
1

Inference and Evaluation of Split-Connection
Approaches in Cellular Data Networks

Wei Wei†, Chun Zhang†, Hui Zang‡, Jim Kurose†, Don Towsley†
†Department of Computer Science

University of Massachusetts, Amherst, MA 01003
‡Sprint Advanced Technology Laboratories, Burlingame, CA 94010

UMass Computer Science Technical Report 2005-59

Abstract

Numerous mechanisms have been proposed for improving TCP performance over wireless links, including those

in wireless cellular networks. In this paper, we infer the existence and investigate the performance of one class of

these performance-enhancing approaches, split-connection approaches, in commercial cellular data networks. Special

attention is given to the so called Split-TCP and TCP proxy approaches. We present inference techniques to identify

whether a cellular provider implements Split-TCP or TCP proxy. Through end-to-end measurements over commercial

cellular networks operated by three different providers (including two CDMA2000 networks and one GPRS network),

we find that all three providers selectively implement Split-TCP or TCP proxy for certain applications (e.g., HTTP).

We also find that the implementations differ from provider to provider. Experimental results demonstrate that the

performance gains from Split-TCP depend on flow sizes and that TCP proxy using data compression outperforms

Split-TCP.
I. INTRODUCTION

The explosive growth of wireless networks poses challenges to existing network protocols and applications that are

designed for wired networks. For instance, TCP, the most widely used transport protocol in the Internet, has been

shown to perform poorly in wireless networks [1]. Numerous mechanisms have been proposed for improving TCP

performance over wireless links, including those in wireless cellular networks. These approaches fall broadly into three

classes [2], [3], [4]: link layer approaches, end-to-end approaches, and split-connection approaches. Split-connection

approaches insert a split point between the wireless and wired host, thus splitting the end-end TCP connection into

two connections: one between the wired host and the split point, and the other between the split point and the wireless

host (e.g., [5]). The main idea behind split-connection is to isolate wireless related issues from the TCP sender (which

usually resides on the wired network). Our focus in this paper will be on two split-connection techniques: (1)Split-

TCP, in which a split point splits the original TCP connection into two concurrent connections; (2)TCP proxy, in

which a proxy, located at the split point, first receives all the data from the sender and only then forwards the data

to the receiver. The proxy may also execute performance-enhancing functions such as caching or data compression

before forwarding the data. Note that TCP proxy differs from Split-TCP in that the proxy obtains the data first and

then forwards it to the receiver, while data flows simultaneously in the two connections in Split-TCP. In the rest of the

paper, we refer to a TCP connection using the split-connection technique as a split-connection TCP and refer to the

traditional end-to-end TCP implementation as regular TCP.



2

In this paper, we ask the following question: Have split-connection techniques such as Split-TCP or TCP proxy been

deployed in commercial cellular networks? If so, what are the performance gains from these techniques? We answer

this question by conducting end-to-end experiments in commercial networks operated by three different providers

(including two CDMA2000 networks and one GPRS network). Our paper makes the following contributions:
• We design techniques to detect/infer the existence of performance-enhancing mechanisms such as Split-TCP and

TCP proxy. Our empirical measurements indicate that all three providers selectively implement Split-TCP or TCP

proxy for certain applications (e.g., HTTP). We also find that the performance-enhancing mechanisms deployed

differ from provider to provider.
• Using end-to-end measurements, we study the performance gains provided by Split-TCP and TCP proxy. Empir-

ically, we find that the performance gains can sometimes be dramatic.
• We characterize the behavior of Split-TCP, TCP proxy and regular TCP in cellular networks. Our observations are

important for modeling TCP in cellular networks. We also explore practical issues in implementing Split-TCP,

e.g., whether the TCP connections are terminated gracefully when a connection is aborted.

Most proposals to improve TCP performance in wireless networks have been evaluated through analysis and/or

simulation; there are very few performance studies of real implementations of TCP or measurements in an operational

network. In [3], the authors compare mechanisms for improving TCP performance over wireless links by conducting

experiments on a testbed. The testbed environment, however, does not reflect the effects of scheduling in a cellular data

network [6], and has wireless link bandwidth that is much higher than that typically available in today’s cellular data

networks. Our experiments, on the other hand, are conducted in commercial cellular data networks and thus directly

consider the influence of various mechanisms (e.g., scheduling) that are used in practice in these data networks. A

recent study measures TCP performance in GPRS networks by analyzing traces collected at the gateway of the wireless

provider’s network to the public Internet [7]. The behavior of the wireless network is inferred from the trace. We differ

from this work in that our measurements are end-to-end, with a focus on end-to-end characteristics and the use of

split-connection approaches.

The rest of the paper is organized as follows. Section II describes our experimental setup. The study of the de-

ployment of split-connection approaches is described in Section III. A performance evaluation of Split-TCP and TCP

proxy is presented in Section IV. Finally, Section V concludes the paper.

II. EXPERIMENT CONFIGURATION

We conduct experiments over three commercial cellular data networks operated by three service providers, named

as CDMA-I, CDMA-II, and GPRS-I, based on the technology that they use. All of our experiments are TCP-based.

Our goal is two-fold: (i) to detect whether split-connection techniques are used in these commercial networks, (ii) to

characterize split-connection TCP and quantify the performance gains from split-connection techniques.

Figure 1 illustrates the basic configuration for our experiments. A wired host, shown as the desktop in Figure 1, is

connected via an Ethernet interface to a LAN, which in turn is connected to the Internet via a high-speed wired link.

A mobile station, shown as the laptop, is connected to the Internet via the cellular service provider’s network using

a commercial wireless data card (also referred to as an aircard) sold by the service provider. The desktop is a Linux



3

Desktop 
Internet 

Cellular 
Network 

Laptop 

Downlink measurements 

Uplink measurements 

Fig. 1. Experiment configuration.

server running RedHat 9.0 and the laptop runs Windows XP. In the rest of the paper, we refer to the desktop as the

wired host and the laptop the mobile.

We call an experiment a downlink experiment if the data packets (relative to ACKs) flow from the wired host to

the mobile, and an uplink experiment otherwise. We conduct HTTP downloads (to the mobile), FTP downloads (to

the mobile), FTP uploads (from the mobile), and a general TCP-based file transfer using our own program in both

directions. For HTTP or FTP experiments, an Apache HTTP server or an FTP server runs on the wired host. For the

general TCP-based file transfer, we set up a TCP server running on the wired host (or mobile) that accepts connections

from the mobile (or wired host) on a pre-determined port.

In all experiments, we collect packet traces using tcpdump [8] on the wired host and windump [9] on the mobile. To

obtain one way end-to-end delays, we use software on Linux and Windows XP to synchronize clocks at the sender and

receiver. All experiments are performed from January to October, 2005.

III. INFERRING DEPLOYMENT OF SPLIT-CONNECTION MECHANISMS

In this section, we describe passive and active techniques to detect the use of split-connection mechanisms. We

then apply these techniques to determine whether TCP connections carrying different application-layer protocols (e.g.,

FTP, HTTP) are split inside the three providers’ networks. We then illustrate the characteristics of Split-TCP and TCP

proxy. Last, we explore an implementation issue, namely, graceful termination of Split-TCP.

A. Techniques to detect split-connection

In some cases, a split TCP connection can be detected by visually inspecting the tcpdump trace. For instance, the

sender (or receiver) IP address on packets sent by the sender (e.g., the wired host) may differ from these on packets

received at the receiver (e.g., the mobile). Also the payload size, receiver window size, IPID or even transport protocol

may change. However, these are not necessary conditions for a split-connection. For example, we find that IP spoofing

can be used by a split point to hide split-connection approaches. In the following, we describe passive and active

methods to detect split TCP connections. The passive method only requires passively observing the timing information

of a TCP connection while the active method requires actively delaying the ACKs at the receiver. We summarize the

passive and active methods in Method 1, 2 and 3. A detailed discussion is omitted in the interest of space and can be

found in [10].



4

sender split point receiver 
D s 

i 

A r j 

A s 
j 

D r i 

(a)

sender receiver 

R sp 

D pr 

T r ack 

split point 

T p 

D sp 

(b)

Fig. 2. Passive detection of split-connection: (a) detection method when the sender and receiver clocks are not synchronized; (b) condition for

effective detection.

We first present our passive detection methods. Consider an arbitrary packet from the sender to the receiver1. After

receiving the packet, the receiver generates an ACK and sends it to the sender at time Ar. Let As denote the receiving

time of this ACK at the sender. Then we have the following result to detect split-connection:

Method 1: (Passive detection method)When the clocks at the sender and the receiver are perfectly synchronized,

a split TCP connection can be detected if there exists a packet with As < Ar.

The main idea of this detection method is as follows. When the sender and receiver clocks are synchronized, for a

regular TCP, we must have As ≥ Ar. Therefore, a violation of this inequality indicates that the connection is split.

When the clocks at the sender and receiver are not synchronized, we generalize the above result to detect a split-

connection as follows. Consider two arbitrary packets, packet i and j, j ≥ i, as shown in Fig. 2(a). For the i-th packet,

let Ds
i be its sending time at the sender and Dr

i be its receiving time at the receiver. For the j-th packet, let Ar
j be the

time when the receiver returns the corresponding ACK and As
j be the receiving time of this ACK at the sender. Then

we have the following more generalized method to detect split-connection:

Method 2: (Generalized passive detection method) When the offsets of the clocks at the sender and the receiver

are fixed, a split TCP connection can be detected if As
j − Ds

i < Ar
j − Dr

i for any i, j, 1 ≤ i < j ≤ n, where n is the

length of the trace.

The main idea of this detection method is as follows. For a regular TCP, we must have As
j − Ds

i ≥ Ar
j − Dr

i since

the i-th packet cannot reach the receiver before it is sent by the sender, and the ACK for the j-th packet cannot reach

the sender before it is returned by the receiver. When applying Method 2, we set i = 1, vary j from 1 to n. Method 2

requires that the offsets of the two clocks are fixed. In practice, we assume that the offset variation between the sender

and the receiver lies within a small error threshold. This is reasonable since our experiments are short (within tens of

minutes).

We find that our passive detection methods are very effective in detecting downlink split-connection but ineffective

for the uplink direction. We briefly explain this for the case that the sender and receiver clocks are synchronized;

the case for unsynchronized clocks is similar. Consider an arbitrary packet in a Split-TCP connection, as shown in
1We refer to data packets (relative to ACKs) simply as packets.



5

Fig. 2(b). For this packet, let Rsp denote the RTT of the TCP connection between the sender and the split point; let

Dsp be the one-way delay from the sender to the split point; let Dpr be the one-way delay from the split point to the

receiver. After receiving a packet, if the split point cannot forward the packet immediately to the receiver, it queues

the packet in a buffer. For the packet we consider, let Tp be its queuing delay at the split point. Finally, suppose that,

after receiving the packet, the receiver returns the corresponding ACK after an interval of T r
ack. Then the sufficient

condition to detect split-connection (i.e., As < Ar in Method 1) is equivalent to Rsp < Dsp + Tp + Dpr + T r
ack.

In the downlink direction, since the bandwidth from the sender to the split point is much higher than that from the

split point to the receiver, the queuing (buffering) delay of a packet at the split point, Tp, is large (tens of seconds, see

Section III-B.1). Therefore, the sufficient condition for detecting split-connection is easily satisfied. This is not true

for the uplink direction since Tp is not sufficiently large.

We next describe an active detection method for the uplink direction.

Method 3: (Active detection method) At the receiver, we delay every ACK by a time interval of T before it is

returned to the sender. Let {Ri}n
i=1 denote the sequence of round-trip times (RTTs) measured at the sender, where n

is the length of the trace. Ifmin1≤i≤n{Ri} < T , then the TCP connection is split.

Note that this active method requires no clock synchronization or fixed clock offsets between the sender and the

receiver. For all our experiments, we combine our detection methods and visual inspection of tcpdump traces to deter-

mine whether a TCP connection is split. After detecting a split-connection, we further determine whether TCP proxy

or Split-TCP is used. In the uplink direction, differentiating the use of a TCP proxy and Split-TCP is straightforward.

When a TCP proxy is used, the receiver will experience a relatively long delay before receiving any data packets since

the speed of the wireless connection is very low and the file downloading at the proxy is slow. In the downlink di-

rection, we differentiate a TCP proxy from Split-TCP based on the receiver advertised window size (i.e., the available

receiving buffer size at the receiver), which is embedded in the ACKs and received at the sender. When Split-TCP is

used, we observe that the receiver window alternates between zero and the full size of the receiving buffer, indicating

that the receiver buffer is filled and then depleted by the mobile user. When a TCP proxy is used, the receiver window

size is essentially constant since the proxy consumes a packet as soon as the packet is received. Another indication

of a TCP proxy is: when repeatedly downloading the same file, later downloads may not be from the original server;

instead the file is retrieved from the cache at the TCP proxy.

B. Use of split-connection in commercial networks

We now report the prevalence of split-connections in the three providers’ networks using the techniques described

earlier. The results are summarized in Table I for easy reference.

1) Use of split-connection by FTP: In each provider’s network, we run FTP in both the downlink and uplink

directions. Using the methodologies described in Section III-A, we find that CDMA-I and CDMA-II use Split-TCP in

both directions, while GPRS-I does not split TCP connections for FTP. We next describe the results for our two CDMA

networks in more detail.

In CDMA-I’s network, visual inspection of tcpdump traces does not reveal the use of split-connection. However,

using our passive and active detection techniques, we find that split-connection is used in both the downlink and uplink



6

TABLE I
SPLIT-CONNECTION SCHEMES DEPLOYED BY DIFFERENT PROVIDERS

CDMA-I CDMA-II GPRS-I
FTP Split-TCP Split-TCP No
HTTP data TCP proxy/Split-TCP Split-TCP Split-TCP
HTTP image TCP proxy TCP proxy TCP proxy
TCP No No Split-TCP(optional)

directions. For traces collected in the downlink direction, according to Method 2, we set i = 1 and vary j from 1 to

the length of the traces and observe a significant number of packets (over 60%) satisfying the condition in Method 2.

Hence, we conclude that a split-connection is used in the downlink direction. In the uplink direction, we delay ACKs by

10 seconds using Nistnet [11] at the receiver, which is a wired host at University of Massachusetts, Amherst (UMass).

We then measure the RTTs at the TCP sender and find that they all fall below 10 seconds, which implies that the TCP

connection is split (see Method 3).

In CDMA-II’s network, we directly observe the IP address of the split point in received packets. Furthermore, the

protocol used in the connection between the split point and the mobile is changed to UDP2. The above visual inspection

indicates the use of split-connection techniques.

2) Use of split-connection by HTTP: We conjecture that different techniques may be applied to HTTP data and

image objects in cellular data network due to the special characteristics of images. We therefore conducted two sets of

experiments. In the first set of experiments, a mobile host requests an HTTP data object from a web host. In the second

of experiments, an HTTP image is requested. Using the methodology in Section III-A, we find that CDMA-I uses a

TCP proxy for both HTTP data and images3; CDMA-II and GPRS-I use Split-TCP for HTTP data and TCP proxy for

HTTP image, as summarized in Table I.

3) Use of split-connection by TCP: We also run TCP experiments using our own programs in both downlink and

uplink directions, using a port different from that used by FTP and HTTP. For this case, we find that a regular TCP

connection is used in CDMA-I and CDMA-II’s network. GPRS-I allows the mobile user to explicitly split a TCP

connection. When the user chooses to split the connection, the TCP connection is split. Otherwise, it is not split.

C. Characteristics of Split-TCP and TCP proxy

We now compare the sender throughput and end-to-end delay of Split-TCP, TCP proxy and regular TCP using traces

collected in CDMA-I’s network; similar results were observed in CDMA-II and GPRS-I network. The traces for Split-

TCP, TCP proxy and regular TCP were collected using FTP, HTTP and our programs respectively. All traces were in

the downlink direction. We observe that, when using Split-TCP, the throughput measured at the sender is very bursty:

the sender alternates between transmitting for a very short period of time and not transmitting. One example is shown in

Fig. 3(a), which plots a time series of the sender throughput averaged every second. Correlating the sender throughput

and the receiver window size (returned from the split point) (plotted in Fig. 3(a) and Fig. 3(b) respectively), we find

that the sender stops sending because the receiving buffer at the split point is full and resumes sending when there is
2We speculate that UDP tunneling is used between the split point and the mobile. That is, TCP packets are encapsulated into UDP packets.
3We observe that CDMA-I originally used TCP proxy and switched over to Split-TCP for HTTP data after September, 2005.



7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100

th
ro

ug
hp

ut
 (

M
bp

s)

sending time (sec)

Regular TCP
Split-TCP

(a)

 0

 5

 10

 15

 20

 25

 30

 10  20  30  40  50  60  70  80  90  100

R
ec

ei
ve

r W
in

do
w

 S
iz

e 
(K

by
te

s)

ACK Time (sec)

(b)

 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100

on
e-

w
ay

 e
nd

-to
-e

nd
 d

el
ay

 (s
ec

)

sending time (sec)

TCP Proxy

Split-TCP

Regular TCP

(c)

Fig. 3. Characteristics of Split-TCP, TCP proxy and regular TCP: (a) sender throughput; (b) receiver windows size of Split-TCP; (c) end-to-end

delay

space in the buffer. The sender throughput when using regular TCP is much less bursty than that when using Split-TCP

(see Fig. 3(a)). When using TCP proxy, the sender transmits at a rate of approximately 17Mbps and completes the

transfer quickly (in 1 second). The receiver completes the downloading much later (in around 200 seconds) due to the

low bandwidth of cellular network.

Fig. 3(b) plots the end-to-end delays using Split-TCP, TCP proxy and regular TCP. Packets are indexed by their

sending time at the sender. We observe that the end-to-end delays when using Split-TCP fluctuate and in general

can be longer than those when using regular TCP: when using Split-TCP, most of the end-to-end delays lie above 10

seconds, while the end-to-end delays are below a few seconds using regular TCP. The very long end-to-end delays

of Split-TCP (which were observed to be as long as 100 seconds in some traces) are caused by the buffering at the

split point. When using TCP proxy, end-to-end packet delay varies from a few seconds to more than 200 seconds.

Furthermore, packets in the later part of the file exhibit longer delay. This is expected since all packets reach the TCP

proxy quickly and packets in the later part of the file need to wait longer at the proxy before being transmitted to the

receiver.

D. Graceful Termination of Split-TCP

Since Split-TCP violates the end-end semantics of TCP, one potential concern is that TCP connections (between

the sender and the split point and between the split point and the receiver) may not terminate gracefully when a

TCP connection is aborted in the middle. We investigate this issue by downloading 2M bytes HTTP data objects

from a UMass web server, and aborting the download while in progress. We observe that, for CDMA-II, both TCP

connections terminate immediately after the downloading is aborted. For CDMA-I, the TCP connection between the

split point and the client is terminated within a few seconds, while the TCP connection between the server and the split

point is terminated within 40 seconds. For GPRS-I, only the TCP connection between the split point and the client is

terminated. The TCP connection between the server and the split point continues for about 12 minutes. During this

period, the server continually probes the available receiving buffer size at the split point, always receiving zero as the

reply. This is because the TCP session between the split point and the client is already terminated and hence the data



8

TABLE II
PERFORMANCE IMPROVEMENT FROM SPLIT-TCP OVER REGULAR TCP

West Coast East Coast
File Size Throughput Split-TCP Throughput Split-TCP
(KBytes) Improvement Throughput(Kbps) Improvement Throughput(Kbps)

1 -24% 18 -32% 18
5 64% 59 26% 42
10 65% 72 56% 63
50 41% 87 97% 94
100 26% 111 51% 95
500 5% 119 13% 124
1000 0% 120 7% 123

in the receiving buffer cannot be removed.

IV. PERFORMANCE GAINS FROM SPLIT-CONNECTION TECHNIQUES

In this section, we quantify the performance gains from Split-TCP and TCP proxy techniques.

A. Performance gains from Split-TCP

For a fair performance comparison between Split-TCP and regular TCP, we compare them using the same applica-

tion. From experiments, we learned that, in CDMA-I’s network, a connection running FTP uses Split-TCP if the FTP

server runs on (listens to) the regular FTP control port (port 21). Otherwise, the connection is not split. Based on this

observation, we compare the performance of Split-TCP and regular TCP using FTP in CDMA-I’s network.

We configure two FTP servers (wired hosts) running on different ports: one on port 21 and the other on a port

other than 21. The two servers are co-located on the west coast. To explore the effect of the server-client distance

on performance, we configure two clients (mobiles), one on the east coast and the other on the west coast. A client

alternatively connects to each server to download a file. We vary the file size from 1K to 1000K bytes. Each experiment

is repeated at least 100 times. All experiments are conducted after midnight, in order to reduce the influence of rate

fluctuation caused by cellular voice users. Our performance metric is average throughput.

Table II summarizes the results over all experiments. We observe that the average throughput increases with the

file size for both Split-TCP and regular TCP. For very small file sizes, Split-TCP performs worse than regular TCP.

This is because, for a very small file, (which can fit in one packet), a single packet is transferred and the split point in

Split-TCP only introduces additional delay. In all the other cases, Split-TCP outperforms regular TCP. Furthermore,

the performance gains from using Split-TCP depend on the file size: the performance gains initially increase with the

file size, reach a maximum value and then decrease with the file size. This can be explained intuitively as follows. At

the beginning of a connection, a Split-TCP sends faster than a regular TCP. This is because, when using Split-TCP, the

RTTs of the connection between the split point and the mobile host are less than those of a regular TCP, leading to a

faster ramp-up of the TCP window. Furthermore, the initial window size at a Split-TCP may be larger than that in a

regular TCP [12], [13]. Channel scheduling inside a cellular network may further increase the rate difference between a

Split-TCP and a regular TCP, since a connection with a higher sending rate may be assigned with a higher bandwidth,



9

e.g. via the assignment of additional channels [14]. However, the throughputs of a Split-TCP and a regular TCP

eventually become the same when both reach the maximum bandwidth allowed by the cellular network. Therefore, the

throughput gains from Split-TCP initially increase and then decrease with the file size. From Table II, we also observe

that Split-TCP provides more dramatic improvements when the server and client are far away from each other.

We next evaluate the performance gain using analysis. For ease of exposition, we refer to the TCP session between

the sender and the splitting point as the upstream TCP and the other session between the splitting point and the receiver

as the downstream TCP. Let v denote the mobile data rate assigned by the cellular network. Let r1 and r2 denote the

RTT of upstream TCP and downstream TCP respectively. As the sending rate reaching v, Split-TCP and regular

TCP have the same throughput. We therefore only focus on the time required for the sending rate to reach v using

regular TCP and Split-TCP, denoted as Tregular and Tsplit respectively. In regular TCP, we assume that the TCP

session has not finished slow start when its sending rate reaches v. Let n be the number of round trip needed for the

regular TCP throughput to reach v. Then we have 2ns = (r1 + r2)v, where s denotes the size of a packet. Hence,

n = log(r1 + r2)v/s. Then Tregular = n(r1 + r2) = (r1 + r2) log(r1 + r2)v/s.

In Split-TCP, we first assume that the downstream TCP does not go through slow start. Instead, the initial window

size is r2v. That is, the downstream TCP fully utilizes the sending rate. The upstream TCP performs slow start and

has not finished slow-start when its sending rate reaches v. The upstream TCP needs log(r2v/s) rounds to reach this

window size. The total time to reach this window size is Tsplit = r1 log(r2v/s).

Tregular − Tsplit = (r1 + r2) log[(r1 + r2)v/s] − r1 log(r2v/s)

= (r1 + r2) log[r2(1 + r1/r2)v/s] − r1 log(r2v/s)

= (r1 + r2)(log(r2v/s) + log(1 + r1/r2)) − r1 log(r2v/s)

≈ (r1 + r2)(log(r2v/s) + r1/r2) − r1 log(r2v/s)

= r1 log(r2v/s) + r2 log(r2v/s) + r2
1/r2 + r1 − r1 log(r2v/s)

≈ r1 + r2 log(r2v/s)

The approximations hold because r1/r2 is small.

When v = 128 kbps, s = 1500 bytes, r1 = 0.03 second, r2 = 0.8 second. We have Tregular −Tsplit ≈ 2.5 seconds.

The amount of data downloaded by regular TCP before the sending rate reaches v is 25K bytes without using delayed

ACK and 50K bytes when using delayed ACK. This explains why the largest relative performance gain is observed

when the file size is around 50K bytes. As the file size increases or decreases, the relative difference between regular

TCP and Split-TCP decreases.

We now assume that the downstream TCP performs slow start. In this case, Tsplit = r2 log(r2v/s). We have

Tregular − Tsplit = (r1 + r2) log[(r1 + r2)v/s] − r2 log(r2v/s)

= (r1 + r2) log[r2(1 + r1/r2)v/s] − r2 log(r2v/s)

= (r1 + r2)(log(r2v/s) + log(1 + r1/r2)) − r2 log(r2v/s)

≈ (r1 + r2)(log(r2v/s) + r1/r2) − r2 log(r2v/s)



10

= r1 log(r2v/s) + r2 log(r2v/s) + r2
1/r2 + r1 − r2 log(r2v/s)

= r1 log(r2v/s) + r2
1/r2 + r1

≈ r1(log(r2v/s) + 1)

Note that, this difference is roughly proportional to r1, which explains why the performance gain from Split-TCP is

more dramatic when the server and client are far away from each other. Using the parameters in the earlier example,

we have Tregular − Tsplit ≈ 0.12 second, indicating only a slight performance improvement by using Split-TCP.

However, when considering the effect of scheduling, this improvement might be larger, as discussed below. When

using Split-TCP, data flow to the wireless network faster than using regular TCP, since the throughput in the upstream

TCP session in Split-TCP is higher. Therefore, supplemental channels are more likely to be assigned to a connection

using Split-TCP than one using regular TCP, leading to a higher data rate in Split-TCP.

B. TCP proxy versus Split-TCP

We next compare the performance of TCP proxy and Split-TCP by downloading an image and a data file with the

same size using HTTP in CDMA-I’s network (Note that in Table I, in CDMA-I’s network, after September, 2005,

TCP proxy is used for HTTP images while Split-TCP is used for HTTP data). The size of both files is 1.5M bytes.

In the experiments, a wired host acts as the server and a mobile acts as the client. Both the server and the client are

located at UMass. When using HTTP, the image is compressed to a lower-quality image of 150K bytes while no

compression is performed for the data file. We conduct 40 back-to-back downloads for both files using HTTP. The

average downloading times are 14 and 109 seconds using TCP proxy and Split-TCP respectively (with the standard

deviations of 1 and 8 seconds respectively). We observe that TCP proxy with data compression can outperform Split-

TCP significantly.

V. CONCLUSION
In this paper we describe passive and active techniques to detect whether split-connection techniques are used in

cellular data networks. Through end-to-end experiments in three commercial networks, we identified that Split-TCP

and TCP proxy have been implemented in all these networks for selected applications. We observed that Split-TCP

can achieve significant throughput improvement over regular TCP for relatively small-sized flows. Furthermore, we

demonstrated that TCP proxy is quite effective in improving user perceived performance via data compression.

REFERENCES
[1] R. Caceres and L. Iftode, “Improving the performance of reliable transport protocols in mobile computing environments,” IEEE J. Se-

lect.Areas Commun., vol. 13, no. 5, pp. 850–857, 1994.

[2] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving reliable transport and handoff performance in cellular wireless networks,” ACM

Wireless Networks, vol. 1, no. 4, pp. 469–481, 1995.

[3] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A comparison of mechanisms for improving TCP performance over

wireless links,” IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 756–769, 1997.

[4] H. Elaarag, “Improving TCP performance over mobile networks,” ACM Computing Suryeys, vol. 34, pp. 357–374, SEP 2002.

[5] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,” 15th International Conference on Distributed Computing Systems,

1995.



11

[6] B. H. Kim, I. Lee, and K. Chu, “End-to-end application performance impact on scheduler in CDMA-1XRTT wireless system,” in IEEE

61st Semiannual Vehicular Technology Conference, May 2005.

[7] P. Benko, G. Malicsk, and A. Veres, “A large-scale, passive analysis of end-to-end TCP performance over GPRS,” in Proc. Infocom 2004,

March 2004.
[8] “Tcpdump,” http://www.tcpdump.org/.

[9] “Windump,” http://windump.polito.it/.

[10] W.Wei, C. Zhang, H. Zang, J. Kurose, and D. Towsley, “Inference and evaluation of split-connection approaches in cellular data networks,”

Tech. Rep. 05-59, Department of Computer Science, University of Massachusetts, Amherst, 2005.

[11] “NIST Net,” http://snad.ncsl.nist.gov/itg/nistnet.

[12] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov, “RFC 3481 - TCP over Second (2.5G) and Third (3G) Generation

Wireless Networks,” RFC 3481, 2003.

[13] M. Allman, S. Floyd, and W. C. Partridge, “Increasing TCP’s Initial Window,” RFC 3390, 2002.

[14] V. Vanghi, A. Damnjanovic, and B. Vojcic, The cdma2000 System for Mobile Communications. Prentice Hall Communications Engineering

and Emerging Technologies Series, 2004.


