning-Real-Time A* (LRTA*) (Korf, 1990), the agent uses a heuristic measure

11



combined with the cost of reaching the nodes open to it to determine where to go next,
overwriting the heuristic values of visited nodes with that of the cost of reaching the
nearby node with the smallest estimated total cost (heuristic plus transition cost). Since
Real-Time Dynamic Programming (RTDP) is the stochastic generalisation of LRTA *
(Barto et al., 1995), and shaping rewards act to order the selection of unvisited nodes
and RTDP updates their values in exactly the same way, shaping rewards provide a
heuristic initialisation of the value function in an embodied search problem when ap-
plied along with RTDP to goal-directed tasks. Therefore, agents solving embodied
search problems that are able to learn their own shaping functions can effectively learn
their own heuristics.

6 Conclusion

In this paper have introduced the use of learned shaping rewards in a sequences of
goal-directed reinforcement learning tasks. This is accomplished by having two sepa-
rate representations: a Markov problem-space representation for reinforcement learn-
ing that differs for each task, and an agent-space representation which does not. The
second representation is used to learn a shaping function that can provide value predic-
tions for novel states across tasks in order to speed up learning in problem-space. Our
experimental results show that the use of learned shaping rewards can significantly im-
prove performance in a rod positioning experiment with even a single training episode.

Acknowledgements

We would like to thank Gillian Hayes, Colin Barringer, Sarah Osentoski and Ozgiir
Simsek for their useful comments. Andrew Barto was funded by NSF grant CCF
0432143 and a grant from DARPA’s IPTO program.

References

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, 72, 81-138.

Bernstein, D. (1999). Reusing old policies to accelerate learning on new MDPs (Tech-
nical Report UM-CS-1999-026). Department of Computer Science, University of
Massachusetts at Amherst.

Dorigo, M., & Colombetti, M. (1998). Robot shaping: An experiment in behavior
engineering. MIT Press/Bradford Books.

Koenig, S. (1999). Exploring unknown environments with real-time search or rein-
forcement learning. Advances in Neural Information Processing Systems (NIPS) 12
(pp- 1003-1009).

Koenig, S., & Simmons, R. (1996). The effect of representation and knowledge on
goal-directed exploration with reinforcement-learning algorithms. Machine Learn-
ing, 22,227 - 250.

12



Konidaris, G., & Hayes, G. (2004). Estimating future reward in reinforcement learning
animats using associative learning. From Animals to Animats 8: Proceedings of the
8th International Conference on the Simulation of Adaptive Behavior (pp. 297-304).

Korf, R. (1990). Real-time heuristic search. Artificial Intelligence, 42, 189-211.

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning.
Proceedings of the Twenty Second International Conference on Machine Learning
(ICML 05).

Matari¢, M. (1997). Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4, 73-83.

Mitchell, T. (1997). Machine learning. McGraw-Hill.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with
less data and less time. Machine Learning, 13, 103—130.

Ng, A., Harada, D., & Russell, S. (1999). Policy invariance under reward transforma-
tions: theory and application to reward shaping. Proceedings of the 16th Interna-
tional Conference on Machine Learning (pp. 278-287).

Perkins, S., & Hayes, G. (1996). Robot shaping — principles, methods and archi-
tectures. Artificial Intelligence and Simulation of Behaviour 1996 — Workshop on
Learning in Robots and Animals.

Pickett, M., & Barto, A. (2002). Policyblocks: An algorithm for creating useful macro-
actions in reinforcement learning. Proceedings of the Nineteenth International Con-
ference of Machine Learning (ICML 02) (pp. 506-513).

Randlgv, J., & Alstrgm, P. (1998). Learning to drive a bicycle using reinforcement
learning and shaping. Proceedings of the 15th International Conference on Machine
Learning (pp. 463-471).

Selfridge, O., Sutton, R. S., & Barto, A. G. (1985). Training and tracking in robotics.
Proceedings of the Ninth International Joint Conference on Artificial Intelligence
(pp. 670-672).

Stone, P., & Veloso, M. (2000). Layered learning. Proceedings of the 11th Euro-
pean Conference on Machine Learning (pp. 369-381). Barcelona, Spain: Springer,
Berlin.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

Taylor, M., & Stone, P. (2005). Value functions for RL-based behavior transfer: a
comparative study. Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI-05).

Thrun, S. (1992). Efficient exploration in reinforcement learning (Technical Report
CS-92-102). Carnegie Mellon University.

Thrun, S., & Schwartz, A. (1995). Finding structure in reinforcement learning. Ad-
vances in Neural Information Processing Systems (pp. 385-392). The MIT Press.

13



Van Roy, B. (1998). Learning and value function approximation in complex decision
processes. Doctoral dissertation, Massachusetts Institute of Technology.

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., & Thelen,
E. (2000). Autonomous mental development by robots and animals. Science, 291,

599-600.
Wiewiora, E. (2003). Potential-based shaping and Q-value initialization are equivalent.

Journal of Artificial Intelligence Research, 19, 205-208.

14



