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Abstract—We study the communication cost of collect-
ing correlated data at a sink over a network. To do
so, we introduce Distance Entropy, an intrinsic quantity
that characterizes the data gathering limit of networked
sources. We demonstrate that, for any network embedded
with any set of sources and a cost function [cost]=[data
rate] [link weight], distance entropy is a lower bound
on the optimal communication cost. This is true for the
most general data collection schemes that allow arbitrary
routing and coding operations, including network coding
and source coding. This lower bound can be matched using
optimal rate Slepian-Wolf encoding plus shortest path
routing. For more general communication cost functions,
we show that the optimal scheme among schemes using
Slepian-Wolf codes is also universally optimal. We then
turn to the problem of designing practical and compu-
tationally efficient data collection schemes and propose a
new, simple, hierarchical data collection scheme that is
much more practical than the ones using either Slepian-
Wolf Encoding or Explicit Entropy Encoding, another well
known technique. We demonstrate for a number of corre-
lation structures, the communication cost required by this
scheme is within a constant factor of the distance entropy,
and thus its performance is asymptotically optimal. This
optimality is shown for two deployment strategies: a 2D
grid regular network and a 2D Poisson process random
network.

I. INTRODUCTION

A. Problem statement and motivation

Consider the problem of gathering information from
a set of correlated data sources. As shown in Fig. 1,
each source is located at a solid black node and a set
of communication links represented by edges connects
the network together. We view this as a graph with
the sources as a subset of the nodes and the links1

1We consider both point to point links and broadcasting links.

as the edges. Each node is capable of sending infor-
mation and performing coding computations. Each link
has an associated weight. Furthermore, each source
generates data according to its source distribution. A
designated node acts as a sink that must reconstruct
the information generated by all the sources. The cost
of data transmission over a link is a function of the
transmission rate and the link weight. The goal is to
minimize the total communication cost. This is a joint
source/network coding problem: source coding due to the
correlations between the different nodes, as well as any
other known distributional information; network coding
since we allow the nodes to compute arbitrary functions
of the data they receive. In this paper, we study two

Fig. 1. A Layout of the General Problem of Gathering Correlated
Data Through a Network

fundamental questions for this scenario:
1) What is the minimum total communication cost for

achieving the data gathering task, possibly under
some link capacity constraints?

2) What is the tradeoff between communication cost
and node complexity? In other words, how complex
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do the nodes’ functionalities need to be in order
to achieve the optimal or close to optimal cost.

These are difficult questions because there are no
limitations on what functions a node is allowed to com-
pute for its outgoing messages based on the incoming
information and/or its local source. Fig. 1 shows an
example data transmission scheme; it uses an arrow on
an edge to indicate the actual traffic along the arrow’s
direction. As we can see, a node can send all its data
over one link (e.g. node ), can broadcast its data (e.g.
), and can send its data to some selected neighbors

(e.g. ). In addition to this, a node can perform any
function on the data and send the output to any neighbor,
so long as the sink is able to decode all the source data.
With this set up, we are considering the most general
scenario that includes all possible schemes. For a limited
case where the coding is restricted to only Slepian-Wolf
Code, Cristescu etc.’s work [1] [2] finds the optimal
rates allocation among the source nodes, and shows that
this, combined with shortest path routing, achieves the
minimum cost among all such schemes. However, for the
general case where arbitrary coding/routing operations
are allowed, it is still not known what the optimal cost
is and how traditional source coding/network coding
techniques can be exploited to achieve it.
This problem is primarily motivated by sensor network

applications [3] [4]. Low cost sensors are distributed in
a region to collect measurements of field points. Each
sensor is capable of sensing, storing, computing and
transmitting. The measurements at different sites are
usually correlated and all of them need to be recon-
structed at a base station or sink for storage or further
processing (e.g. inference). Since the battery power is
normally quite limited for such cheap sensors and the
communication energy cost is a major factor that drains
the battery, minimizing the total communication cost is
important for such applications. Another example is the
collection of correlated data from distributed sources on
the Internet, such as images/videos [5] for retrieval or
network traces [6] for network management. The cost
functions for the Internet are transmission delays and
consumption of network resources.
We focus on sensor net applications in this paper while

the general results apply to the Internet as well. Consider
a sensor network that collects the measurements from the
environment to a single sink. We assume an observation
at a sensor is a discrete, random variable . For continu-
ous field values being measured, quantization techniques
are used to convert them to discrete value sensor read-
ings. The sensors that take measurements generate a
vector of discrete random variables that
needs to be transmitted to a designated base station,

which then decodes the original vector based on the
received information. The communication cost per sec-
ond (communication power) for a link is a function of
the transmission rate and the link weight between the
two nodes. An often used, simplified cost function is a
product of a rate term and a separable weight term. We
look at both the general and the simplified cost func-
tions. The goal is to solve this data collection problem
with reasonable computation/storage complexities for the
sensors while minimizing the total communication cost.

Fig. 2. Distributed Source Coding

In our setting, the node operations are essentially
of two basic types: Source Coding (SC) and Network
Coding (NC) [7]. When the network contains just
source nodes other than the sink, and only links
connecting each of the source nodes directly to the
sink without other links between the source nodes as
shown in Fig. 2, the problem reduces to a Distributed
Source Coding (DSC) [8] problem; when the sources are
independent, the problem reduces to a Network Coding
problem, particularly if there is just a single sink, then
there is no need for Network Coding: [9] shows that
traditional routing where data is treated as commodity
flows is sufficient to solve the data collection problem
for such networks. On the other hand, sensor information
and that of a lot of other applications are often correlated
and exhibit large redundancies, e.g. the sensors that
measure the temperature or rainfall volumes over a
region generate highly correlated readings. [10] studies
the problem of separating SC from NC for collecting
correlated sources to multiple sinks. They show that
the case of 2 sources and 2 sinks is always separable,
and give counter-examples for some other cases. Since
inseparable NC and SC implies NC is necessary (not
vice versa), we do know that there are cases where
NC is mandatory. Thus without sound falsifications it is
possible that NC is helpful for achieving the minimum
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cost or capacity constraints for the case of correlated
sources.
There are various possible approaches based on differ-

ent combinations of SC and NC. The two most studied
are based on Slepian-Wolf Coding (SWC) [11] [8] and
Explicit Entropy Coding (EEC) [1]. SWC is a distributed
source coding technique that allows the sensor nodes
to encode without explicit communication. Each sensor
encodes its data to some rate with the joint rate vector
in the achievable Slepian-Wolf region. For our data
collection task, if we are restricted to first apply SWC
and then route the encoded bits as incompressible flows
through the network, [1] shows that when the cost
function is in the form of [cost]=[rate] [weight] and
there is no capacity constraints, the optimal cost is the
optimal rate allocation of SWC followed by shortest path
routing. For EEC, joint encoding is only possible when
side information is available: a node sends out data with
a rate equal to the joint entropy rate of incoming data
and its own sensed data. [1] shows that optimizing the
total cost of EEC is NP-Complete. In general it is still
not known whether/how SWC, EEC or any other codes
can be exploited to achieve the minimum communication
cost of our data collection problem.
Both SWC and EEC have practical limitations. Slepian

and Wolf’s original work [11] guarantees the existence
of an encoding scheme that achieves the joint entropy
rate. To ensure the probability of decoding error goes to
zero, it requires the size of the block for coding goes to
infinity. Thus, their work is an existential rather than
constructive result. For designing constructive SWC,
most of the progress has been made on highly limited
source models [5] [12]. Even for the case of a general
constructive SWC, the work required to learn the con-
ditional entropies of random variables to specify an
achievable rate vector is generally too computationally
expensive for cheap sensors, especially for large size
networks. The long temporal coding block also requires
considerable memory on each node. Thus, currently
SWC is still a theoretical result that helps us under-
standing the limits of coding by assuring the existence
of an ideal. EEC needs even more training than SWC:
it needs to learn and store the conditional distributions
for joint encoding. EEC’s coding complexity is typically
high and in order to reduce coding complexity it requires
a larger memory size to store pre-computed values.
Another disadvantage of EEC is that the scheduling and
coordination of the data flows normally induces large
communication/computation costs and delays because
coding and routing are not independent. For example,
some sensors may need to wait for other sensors’ data
to do joint encoding. Finally, for both SWC and EEC,

when the source model is dynamic and time varying, the
cost for retraining is large in terms of delay and resource
consumption.
The source models that have been studied are gen-

erally limited and not representative enough for gen-
eral realistic data. For many, the number of sources
is limited [13] [14] [15], some are limited to binary
sources [15] [16], and some are limited to Gaussian
sources [17]. Few adaptive/universal DSC or general
coding technique for general source models have been
developed [5], especially for low complexity practical
ones. Recently, [12] proposes an interactive approach
for arbitrary correlation models, their focus is the total
number of bits sent from the nodes and there is no notion
of network topology or cost function.
In summary, first it is important to characterize the

optimal communication cost in a general setting; second,
given the limited source models studied and the high
complexity of current DSC technique, it is desirable to
design low complexity data collection schemes for more
general source models with close to optimal communi-
cation cost.

B. Main contribution

In this paper, we introduce the concept of distance
entropy as an intrinsic property of a distributed source
set to characterize a lower bound on the cost for col-
lecting the distributed information. Distance entropy is
a generalization of entropy that, like entropy, measures
a probability distribution, but it also takes into account
the underlying network topology of the source nodes.
For the case of [cost]=[rate] [weight] cost functions

and no link capacity constraints, we show that the
distance entropy equals the cost of the SWC scheme
with the optimal rate allocation and shortest path routing.
Thus, we prove that the optimal SWC scheme described
by [1] is actually optimal over all possible data collection
schemes. We also show that for general cost functions
with or without capacity constraints, the optimal cost
for SWC schemes is also universally optimal for any
schemes. A corollary of these results is that for collecting
correlated sources to a single sink, network coding is not
needed in order to minimize the total communication
cost or maximize the achievable capacity.
We then turn to the question of designing simple,

practical protocols that achieve (at least asymptotically)
the distance entropy. To do so, we first consider various
generic and commonly used classes of source models for
a two dimensional grid: a Hard Continuity Field, a Linear
Variance Continuity field and a Gaussian Markov field.
We give nontrivial lower bounds on the distance entropy
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of these source models for a regular 2D sensor grid.
We then propose a simple hierarchical data collection
scheme and demonstrate that its communication cost for
these source models is within a constant factor of our
lower bound on the corresponding distance entropy. This
demonstrates the asymptotic optimality of our protocol.
Finally we extend the grid results to corresponding
high probability results for sensor networks built using
randomly deployed nodes.
The paper is organized as follows: In Section II,

we formalize the model. In Section III, we define dis-
tance entropy and prove the universal optimal results.
In Section IV we propose the simple hierarchical data
collection scheme and prove its asymptotical optimality.
In Section V we introduce the related work. Finally we
conclude and discuss future work in Section VI.

II. MODEL FORMULATION
We represent a network as a connected graph (directed

or undirected) . is the set of all of the
nodes. There is a single sink corresponding to a
central processing point or base station and a source node
set corresponding to the set of source nodes that
are generating data, . All nodes in are able
to code and transmit data. is the edge set, an edge

iff there is a direct communication
link between node and node . The communication
links consist of discrete noisy or noiseless memoryless
channels.2 We assume the links (channels) to be inde-
pendent point to point links since normally there is an
underlying MAC layer to solve the wireless contention
problem using techniques like TDMA, FDMA, ALOHA
etc. We also omit the negligible communication overhead
induced by synchronization and routing control since
data can be packed in an arbitrarily large packet. There
is a weight set and each edge has
an associated weight that relates
to the communication cost. There is also possibly an
associated positive capacity that specifies the
maximal transmission rate over the link. However, if
the capacities are much larger than the data rates for
all , we can ignore and treat the network as one
without capacity constraints. Define the cost for a path
in as . Denote the set of all the

paths from a node to as , the shortest path
from to as . Then .
Each source node periodically generates

samples of a discrete source . The joint source vector
2A memoryless channel is one that the output is conditionally

independent of previous inputs given the current input. The case of
noiseless channel reduces the problem to be a pure network source
coding problem.

follows some joint distribution
. Let be a stationary random

process where is a field
sample that corresponds to the set of samples gathered
from all sources at time , . For simplicity of
presentation, we analyze the total communication cost of
collecting one field sample within one second while our
results can be extended to the general case of collecting
multiple field samples that are temporally correlated.

A source graph consists of a graph
, a source set and a one to

one mapping between and . A Communication
Scheme specifies for all the nodes “what to send
to whom” – a set of functions for the network to
map each node’s received bits (alphabet) and local
generated data (if any) to its output bits (alphabet)
and the corresponding selected channels. A Data
Collection Scheme (DCS) is a communication scheme
for the network to collect all of the data at near
losslessly–decode losslessly with zero or an arbitrarily
small probability of error [8]. A SWC scheme
is a DCS of particular interest to us that separates
source coding from channel coding and separates source
coding from routing, more specifically, it only allows
Slepian-Wolf source codes and commodity flow routing.
A SWC-SP scheme is a SWC scheme that
only uses the shortest path commodity flow routing. Let
, , be the set of all DCSs, the set of

all SWC schemes, and the set of all SWC-SP schemes
correspondingly.

There is an associated cost for any transmission in
. Let be the transmission rate along edge in

bits per second. The cost per second along edge is
given as , a function of and [2]. The
cost rate for any data collection scheme on a source
graph is defined as ,
or simply denoted as . Denote the optimal cost as

. The cost function is naturally
assumed to be a strictly increasing function of and .
The most commonly studied cost function is

[2]. Under this form of , the cost to transmit bits
in seconds is , independent of the
transmitting period . So in this case we can equivalently
study the communication cost for collecting one data
sample, denoted also as . For wireless communica-
tion links, , where depending on
the medium and is the Euclidean distance between the
two nodes connected by .
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III. UNIVERSAL OPTIMAL COMMUNICATION
COST

We introduce a new concept, Distance Entropy of a
source graph , to characterize its information distri-
bution.
Definition 1: For any source graph , the Distance

Entropy is

where is a source node that has
a shortest path weight satisfying

. Also denotes the source
located at sink which can be null. is the discrete
entropy.
Consider the cost function , we have

the following theorem for the total communication cost
to collect one field sample.
Theorem 1: The cost of any data collection scheme
on a source graph to collect one field sample is

lower bounded by the distance entropy of

In the absence of capacity constraints, a SWC-
SP scheme with an optimal rates allocation

( is in a nondecreas-
ing order of shortest path weight) achieves the cost of

. Thus

Proof: Let be a reduced source graph from
s.t. there are no capacity constraints in . Then

any DCS in will also be a DCS in and a
lower bound of minimum DCS cost in is also a
lower bound of the one in . Thus below we base our
analysis on source graphs without capacity constraints
and the lower bound that we derive applies to arbitrary
source graphs.
For all the nodes in the vertex set , order them

in a nondecreasing order of the shortest path weight
to the sink, i.e. satisfies

. Particularly the source
set form a subsequence of it as

.
Note that can be null. For convention we also denote

as .
We first solve the case when s are distinct

values then extend it to the general case.
For each , define a triple partition of

the vertex set as where

, .
Define as a boundary set
in between. Then we do the following procedure:

Fig. 3. Construction of the virtual graph

As shown in Fig. 3, from to , ,
if and , we create a virtual node

(identified by a triangle node in Fig. 3),
. Replace the edge with two new

edges and with weights
as , ,

. Now
. Update as . Each th set

of such updates on satisfies that for any data collection
scheme in the original graph before the updates, there
exists a corresponding data collection scheme in the
resulting graph with the same communication cost, and
vice versa. Thus we can just evaluate the communication
cost of data collection schemes on the resulting graph.
The resulting graph has another property: There are

no edges going from to for any . In
other words, for any node , any path connects
with a node in have to reach some node in

first.
Then from to , we define subsets of
as and .

Since the sink is in and ,
and partition the source set into two parts, where

are in and the rest are in .
The transmissions between and can be viewed
as a two party Alice/Bob communications. We map

to a sink with all the sources that lie in ,
namely , map to with all the
sources that lie in , namely .
There are two directed edges between and .
sends the bits from to to while sends
to all the bits from to . needs to
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decode near losslessly. It is easy
to see that any DCS in the original source graph has a
corresponding DCS in this simplified source graph where
the traffics between and are the same as those
between and . Consider a further reduced two
party distributed source coding scenario where has
side information and needs to decode
near losslessly, has the whole source vector .

Now does not send anything to but sends
all the bits to . Since the bits sent from

to are ultimately functions of , we know any
DCS in the old source graph corresponds to a DCS in
this new source graph . Thus if has to send to

at least bits for any DCS in , then there has
to be at least bits transmitted from to for
any DCS in . Now that is described
perfectly at , by the results of Slepian-Wolf cod-
ing [8] has to send at least

bits per sam-
ple. The same requirement holds for the original traf-
fic from to before the reduction. Since
there are no capacity constraints here, we actually con-
sider noiseless channels. Thus there has to be

bits transmit-
ted from to for every . Let = ,
let , using the same argument we get

. In the case is identical
as the sink , .
By the new graph’s property, a path from any node

to any node has to first reach
some node then some node . By
definition , .
For any path from to , the path’s weight has
to satisfy the triangle property

, otherwise there exists
a path from to with a weight less than
and contradict with ’s definition.
For , define as the set of all the

paths that go from a node in to a node in
and intersect with only the starting node with
only the ending node. Define as all the paths that
go from to the sink and only intersect with them
once. Then any bit that goes from to has to
be transmitted along some path in , even it may goes
along some path that intersects with and/or
more than once, it has to contain a sub-path that belong
to .
Then we form a subset of the edge set as

where contains all the edges that
belong to paths in . It is easy to verify that these s
are disjoint sets.

We define the communication cost on each edge set
as . Since bits have to be crossed for any

cut in between and , by the Max-flow Min-
cut theorem [18], there exist a set of flows from
to . Each flow of has to go along some path
in at some part of its trajectory. Let be the
part of ’s cost that is consumed in , then

. Since , from all above we know that for
each bit to be transmitted from some to some

, there has to be
cost spent in edge set , so

.
Thus for any data collection scheme ,

Since is exactly the cost of the SWC
scheme that has and
routes along shortest paths to the sink, we have

.
When s are not distinct values, the subscript

of enumerates from to the number of distinct
shortest path weights. Now the order between the sources
with the same shortest path weight does not matter and
we get the same formula as before.

If we consider SWC scheme a valid scheme, Theorem
1 shows that the minimum communication cost for such
a source network is the distance entropy. For more
general cost functions and networks with or without
capacity constraints, we are able to derive a more gen-
eral result with the help of Han’s work in 1980 [19].
Han [19] proves the necessary and sufficient condition
for the achievable capacity region of a communica-
tion network of memoryless channels by exploiting the
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polymatroidal property of the network capacity function
and co-polymatroidal property of the joint conditional
entropy functions of the correlated sources. We convert
their result to our source graph model and generalize
their network topology assumptions as well. [19] models
a communication network as a directed graph consisting
of a set of sources and a set of relays s.t. there is no
incoming edges to any of the source nodes. Replacing
min-cut capacity in [19] with cut capacity and also
because the max-flow min-cut theorem for network flows
also applies to an undirected graph, we generalize [19]’s
model to any directed/undirected source graph that has
unlimited connections for source nodes. For any graph
, defines a cut, denoted

as . Define the set for all possible cuts as .
Let be the capacity of
cut . , let ,

.
Theorem 2: (Generalized version of Han1980 [19])

For any source graph (directed or undirected) with
an edge capacity set , there exists a data collection
scheme iff

When this holds, there exists a SWC scheme and a cor-
responding nonnegative real vector
for the SWC’s rates such that for any cut

and there exists a set of flows satisfying the capacity
constraints from the source nodes to the sink with
each source node ’s flow rate magnitude as .
This theorem can be derived by straightforwardly

applying the same technique as [19] to our source graph
setting. With Theorem we derive a general result on the
optimal cost of a source graph, before which we derive
a Lemma and introduce some further definitions.
For any source graph and a DCS on it,

let the average transmission rate by from to
on edge be . For any cut , the
average bit rate under that crosses the cut is

.
Lemma 1: For any source graph with or without

capacity constraints and any DCS for it. The data rate
cross any cut satisfies

Proof: We prove this with Theorem 2 by contra-
diction. Assume the lemma is not true, then there exists
a and DCS that for some cut of ,

.

Since the total vertex number is finite, the total number
of links from to on which has traffic is also
finite. We denote it as . Let

(1)

then . Construct a directed graph
with the same vertex set as . Regardless of whether
is undirected or directed, there is a directed edge
in iff there is traffic routed from node to by .
Assign each edge in a capacity of . Then
for every edge in , , since we also know all
rates below the channel capacity are achievable from the
Channel Coding Theorem in [8], also makes a valid
DCS in . However, the cut capacity of in
is .
By (1), we have

So the cut capacities of do not satisfy the iff
condition of Theorem 2, then there exist no DCSs in

. This contradicts with the fact that is a DCS in

. So the assumption is incorrect and the lemma is
true.

Any DCS can be thought of as dividing the data on
a link into blocks that each has a fixed transmission
rate. Thus the traffic generated by on an edge
can be characterized as

, where is the rate in bits per
second for the th block and is the correspond-
ing transmission period. Here .
The average rate by along an edge from
to is . For edge

, denote and , then
and .

Theorem 3: For any source graph with or
without capacity constraints that its cost function is
nondecreasing in and and convex on rate , then
the optimal SWC scheme is also optimal over the class
of all data collection schemes.

Proof: We prove this by showing that for any
data collection scheme , there exists at least one SWC
scheme that has a communication cost no greater than
that of . The trick is to treat the actual transmission
rate by on each link as a capacity constraint on that
link for the SWC scheme.
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Construct a directed graph with the
same vertex set as . Regardless of whether is
undirected or directed, there is a directed edge
in iff there is traffic routed from node to by
. We treat s as capacities of the directed edges

in i.e. for and
for any cut ;

also we have by Lemma 1. So for
any cut ,

(2)

matches the iff condition of Theorem 2,
then by Theorem 2 there exists a SWC scheme with
a SWC rate vector that satisfies

for any
cut , and there exists a set of flows

from to in . For each , the
flow magnitude is . Since is in the Slepian-
Wolf achievable rate region [20] and the flow magnitudes
satisfy the capacity constraints, the set of flows combined
with the channel code and SWC defines a SWC scheme
in , which is automatically a SWC scheme in since
the traffic of any DCS in is shadowed by — a DCS
in .3
The communication cost per second of

this SWC scheme is the cost of the flows
, where

is the flow rate of along edge . With the capacity
constraint, we have . Since is
nondecreasing, we conclude

(3)

On the other hand, the average communication cost
per second for is

By the convexity of function , we have

3An alternative way of understanding this is to view the channels
in as the same channels in with all or part out of all the time
divisions usable.

Combined with (3) we have . Thus for
any data collection scheme there exists a SWC scheme
with a communication cost no bigger than . As a result,
the optimal SWC scheme is also optimal among all the
possible data collection schemes.
When samples are temporally correlated, we group

and encode them in temporal blocks. Then our re-
sults can be extended to hold if we just replace the

with the entropy rate

A. Extension to the case of Broadcast Channels
As mentioned before, previously we ignore the multi-

access nature of the wireless medium because of a
possible lower MAC layer separation. Now we consider
the case that includes broadcast channels and show
that the previous result is still true even if we can
take advantage of the Multi-Access nature of wireless
channels and allow cross-layer optimization. We use the
same source model as before and a slightly modified
communication model to incorporate broadcast channels.
First we describe the communication model then we
show the same optimal performance holds even with
broadcast channels, in other words, broadcasting does
not help.
1) Communication Model: In addition to the indepen-

dent point to point channels we assumed before, now we
also allow the nodes to broadcast: a node sends identical
data to multiple receiving nodes simultaneously through
a broadcasting channel. Let

be the neighboring set of node —the set of nodes
that can communicate directly via a point to point
channel. Broadcasting here means can send the same
copy of data simultaneously in a rate to any subset of
its neighbor set . The energy cost
of the broadcasting is no less than the cost of sending in
the same rate from to any of the nodes in through
a point to point channel:

This assumption is valid for both applications using
directional antennas and the ones using omni-directional
antennas for the point to point channels.4 Also for any

, satisfies the capacity constraint and
the broadcasting occupies of the capacity of the point
to point channel from to .

4For the same type of antenna, directional ones consume less
energy than omni-directional ones for point to point communications.
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2) Optimal Result: With the modified communication
model we show that any source graph whose nodes
are enhanced with this broadcasting capability has the
same optimal cost as the one without broadcasting. We
give the following theorem.
Theorem 4: For any source graph with or

without capacity constraints that its cost function is
nondecreasing in and and convex on rate , then the
optimal SWC scheme that does not use broadcasting is
also optimal over the class of all data collection schemes
using broadcasting or not.

Proof: We prove it by showing that for any broad-
casting enhanced data collection scheme in , there
exists a SWC scheme that has a cost that is no greater
than and does not use broadcasting.
For any broadcasting enhanced DCS for , we

define as the broadcasting reduced data rate across
any cut , that is, if a broadcasting sender is
in , and there is at least one receiver across the cut
in , the data rate across the cut of this broadcasting
will only be counted as the broadcasting rate without
double counting the multiple receiving rates.
We first show that for any cut in ,

. We do this by shrinking to a simple
source graph of two nodes, and , where node
has source and has source . A pair of infinite
capacity channels connect and . We emulate all
the traffic between and under now between

and in the new source graph except that for
the broadcasting traffic we only emulate one copy of it
between and . Since all coding/routing operations
within or under are now all achievable internal
coding operations inside or in the new source
graph, any DCS in corresponds to a DCS in
the new source graph with a rate from to as

. By Lemma 1 thus
for any cut .

Next we construct a new source graph based on
and . The first part of the construction is similar

to the one in the proof of Theorem 3: contains all
vertices in and for all the non-broadcasting traffic of
, add a directed edge along the traffic direction with a

capacity equal to the traffic rate. For each broadcasting
traffic of from node to a set of its neighbors ,
we add a pure relaying node (has no sources) and
a set of directed edges that bridges together and
nodes in . Specifically, a directed edge with
a capacity equal to the original broadcasting rate and
a directed edge from to each node in with an
infinite capacity. Then because in

, it is easy to verify that for any cut in ,
the cut capacity satisfies ,
by Theorem 3 there exists a SWC scheme in

. If we copy this to by distributing the
flow traffic of directly as , by
the construction of , we obtain a non-broadcasting
DCS in . More than that, because is convex
and we conclude this
DCS in is also a non-broadcasting DCS with a
cost no greater than the broadcasting enhanced DCS .
This is true for any broadcasting enhanced DCS in

, thus we conclude that including broadcasting in a
DCS does not improve the total communication cost for
our setting.

The theorems in this section show both the achievable
capacity region and the minimum communication cost
of a source graph. For collecting multiple correlated
sources at a single sink, the optimal SWC scheme is
also a universally optimal data collection scheme. The
result is not obvious because the intermediate nodes are
allowed to perform any operations that involve arbitrary
couplings of network coding and source coding. A key
part of the proofs relies on some combinatory geometric
properties of submodular and supermodular functions
based on Edmonds’s result in [21]. In general, there are
possible bandwidth benefits applying network coding or
broadcasting. While for correlated sources and a single
sink, it is first shown here as a corollary of our work that
neither network coding nor broadcasting helps either in
terms of communication cost or capacity for the most
general setting. More than that, our work shows no
coding/routing scheme outperforms the SWC schemes.
Certainly as we mentioned earlier in Section I SWC can
hardly be considered a practical code and thus SWC
scheme is a theoretical scheme that helps us understand
the performance limit of the data collection task.

IV. ASYMPTOTICALLY OPTIMAL SIMPLE
SCHEME

In this section we describe a simple data collection
scheme—Hierarchical Difference Broadcasting (HDB)
for both regular sensor nets on grid points and random
deployed sensor nets. We show that HDB is asymptot-
ically optimal for three generic source models that are
representative of a large class of real spatial data models.

A. General Sensor Grid Model
The grid model for our analysis is based on the

general model described in Sec. II but with a special
spatial deployment strategy. A sensor grid is a regular
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sensor network where sensors are deployed on a two
dimensional square grid.5 There are total of sensors
indexed as , ,
are all integers. The location of sensor is

, , where is the grid
cell size (the minimum distance between neighboring
sensors). W.l.o.g. we assume a unit grid where .
Each sensor has a reading which is a discrete
random variable. The sensor located in the center of
the field also serves as the sink and has a reading .
The sensor readings are described by a joint
distribution. Denote a sample of as , describe the
number of bits that is coded into by .
Sensors are able to communicate with each other if

they are within a certain range. We assume there are
no capacity constraints for the communication links.
Let be the communication cost
function [1], where is the Euclidean distance of link
, and and are constant parameters with

. W.l.o.g. let . Then the energy cost
for transmitting bits is . In this section we
focus on the total cost of collecting one field sample
at the sink. Since , the lowest
cost path between any two sensors in a grid always
consists of only grid edges of unit length. Since there
are no capacity constraints, we can equivalently limit
the transmissions to be along only such shortest paths
without effecting the optimal communication cost. Thus
we abstract the sensor network as a grid graph ,

. It is easy to
see that the Manhattan distance,
is the number of hops of any shortest transmission path
between two nodes. We will refer as ’s -
hop-neighbor and vice versa. When , we refer
to them as each other’s one-hop-neighbor.

B. Hierarchical Difference Broadcasting(HDB) Scheme

Before describing HDB, we define series of hierar-
chical clusters for the sensor grid. W.l.o.g. let

and the sink is node . Let
. Divide the original grid into

clusters with each as a subgrid of size ,
call the set of these subgrids . The set of the center
nodes of these subgrids is

.
Similarly divide each subgrid in into nine subclusters,
each a subgrid. is the set of all the
subgrids at this level. This can be done recursively,
producing a set of subgrids at level with a set

5Our results can be extended to cases of non-square grid.

of center nodes
, ,

. Let . It is easy to see
and .

We design the data collection scheme HDB as follow-
ing:
Step 1: The sink broadcasts its reading
using a Self-Delimiting Code (SDC) [22] over a

minimum spanning tree to all other nodes in the
field. Each sensor updates its reading by subtracting the
received value .
Step 2: Do from to

Each node broadcasts its current
reading in SDC over a minimum spanning
tree to all the nodes in the corresponding subgrid
of . Receiving sensors update the readings as

.
end Do loop

Step 3: All sensors other than the sink send their
remaining readings via shortest paths to the sink.
The sink first decodes ’s readings by adding the sink’s
value to the received . Then based on the decoded
readings the sink recursively decodes the
readings of all sensors.

Fig. 4. The Hierarchical Broadcasts of HDB

Fig. 4 shows HDB’s hierarchical difference broadcast-
ing. When , then for some
. Expand the grid to size with the
same center. Divide the expanded grid recursively in the
same way, but when a center node of a subgrid is not
in the initial grid, choose the closest sensor node from
the initial grid. This way we can obtain a sequence of
layers for any .

C. Asymptotic Optimality of HDB
Coding in HDB is extremely efficient as it relies only

on simple subtractions and Self-Delimiting Codes. SDC
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is a practical code that encodes into bits with
negligible computation cost [22]. Let the length of the
binary representation of be , SDC sends zeros
(q in unary code) followed by the binary representation
of . For example will be coded as , as

, as . At the same time, the initialization
of HDB is also very simple. Sensors can easily form the
series of clusters in a distributed and adaptive fashion.6
The low coding complexity and high adaptivity of HDB
is important for applications of low cost cheap sensors
with limited resources.
Lower bound
We apply Theorem 1 to derive a lower bound on the

cost of the optimal data collection scheme in a sensor
grid network. The result is a lower bound for a gen-
eral class of correlation models, capturing the topology
impact of grid deployment on Distance Entropy.
Lemma 2: For any sensor grid of size that has

a joint entropy ,
. If for some nondecreasing order of the sensor’s

manhattan distance to the sink (
) we have

for some . Then the optimal communication cost
is lower bounded by

Proof: For a unit grid,
where is the manhattan distance from to the
sink. By Theorem 1,

is the optimal communication cost.

Fig. 5. The sink’s -hop-neighbor set layout on the grid

Denote by the -hop-neighbor set
of the sink. It is easily shown that (see Fig. 5).
Since we have to collect at least

bits at the sink. If we assign bits
to each of the sink’s neighbors in the order of non-
decreasing manhattan distance ( ) until

6For dynamic and non-uniform data resolution requests, we can
adaptively adjust HDB’s cluster size and hierarchies and form a
wavelet type of multi-resolution dynamic scheme.

sensors are filled. Denote the virtual
scheme that collects these bits via
shortest paths as , it has a cost .
An optimal SWC scheme also has to collect

bits from nodes other than the sink and by Theorem 1 the
th sensor is allocated
bits, . So for the first sensors, can only
allocate to each sensor no more bits than does. If we
order the first bits collected by in the order of
nondecreasing manhattan distance, the th bit of has
a manhattan distance that is no lower than the distance
of the th bit of . Thus .
Let be the maximum that satisfies
. Since , we get . Let

, the cost for sending bits
from each sensor in is

. Replacing with
and , yields

. Since , is just part of the
cost of , then . So we get

.

Upper bounds
The cost of HDB depends on the spatial correlation

among the sensors. In general the correlation exhibits
some structure based on the location of the sensors in
the graph. For networks in a spatial field, often the
correlation structure is a function of its spatial properties.
For spatial data, usually the pairwise correlation is a
decaying function of the distance. Samples at close by
points tend to have higher correlations than those of
distant points. This is normally reflected as smaller value
difference for closer points, which is especially true for a
physical field where the measured phenomena is a result
of some micro-scale physical process, e.g. temperature or
rainfall distribution. We model the spatial sources using
three generic source models that characterize this feature
and show that the simple HDB is asymptotically optimal
for each of them. Denote the cost of HDB as , then
there exists a constant s.t. .
1) Hard Continuity Field (HCF):

For HCF, each one of is a discrete random variable
that have different possible values. Without loss
of generality, we assume the set for the values is
integer set . The difference between the
samples from any two one-hop-neighbors satisfies a
‘hard’ continuity constraint as for some

. We assume , this is easy to satisfy
when the network scale is large.
Lemma 3: If a HCF has a joint entropy



12

, then HDB
has an asymptotically optimal communication cost as

, the same order as the optimal cost
.

Proof: We first give a lower bound on the optimal
cost using Lemma 2 and then demonstrate an upper
bound for with the same asymptotic behavior.

. Let be a
source sequence in an order of nondecreasing manhattan
distances to the sink (as shown in Fig. 5) such that each
other than the sink has a one-hop-neighbor in the

sequence with . So
Applying Lemma 2 with

and , yields
.

Now we derive a same order upper bound for HDB’s
cost. , let , is a positive integer.

, so HDB’s energy cost for sensors
under the same model and continuity constraint is at least
as large as the cost for sensors, .
We next derive an upper bound for .

consists of two parts, the broadcast cost and
the collection cost . There are broadcast rounds,

. The first round broadcasts the
sink’s reading throughout the network. We code into

bits,
. Also because the broadcast needs exactly one

hop transmission to cover each sensor in the minimum
spanning tree, . The
second round is to broadcast the readings of sensors in

within . From we know
, the reading difference between any

two sensors is bounded by their manhattan distance times
the one hop difference bound. So after the first round’s
reading updates, four of the sensors in have

, the other four have . Using
a self-delimiting code, we code any integer into

bits [22]. So any ,
bits and

bits. Then four readings of sensors in are coded
into no more than bits each, the
other four readings of are coded into no more
than bits each.

. Similarly the
rd round broadcasts the readings of sensors in
within and

. In general,
,

.

So

. Combined with we have

The data transmission cost after rounds of broad-
casting is composed of nine parts—collecting the nine
subgrids of . The four corner subgrids have a larger
bound for cost than the other four. Let the cost for
collecting the upper-left corner subgrid be , then

. Let the total number of bits sent to the
sink from the upper-left subgrid be . Note that the
bits distribution in the subgrid is symmetric to the sub-
grid center : the center’s -hop-neighbors
have the same upper bound for the remaining bits.

By symmetry
. The manhattan distance

from the center to the sink is ,
thus

.
From above and we have

,
. Thus compared with

we know HDB is asymptotically optimal for
such HCF models.

The joint entropy assumption of Lemma 3 is a nat-
ural assumption. Here is an example to demonstrate
that there exist HCFs with a order joint
entropy. Consider a case that and a sensor
has uniform conditional distribution based on its neigh-
bor readings, then

.
2) Linear Variance Continuity Field (LVCF):

For real sensor data, it is more reasonable to assume
a ‘soft’ continuity constraint rather than the ‘hard’ one
as in HCF. Using the same setting as HCF, a Linear
Variance Continuity Field (LVCF) is one where data
continuity is modeled as a constraint on the expected
data values. We replace the hard continuity constraint
with a ‘soft’ one: any two one-hop-neighbors’ reading
difference satisfies , .
Lemma 4: IF a LVCF has a joint entropy of

, and
, then HDB’s expected communication cost is

asymptotically optimal. The optimal cost is
lower bounded by .

Proof: We use the same method as Lemma 3 to
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prove this lemma. The only difference is that here we
work with the expected number of bits and apply some
information theory inequalities.
First by [8]

(4)

We have thus
.

For the same sequence of nondecreasing manhattan
distance to the sink as in Lemma 3,

(5)

Also by [8], ,
Since , we
have . Apply-
ing Lemma 2 with and

, get
.

Next we derive the upper bound for . First
. Applying the triangle

inequality of an absolute function, any two readings
satisfy . Since Self-delimiting
code can compress any into
bits [22] and is a concave function, by Jensen’s
inequality [8],

E E E (6)

So . Also from
we have E , by

(6) E and thus replacing the
coded bits of Lemma 3 with the expected value
and applying the same counting technique, we are able
to prove E . Compared with

we know that HDB is asymptotically optimal for
such LVCF models.

3) Gaussian-Markov field (GMF):
Multivariate Normal (MVN) is an often used model
for multivariate distributions. It is a good approxima-
tion of many applications yet mathematically tractable.
Gaussian-Markov Field (GMF) [23] is one common
MVN model to model spatial fields exhibiting the close-
points-high-correlation property. Let be

continuous random values being measured at
different points of a GMF, they follow a joint MVN dis-
tribution: N . Without loss of generality we assume
the sources have the same mean .
is the covariance matrix with , where

is a constant and is the unconditional variance
of a source. So the correlation between sensors decays
exponentially as the distance between them goes up. We
use manhattan distance instead of Euclidean distance
because the former is much more tractable yet is a good
approximation of the latter, our simulation suggests that
the joint entropy ratio between GMF with manhattan
distance and GMF with Euclidean distance is bounded
in a range close to 1 as shown in Fig. 6.
Let , , then is the correlation

coefficient between sensor and and the covariance
matrix can be written as . Notice

for any and for any . This
avoids the trivial case of when all readings are
fully dependent of each other, in which case the sink’s
reading is exactly the same as any other sensors and
there is no need of communication. The other trivial case
is when we have independent readings, for all

, then the problem reduces to a single source coding
problem with no need for distributed coding.
Each sensor’s reading is a quantized version of
where each sensor uses the same type uniform scalar

quantizer. When the quantization precision is high and
thus the step size is small, by [8], the entropy of
is approximately the differential entropy of minus
. We assume a high resolution quantizer is used and

, where is the differential
entropy of . For any k sources,

.
Lemma 5: For any GMF on a k-dimensional hyper-

cube grid of nodes, the field’s joint entropy

Proof: By [8],

where is the dimensional grid’s covariance matrix.
Order the sensors in a dimension-recursive enumer-
ating order. For example, the 1D order is sequentially
enumerating the nodes; the 2D order is enumerate the
nodes line by line, and use the 1D order within each line:

. Then
define matrix as the correlation coefficient matrix.

with the entry as a submatrix .



14

0 200 400 600 800 1000 1200 1400
0.968

0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984

0.986

Field Size

Ra
tio

 o
f E

nt
ro

py

!=0.05

(a)

0 200 400 600 800 1000 1200 1400
1.0035

1.004

1.0045

1.005

1.0055

1.006

Field Size

Ra
tio

 o
f E

nt
ro

py

!=0.19

(b)

0 200 400 600 800 1000 1200 1400
1.006

1.0065

1.007

1.0075

1.008

1.0085

1.009

1.0095

1.01

1.0105

Field Size

Ra
tio

 o
f E

nt
ro

py

!=0.2

(c)

0 200 400 600 800 1000 1200 1400
1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

Field Size

Ra
tio

 o
f E

nt
ro

py
!=0.4

(d)

0 200 400 600 800 1000 1200 1400
1.1

1.15

1.2

1.25

Field Size

Ra
tio

 o
f E

nt
ro

py

!=0.6

(e)

0 100 200 300 400 500 600 700
1.15

1.2

1.25

1.3

1.35

1.4

Field Size

Ra
tio

 o
f E

nt
ro

py

!=0.8

(f)

Fig. 6. Joint entropy ratio of Manhattan distance GMF to Euclidean distance GMF
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Inductively,

is a partitioned matrix with the entry as
.

is a Toeplitz matrix and
[24]. For , from top to bottom, each row subtracts
the next row times , we can obtain a lower triangular
matrix and thus get

Inductively, we prove the

(7)

Combined with we get the entropy result.

To the best of our knowledge, Lemma 5 is the first
characterization of the joint entropy of a general grid
GMF. The closest work is [2]’s 1D grid result. Also (7)
is the first equation for the determinant of this general
type of matrices.
Corollary 1:

Proof: Just apply the fact to (7), get
, by Lemma 5 we prove the

corollary. Note that particularly for a 2D grid we have
.

Theorem 5: For any two dimensional GMF that has
and , where

The expected communication cost of
HDB is asymptotically optimal. The optimal cost
is lower bounded by .

Proof: The proof uses the same type of technique
as the case for HCF and LVCF, only now we work on
the entropy of gaussian variables.
By Corollary 1,

also

so .
W.l.o.g. let be the same type of nonde-

creasing manhattan distance order as in the proofs for
HCF and LVCF, since entropy is a lower bound for any
codes, the expected bits of SDC code is larger than the

corresponding entropy: E .
By (5),

E (8)

By [25], E , then E
E E
, by (6), we have

. Also
(high resolution quantizer), we get

E (9)

is a small constant. Particularly E
. When ,

, thus combined with (8) we
have . Apply and

to Lemma 2, we get .
At the same time, it follows that E

. Since for any ,

we have E . Then apply
the same counting technique as in Lemma 3, we have
HDB’s cost is upper bounded by

.

From Theorem 5 we conclude that for large portion of
a GMF grids without too high correlations between the
nodes, HDB is asymptotically optimal. This is intuitively
right because as the correlation coefficient
(either or ), the field approaches the
trivial case of completely dependent with no need for
communications. However, as long as the field is not
anywhere close to this, for a large range HDB remains
asymptotically optimal: as opposed to the
full possible range of . Applying Theorem 5 and
the same technique, HDB’s asymptotic optimality can
be generalized to high dimensional GMF grid as well as
Gaussian Uniform Field(GUF) which is a multivariate
gaussian field with for any two nodes. Due to
space limitations, we do not present the details here.
Non-Square Grid

All the results for square grids can be extended to non-
square-shape regions as long as the region weight cen-
ter(equally weighted average location of all sensors) has
a distance to the sink. HDB still uniformly
and hierarchically divides the region into cluster series
of geometrically decreasing sizes.
Corollary 2: For a unit grid of arbitrary shapes

with , if
and , the expected total

communication cost of HDB is asymptotically optimal.
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And the optimal cost is lower bounded by
.

We give a sketch of the proof that uses the same
techniques as previous results. For the lower bound, we
construct a infinite large virtual grid that is of the same
and contains the original sensor grid as a subgraph.

When we fill in the sensors each with bits as close
to the sink as possible, the virtual grid is used instead
of the original grid. This gives the same lower bound as
before.
Since the sensors with the same bits upper bound are

uniformly distributed in the field, the average distance
from them to the sink is the same as the region weight
center’s distance to the sink, thus the expected data
collecting cost is upper bounded by the sum of all the bits
upper bounds times the weight center’s distance to the
sink , which gives the same order upper bound
as square region, also because the broadcasting cost is
independent of the region shape, we have the same order
upper bound as in the square region case.

D. Non-grid Models
Grid deployment is a good approximation for a large

class of sensor applications where sensors can be de-
ployed in a regular manner. Nevertheless, it turns out
that we are able to extend the techniques and insights
developed from the grid case to the random deployment
case.
1) Deployment Model:

Assume sensors are uniformly and independently
distributed in a two-dimensional geographical region .
As justified in [26], this can be due to the method
of deployment, such as air-dropping in an unknown
environment. Under this assumption, for large the
sensor locations can be approximated or modelled as a
two-dimensional Poisson Point Process (PPP). Let the
average sensor density be (number of sensors
per unit area, is the area function). Let the number
of sensors in a region be , it follows a Poisson
distribution of parameter ,

The rate of the Poisson process is just the density
.

There is a single sink in the region to collect all the
readings. Each sensor ’s Euclidean distance to the sink
is . Let be the field’s average distance
to the sink.
2) Communication Cost Model:

We use the same linearly separable communication cost

function as the grid case. Let
be the average neighbor distance of the sensors. Assume
the minimum communication cost per bit from a sensor
to the sink is . The

minimum per bit cost between any two sensors
are This is a close approximation
when is large, the majority of the sensors are many
hops away from the sink.
3) Source Model:

Another difference of the model from the grid case is in-
stead of using a one hop continuity constraint, we have to
define a continuity constraint depending on the distance
continuously because now the one hop distance is not
a fixed value as in grid case. The constraint is modeled
appropriately according to the sensed field being HCF,
LVCF or GMF. Here we use LVCF as an example and it
is easy to adjust for the other two. Assume for any two
sensors and that has a Euclidean distance , their
reading difference satisfies
where is any nondecreasing function that maps the
distance between two sensors to an upper bound of their
reading differences. We call this model a Poisson LVCF
field or .
4) Protocol–RHDB:

We refer to the modified HDB as Random deployed
HDB (RHDB). The modifications are simple: Instead of
dividing the sensors into clusters directly, now we divide
the geometric region uniformly into nine square shape
sub-regions, sensors in the same square are clustered
together, then further divide each cluster into sub-regions
of size. Stop dividing a subregion when it is of size

( is some constant) or there are no sensors
in it. Choose the sensor closest to the geometric center
of the subregion as its cluster head. Then we have the
following Theorem.
Theorem 6: For a PLVCF field, if there exists a pair

of constants and such that the
field has a joint entropy

, where

, also is a concave function and

, then RHDB is asymptotically optimal
for the expected total communication cost w.h.p.(with
high probability). And w.h.p. the optimal cost
is lower bounded by .

Proof: a) The lower bound
, so there

exists a constant , for large enough, we have

Call a disk centered at with radius as . Let
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. Call the region of as . Let
be the set of readings of sensors

in . Let , denote the readings in as
. Denote the number of sensors in as .

is a random variable. We first prove that w.h.p.
.

can be viewed as the sum of independent
identical Poisson trials: , each is
either or and has the same probability distribution
as , corresponding to the probability
for the sensor being deployed in region . So
E . Using Chernoff
bound [27], E E

E E .Denote this prob-
ability as , Easy to see . Let
be the event of E E .

, so occurs w.h.p. ( ).
Order all the sensors as , in nondecreas-

ing Euclidean distance to the sink .
Particularly, . By Theorem 1, the optimal
communication cost

(10)

So for the lower bound it is sufficient to show
w.h.p. Since

, we evaluate first.
Among sensors closer to the sink than , let be

the closest one to , that is,

Let be the Euclidean distance between sensor
and . Then by

and the same argument as in Lemma 4,
. So

(11)

Let . Since is a

concave function,

(12)

Define , then

(13)

Fig. 7. Statistics of

Next we study the distribution of for any node
in the field. We do this indirectly with an area

distribution related to . Define as the area of the
intersection of two disks and (See Fig.
7), , where is a
decreasing function of and takes the minimum value
of as takes its max value
when there are no sensors in between the sink and . The
sensor deployment satisfies a 2D Poisson process, so a
follows an exponential distribution with mean E

variance Var . It is easy to see that ’s
distribution for sensors in is not independent of .
The conditional distribution is exponential distribution
with mean E

and variance Var E . Let
. Then

E E (14)
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Var Var

Cov

For any pair of , we next show
are negatively associated conditioned on , or

Cov E
(15)

This is because when we know ’s value, the point
process in is not any more the Poisson process
without this information. First, points are deployed
in a region with an area of

; second, as a finite value implies
is finite value that can not be arbitrarily small, this

means sensors are independently distributed in ,
sensor and another sensor are deployed independently
of these sensors but not independently of each
other, they have to be distance away. All sensors
are still uniformly deployed in . If we look at an
arbitrary small region adjacent to , then and
another sensor can not simultaneously reside in .
Thus the number of sensors in satisfy a equivalent
binomial distribution of sensors independently
and uniformly deployed in :

When the number of sensors is large, the point process
in approaches an equivalent Poisson process with
rate per unit area. So condition on
, follows an exponential distribution with mean

E . Also from
E we know

E E E

From this we get the negative association result of (15).
Thus

Var Var

E
(16)

By Chebyshev’s Inequality [27],

E (17)

Now assume is true,
. Then by (14) E . Apply

(16), (17) we have

(18)

At the same time,
. Since is a convex func-

tion,

Apply it to (18) we have

Or

(19)

Let be the event of . Then

. So
, is true w.h.p.( )

Let , easy to see
. So is true w.h.p. Apply

this to (12),(13), also is nondecreasing, we have w.h.p.

From , get

w.h.p., or w.h.p. Then
by (10) we have with
high probability.
b)upper bound

Now that RHDB’s stopping subregion size is modified
as , follow the same technique as before, we
can derive an upper bound of the same order.
Since the upper bound matches the lower bound,

we prove RHDB is asymptotically optimal w.h.p. for
PLVCF.

For HCF, GMF fields with PPP deployment process,
similar extensions of previous results can be derived
applying the same technique.
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V. RELATED WORK

There have been a huge amount of research in the field
of distributed source coding and network coding. A full
description of the current state is beyond the scope of
this paper, we here briefly introduce some most related
ones and refer the reader to more thorough surveys.
In [7], the authors introduce the concept of network

coding, state and prove the Max-flow Min-cut theorem
for network information flow. [5] gives a thorough review
on DSC. [28] shows that random linear network coding
suffices for the network coding of correlated sources.
[29] first gives a practical low complexity scheme of joint
DSC and NC. The scheme is suboptimal and focuses
on two sources that are related by a binary symmetric
channel. [30] finds a similar entropy-capacity iff condi-
tion as [19] for a sensor incast problem: reproduce the
whole sensor field at any one of the sensors. [31] studies
the problem of network coding with a cost criterion. For
minimal cost correlated data gathering, [32] considers an
abstract cost function and a special source model where
the joint entropy is a concave function of the number
of sources and independent of the source locations. A
universal random approximation on optimal transmission
tree is given for all concave functions of the source
model.
[33] studies the scaling problem of large number

sensors deployed in a GMF by comparing the per node
capacity and node data rate asymptotically. [2] com-
pares SWC and EEC’s asymptotic performance on a 1D
grid and shows under various conditions EEC performs
asymptotically as well as SWC, which we now know
should be asymptotically optimal under these conditions
based on our work. [34] propose a practical SWC scheme
based on syndromes. They use a hamming distance
constraint model so their result can be generalized to
a hierarchical scheme similar to HDB and applicable to
HCF but not LVCF or GMF. There is also no spatial or
cost consideration in [34]. [35] investigates the problem
of joint optimization of sensor nodes deployment and
data gathering cost in a lossy setting. [36] also studies
correlated sensor data collection on a grid. They use
a simplified cost function for which the cost over the
diagonal hops of longer distance is considered to be
the same as the cost over the shorter vertical/horizontal
hops, they also use a simplified correlation model that
ignores spatial features as in [32]: the joint entropy is
a linear function of the number of sources. Thus their
discovery of optimal clustering size is consistent with
[32]’s general result. Of particular interest to us, [36]’s
experience equation learned from real rainfall spatial
data verifies the validity of our generic source model

LVCF. [37] models spatially correlated sources using
real sensor data. Their model also falls within our model
framework of LVCF and GMF thus further supports the
generality of LVCF and GMF.

VI. CONCLUSION AND FUTURE WORK

We introduce the concept of distance entropy and
prove that it is a lower bound of the minimum com-
munication cost for gathering distributed information.
We introduce several generic classes of source models,
and design one simple data collection scheme that is
asymptotically optimal for all of them. The broad asymp-
totical success of HDB suggests a bolder conjecture that
a dominant portion of most models’ data redundancies
can be removed by truly simple distributed computations.
Our work has many possibilities for future directions.

For the optimal cost, there are work to do to incorporate
considerations of channel coding, capacity constraints,
multi-sinks, and lossy data collection. For asymptotically
optimal schemes and general source models, fully char-
acterize HDB’s power by finding more network source
models for which HDB is asymptotically optimal, partic-
ularly, evaluate HDB on other variants of gaussian mod-
els. Finally, considering the wireless medium’s multi-
access property and thus a lower cost for broadcasting,
both the theoretical optimal communication cost and
HDB’s cost need to be reevaluated under this case.
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