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Abstract

Over the last five years, the Al community has shown considerable interest in decentralized
control of multiple decision makers or “agents”. This problem arises in many application
domains such as multi-robot coordination, manufacturing, information gathering and load
balancing. Such problems must be treated as decentralized control problems because each
decision maker may have different partial information about the overall situation. Decen-
tralized decision problems have been shown to be significantly harder than their centralized
counterparts, requiring new formal models and algorithms to be developed. Rapid progress
in recent years has produced a number of different frameworks, complexity results, and
planning algorithms. One objective of this study is to provide a comprehensive overview of
these results. The other objective is to compare and contrast the existing frameworks and
to provide a deeper understanding of their relationship to each other, their merits, and their
strengths and weaknesses. While we focus in this study on cooperative systems, we do point
out important connections with game-theoretic approaches. We analyze five different formal
frameworks, two different optimal algorithms, as well as six approximation techniques. The
study provides interesting insights into the structure of decentralized problems, the expres-
siveness of the various models, and the relative advantages and limitations of the different
solution techniques. A better understanding of these issues will facilitate further progress in
the field and help resolve several open problems that we identify.

Keywords: Decentralized Control, Cooperative Agents, Multi-Agent Planning, Decision
Theory, Formal Models.
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1 Introduction

For over 50 years, researchers in the fields of Artificial Intelligence and Operations Research have
been working on the problem of decision making for intelligent agents. The Markov decision
process (MDP) framework has been proven to be useful for centralized sequential decision making
under uncertainty in fully observable stochastic environments ([33], [36, chap. 17]). If an agent
does not fully observe the environment and has to base its decisions on partial information,
the MDP framework is no longer sufficient. In the 1960’s, Astrom [3] introduced partially
observable MDPs (POMDPs) to account for imperfect observations. In the 1990’s, researchers
in the Al community have adopted the POMDP framework and since then, a lot of progress in
the development of practical algorithms has been made. For an extensive coverage on POMDPs
see Hansen [21] and for an overview of the latest algorithms see Feng and Zilberstein [15].

An even more general problem results when two or more agents have to jointly control a
system. If each agent has its own observation function but the agents must work together to
optimize a joint reward function, this problem is called decentralized control of a partially
observable stochastic system. In the last 5 years, different formal models for this problem
have been proposed and interesting complexity results could be shown.

The decentralized partially observable MDP (DEC-POMDP) framework is one way to model
this problem. In 2000, it has been shown by Bernstein et al. [6] that finite-horizon DEC-
POMDPs are NEXP-complete. Thus, decentralized control of multiple agents is significantly
harder than single agent control and provably intractable. Due to these complexity results,
optimal algorithms have mostly theoretical significance and only little use in practice. There-
fore, in the last few years, different approaches to approximate the optimal solution have been
developed. Some problems contain certain structure that is exploitable and sometimes leads
to less complex but still interesting sub-classes of the general problem. Different algorithms
for these special problems have been introduced and proven to have much better running time
than algorithms for the general problem. To achieve better scalability for the complete problem,
researchers have recently focused on the development of feasible approximation techniques. Al-
though some approximate algorithms can solve significantly larger problems, scalability remains
a major research challenge.

1.1 Motivation

In the real world, decentralized control problems are ubiquitous. Many different domains where
these problems arise have been studied by researchers in recent years. Examples include coordi-
nation of space exploration rovers [43], load balancing for decentralized queues [10], coordinated
helicopter flights [34, 41], multi-access broadcast channels [27] and sensor network management
[26]. In all of the aforementioned problems, multiple decision makers are jointly controlling a
process, but they cannot share all of their information every time step. Thus centralized models
of decision making are not suitable for these problems. To illustrate this, three problems that
have been widely used by researchers in this area are described below.
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1.1.1 Multi-Access Broadcast Channel

The first example is an idealized model of a multi-access broadcast channel (adapted from Ooi
and Wornell [27]). Two agents are controlling a message channel on which only one message per
time step can be sent, otherwise a collision occurs. The agents have the same goal of maximizing
the global throughput of the channel. Every time step the agents have to decide whether to
send a message or not. They receive a global reward of 1 when a message is sent and a reward
of 0 if there was a collision or no message was sent at all. At the end of a time step, every
agent observes information about its own message buffer, about a possible collision and about
a possible successful message broadcast. The challenge of this problem is that the observations
of possible collisions are noisy and thus the agents can only build up certain beliefs about the
outcome of their actions. Figure 1 illustrates the general problem setup. Experimental results

can be found in [5].
== G

e States: who has a message to send?
e Actions: send or don’t send

e Reward: +1 for successful broadcast
0 if collision or channel not used

e Observations: was there a collision? (noisy)

Figure 1: Multi-Access Broadcast Channel (Courtesy of Daniel Bernstein).

1.1.2 The Multi-Agent Tiger Problem

Probably the most widely used problem for single agent POMDPs is the tiger problem introduced
by Kaelbling et al. [23] in 1998. A multi-agent version of the tiger problem was introduced by
Nair et al. [25] in 2003. It involves two agents standing behind two closed doors. Behind one of
the doors, there is a hungry tiger, and behind the other door, there is valuable treasure. The
agents do not know the position of either. By listening instead of opening one of the doors, the
agents can both gain information about the position of the tiger. But listening has a cost and is
not entirely accurate (i.e. it only reveals the correct information about the location of the tiger
with a certain probability < 1). Moreover, the agents cannot communicate their observations
to each other. In each step, each agent can independently either listen or open one of the doors.
If one of the agents opens the door with the treasure behind it, they both get the reward. If
either agent opens the door with the tiger, a penalty is incurred. However, if they both open
the tiger door at the same time, they get less of a penalty. The agents have to come up with
a joint policy for listening and finally opening a door. After a door is opened and the agents
receive a reward or penalty, the problem starts over again. The problem is illustrated in Figure

ePREH:

Figure 2: Multi-Agent Tiger Problem.
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1.1.3 Meeting Under Uncertainty

This more realistic example was first presented by Bernstein et al. [7]. It is a simplified version
of the real-life problem of multi-robot planning [38]. Here, two agents have to meet as soon as
possible on a 2D grid where obstacles are blocking some parts of the environment. The possible
actions of the agents include moving North, South, East, West and staying at the same grid
position. Every time step the agents make a noisy transition, that is, with some probability
P;, agent i arrives at the desired location and with probability 1 — P; the agent remains at the
same location. After making a transition, the agents can sense some information. This might
simply be its own location on the grid or this might include some information about the terrain
topology. In either case, an agent’s partial information is not sufficient to determine the global
state of the system. Due to the uncertain transitions of the agents, the optimal solution is not
easy to compute, as every agent’s strategy can only depend on some belief about the other
agent’s location. An optimal solution for this problem is a sequence of moves for each agent
such that they meet as quickly as possible. Figure 3 gives an example position in this problem.
Experimental results can be found in [20].

Figure 3: Meeting Under Uncertainty on a Grid (Courtesy of Daniel Bernstein).

1.2 OQutline

All of the described problems are examples for decentralized control of multiple agents. In
Sections 2.1 and 2.2, four different formal models for this class of problems are presented and
their expressiveness and complexity is compared. Equivalence of all these models in terms of
expressiveness and complexity is established. In Section 2.4, another formal model for describing
decentralized problems is presented - an orthogonal approach to the other models. This frame-
work differs from the ones presented earlier regarding expressiveness as well as computational
complexity. Section 2.5 continues with interesting sub-classes of the general problem which lead
to lower complexity classes. Some of these sub-problems are computationally tractable. But
as not all interesting problems fall into one of the easier sub-classes, researchers have worked
on non-trivial optimal algorithms for the complete problem, which are presented in Section 3,
as well as approximation techniques, which are presented in Section 4. For some approaches,
specific limitations are identified and discussed in detail. In Section 5, all presented algorithms
are compared - those finding optimal solutions as well as those finding approximate solutions -
and their advantages as well as drawbacks are discussed. Finally, in Section 6 conclusions are
drawn and a short overview of open research questions is given.
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2 Formal Models for Optimal Multi-Agent Planning

To formalize the problem of decentralized control of multiple agents, different formal models
have been introduced in the last couple of years. In all of the following models, at each step,
each agent takes an action, the state transitions and each agent gets a local observation. Then
the environment generates a global reward which depends on the set of actions taken by all
the agents. Figure 4 gives a schematic view of a decentralized process with two agents. It is
important to note that each agent gets an individual observation, but the reward generated by
the environment is the same for all agents. Thus, each agent wants to maximize the global
reward, which is best for all agents. This is an important characteristic of cooperative multi-
agent systems. In non-cooperative multi-agent systems such as partially observable stochastic
games (POSGs), each agent has its own private reward function.
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Figure 4: Schematic View of a Decentralized Process With 2 Agents, a Global Reward Function
and Private Observation Functions (Courtesy of Christopher Amato).

One important aspect that differentiates the different formal models is the treatment of com-
munication. Some frameworks explicitly model the communication actions of the agents and
others subsume them under the general action sets. Either way has different advantages and
disadvantages, depending on the focus of the analysis. In the next section, two formal models
without explicit communication are presented. Following is the presentation of two frameworks
that explicitly model communication actions. We prove that all four models are equivalent in
terms of expressiveness as well as in terms of complexity.

2.1 Models Without Explicit Communication
2.1.1 The DEC-POMDP Model

Definition 1 (DEC-POMDP) A decentralized partially observable Markov decision process
(DEC-POMDP) is a tuple (I, S, {A;}, P,{%},0, R,T) where

e [ is a finite set of agents indexed 1,...,n.
e S is a finite set of states, with distinguished initial state sq.

e A; is a finite set of actions available to agent ¢ and A= ®iecrA; is the set of joint actions,
where @ = (ay, ..., a,) denotes a joint action.

e P is a Markovian transition probability table. P(s|s, @) denotes the probability that
taking joint action @ in state s results in a transition to state s’.
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e (), is a finite set of observations available to agent ¢ and 0= ®;e12; is the set of joint
observation, where ¢ = (o1, ..., 0,,) denotes a joint observation.

e O is a table of observation probabilities. O(0]d, s’) is a rational representing the
probability of observing joint observation ¢ given that joint action @ was taken and led to
state s’. Here s’ € S,d € A,0€ Q.

e R:SxA— R isareward function. R(d,s') is a rational representing the reward
obtained from transitioning to state s’ after taking joint action d.

e If the DEC-POMDP has a finite horizon, it is represented by a positive integer T

This framework was first proposed by Bernstein et al. [6] in 2000. In 2002, they introduced
another version of this model [7] that allows for a more general observation and reward function
that differentiate between different originating states. But the more general functions can easily
be simulated in the original model by growing the state space to the crossproduct of S with
itself. Here, the earlier definition is used, because it simplifies showing the equivalence with the
MTDP model (see Theorem 1 on page 10).

Note that we focus on finite-horizon problems, where the decentralized process ends after a
finite number of steps. For infinite-horizon problems a discount factor to weight the rewards
collected over time has to be introduced. For an in-depth coverage of infinite-horizon models and
algorithms see Bernstein [5]. All models presented in this section generalize in a straightforward
way to the infinite-horizon case. However, in Section 4, six different approximation techniques
for DEC-POMDPs are presented, some for finite-horizon problems and some for the infinite-
horizon case. It is important to note that it is not always straightforward to generalize these
algorithms to the other cases.

Definition 2 (Local Policy for a DEC-POMDP) A local policy for agent 4, d;, is a mapping
from local histories of observations 6; = 0;1 - - - 05+ over {);, to actions in A;.

Definition 3 (Joint Policy for a DEC-POMDP) A joint policy, § = (41, ...,d2), is a tuple
of local policies, one for each agent.

Solving a DEC-POMDP means finding a joint policy that maximizes the expected total
reward. This can be over an infinite or a finite horizon. See Bernstein et al. [7] for more details
on the model.

2.1.2 The MTDP Model

In 2002, Pynadath and Tambe [34] presented the MTDP framework which is very similar to the
DEC-POMDP framework. The model as presented below uses one important assumption:

Definition 4 (Perfect Recall) An agent has perfect recall if it has access to all of its received
information (this includes all local observations as well as messages from other agents).
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Definition 5 (MTDP) A multiagent team decision problem (MTDP) is a tuple
(o, S, Ay, P,Qy, Oy, By, R, T), where

e « is a finite set of agents, numbered 1,...,n.

S =751 x - x5, is a set of world states, expressed as a factored representation (a cross
product of separate features).

o {A;}ica is a set of actions for each agent, implicitly defining a set of combined actions,
Aa = HieaAi-

e P:Sx A, xS —]0,1] is a probabilistic distribution over transitioning states, given the
initial state and a joint action. Le., P(s,a,s’) = Pr(S'T! = §'|S' = 5, Al = a).

o {Q}icq is a set of observations that each agent i can experience, implicitly defining a set
of combined observations, 2, = II;c,2;.

e O, is a joint observation function modeling the probability of receiving a joint
observation w after taking joint action a and transitioning to state s. L.e.,
0.(s,a,w) = Pr(Q, = w|St = s, AL"1).

e B, is the set of possible combined belief states. Each agent i € o forms a belief state
bl € B;, based on its observations seen through time t, where B; circumscribes the set of
possible belief states for agent 4. This mapping of observations to belief states is
performed by a so called state estimator function under the assumption of perfect
recall. The resulting combined belief state is denoted B, = Il;c,B;. The corresponding
random variable b, represents the agents’ combined belief state at time t.

e R:Sx A, — Ris areward function representing a team’s joint preferences.

e If the MTDP has a finite horizon, it is represented by a positive integer 7T'.

Note that due to the assumption of perfect recall, the definition of the state estimator function
is not really necessary as it does nothing but creating a list of observations. However, if this
assumption is relaxed or somebody finds a way of mapping observations to a compact belief
state, this additional element might become justified. But so far, there has been no specific
proposal of a state estimator function not using the assumption of perfect recall and until now,
no compact representation of belief states in multi-agent settings has been introduced.

Definition 6 (Domain-level Policy for an MTDP) The set of possible domain-level policies
in an MTDP is defined as the possible mappings from belief states to actions, w4 : B; — A;.
Definition 7 (Joint Domain-level Policy for an MTDP) A joint domain-level policy for

an MTDP, w4 = (m14, ..., ThA), is a tuple of domain-level policies, one for each agent.

Solving an MTDP means finding a joint policy such that the global reward is maximized.
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2.1.3 Computational Complexity and Equivalence Results

Before the equivalence of the DEC-POMDP model and the MTDP model can be shown it has
to be defined what equivalence means. All frameworks described in this paper are used to
model decentralized decision problems. Thus, they can also be seen as sets of problem instances.
In terms of complexity theory, a set of problem instances where each has a “yes/no” answer is
a complexity class. Section 2.3.2 describes how a DEC-POMDP problem can be converted
to a “yes/no” problem and analyzes the complexity of the resulting complexity class. The
analysis shows that the first four models presented are NEXP-complete, i.e. they can be solved
in nondeterministic exponential time and every other problem in NEXP can be efficiently
reduced to these problems, where here efficiently means in polynomial time. For DEC-POMDPs
this means: DEC-PODMP € NEXP and VC' € NEXP: C' <, DEC-POMDP. For more details
on complexity theory see Papadimitriou [29].

Definition 8 (Equivalence of Models/Problems) Two models are called equivalent if
their corresponding decision problems are complete for the same complexity class.

Thus, to show that two problems are equivalent, a completeness proof such as in Section
2.3.2 could be performed for both problems. Alternatively, formal equivalence can be proved by
showing that the two problems are reducible to each other. To reduce one class of problems A
to another class of problems B, a function f has to be found that formally defines a mapping
of problem instances z € A to problem instances f(z) € B, such that the answer to x is “yes”
if and only if the answer to f(x) is “yes”. This mapping-function f has to be computable in
polynomial time. The reduction of problem A to problem B in polynomial time is denoted
A<, B.

Note that this notion of equivalence implies that if two models are equivalent they are equiv-
alent in terms of expressiveness as well as in terms of complexity. This means, the frameworks
can describe the same problem instances and are complete for the same complexity class. To
know the complexity class for which they are complete, at least one completeness proof for one
of the models has to be performed. Any framework for which equivalence with this model has
been shown is then complete for the same complexity class.

Theorem 1 The DEC-POMDP model and the MTDP model are equivalent under the perfect
recall assumption.

Proof: To show: 1. DEC-POMDP <, MTDP and 2. MTDP <, DEC-POMDP.

1. DEC-POMDP <, MTDP:
A DEC-POMDP is a tuple (I, S,{A;}, P,{Q;},O, R, T) and an MTDP is a tuple
(a, 8", Ay, P',Q4, 04, By, R/, T'). There is an obvious mapping between:
e the finite sets of agents, I = a.
e the finite set of world states, S = S’.
e the finite set of joint actions for each agent, A=A,.

e the probability table for state transitions, P(s'|s,d) = P'(s,a,s’).

10
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the finite set of joint observations, 0 =Q,.

the observation function, O(d]d, s') = Oq4(s, a,w).

the reward function, R(d,s") = R'(a, s).

e the finite horizon parameter, T = T".

The possible local histories of observations available to the agents in a DEC-POMDP
are mapped to the possible belief states b of the MTDP, i.e. b! is simply the sequence
of observations of agent i until time ¢. Finding a policy for an MTDP means finding a
mapping from belief states to actions. Thus, an optimal policy for the resulting MTDP
then constitutes an optimal policy for the original DEC-POMDP, where the final policies
are mappings from local histories of observations to actions.

2. MTDP <,, DEC-POMDP:

For o, S, Ao, P',Q, 04, R, T' the same mapping as in part 1 is used. The only remaining
element is the set of possible combined belief states, B,. In an MTDP, each agent forms
its belief state, b! € B;, based on its observations seen through time t. The assumption
in the MTDP model is that the agents have perfect recall, i.e. they recall all of their
observations. Thus, their belief states represent their entire histories as sequences of
observations. Obviously, with this restriction, the state estimator function and the belief
state space of the MTDP do not add anything beyond the DEC-POMDP model. Thus,
the history of observations can simply be extracted from the belief state and then the
resulting DEC-POMDP can be solved, i.e. a policy which is a mapping from histories of
observations to actions can be found. The solution to the DEC-POMDP is thus also a
solution to the original MTDP.

Therefore, the DEC-POMDP model and the MTDP model are equivalent. O

It becomes apparent that the only syntactical difference between MTDPs and DEC-PODMPs
is the additional state estimator function and the resulting belief state of the MTDP model.
But as we have shown, with the assumption that the agents have perfect recall of all of their
observations, the resulting belief state is nothing but a sequence of observations and therewith
implicitly existent in a DEC-POMDP, too. Thus, we consider a DEC-POMDP to be a somewhat
cleaner and more compact model than an MTDP. Accordingly, from now on we use DEC-
POMDPs to model decentralized decision making for multiple agents.

2.2 Models with Explicit Communication

Both models presented in Section 2.1 have been extended to models where the communication
actions are modeled explicitly. In the following two models, the interaction among the agents is
a process in which agents perform an action, then they observe their environment and then send
a message that is instantaneously received by the other agents (no delays in the system). Both
models allow for a general syntax and semantic of the communication messages. Obviously the
agents need to have conventions about how to interpret these messages and how to combine
this information with their own local information. One example of a possible communication
language is 3; = €);, where the agents simply communicate their observations.

11
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This distinction between the two different types of actions might seem unnecessary for prac-
tical applications but it is useful for analytical examinations. It provides us with a better way
to analyze the effects of different types of communication in a multi-agent setting (cf. Goldman
and Zilberstein [19]).

2.2.1 The DEC-POMDP-COM Model

The following model is equivalent to the one described in Goldman and Zilberstein [17]. The
formal definition of some parts have been changed to make the DEC-POMDP-COM model
presented here a straightforward extension of the afore described DEC-POMDP model.

Definition 9 (DEC-POMDP-COM) A decentralized partially observable Markov decision
process with communication (DEC-POMDP-COM) is a tuple
(I,S,{A;}, P,{%},0,%,Cx, R, T) where:

o .S {A;}, P,{Q;},0 and T are defined as in the DEC-POMDP.

e 3 is the alphabet of communication messages. ¢; € ¥ denotes an atomic message sent by
agent i. & = (01, ...,0y) denotes a joint message, i.e. a tuple of all messages sent by the
agents in one time step. A special message that belongs to X is the null message, ..
This message is sent by an agent that does not want to transmit anything to the other
agents. The agents do not incur any cost in sending a null message.

e Cy is the cost of transmitting an atomic message. Cyx, : ¥ — R, Cx(e,) = 0.

e R is the reward function. R(d,s’,d) represents the reward obtained by all agents
together, when they execute the joint action d, transition to the state s’ and send the
joint message &.

It is important that in this model, {A;} is a set of control actions which does not include actions
to communicate between agents.

Definition 10 (Local Policy for action for a DEC-POMDP-COM) A local policy for
action for agent 1, 5;4 is a mapping from local histories of observations 0; over 2; and histories
of messages @; received (j # 1). (5;4 QX XY — A

Definition 11 (Local Policy for communication for a DEC-POMDP-COM) A local
policy for communication for agent 4, §;" is a mapping from local histories of observations o; and
o, the last observation perceived after performing the last local action, over €2; and histories of
messages o; received (j #i). 07 : Q%o x % — 3.

Definition 12 (Joint Policy for a DEC-POMDP-COM) A joint policy § = (01, ...,0p)
is defined to be a tuple of local policies, one for each agent, where each §; is composed of the
communication and the action policy for agent <.

Solving a DEC-POMDP-COM means finding a joint policy for a DEC-POMDP-COM that
maximizes the expected total reward. This can be over an infinite or a finite horizon. See
Goldman and Zilberstein [17] for more details on the model.

12
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Theorem 2 The DEC-POMDP model and the DEC-POMDP-COM model are equivalent.

Proof: To show: 1. DEC-POMDP <, DEC-POMDP-COM and 2. DEC-POMDP-COM <,
DEC-POMDP.

1. DEC-POMDP <, DEC-POMDP-COM
For the first reduction, a DEC-POMDP can simply be mapped to a DEC-POMDP-COM
with an empty set of communication messages where then the cost function for the com-

munication messages becomes obsolete. Thus, ¥ = () and Csx, = (. Obviously a solution
for the resulting DEC-POMDP-COM is also a solution for the original DEC-POMDP.

2. DEC-POMDP-COM <, DEC-POMDP
A DEC-POMDP-COM is a tuple (I, 5, {A;}, P,{Q},0,%,Cx, R, T) and a DEC-POMDP
is a tuple (I', S, {A;}, P',{Q;}/,0', R",T"). The only difference between these models is
the explicit modeling of the communication actions in the DEC-POMDP-COM model. For
the second reduction these communication actions can be simulated in the DEC-POMDP
in the following way:

e The size of the state set S’ has to be doubled to simulate the interleaving of control
actions and communication actions. Thus, S’ = S x {0,1}. Here, (s,0) represents a
system state where only control actions are possible, denoted control state. And
(s,1) represents a system state where only communication actions are possible, de-
noted communication state.

e Each communication message is added to the action sets: {A4;} = {A;} UX. To
differentiate control actions from communication actions, control actions are denoted
as @ and communication actions are denoted as &.

e For each possible joint communication message, one new observation is added to
the observation sets, representing a tuple of n — 1 received messages by agent i:
{} = {Q;} UX" . Now, ¢ denotes a normal observation and &_; denotes an
observation representing n — 1 communication messages, i.e. all messages sent expect
the one from agent 1.

e The state transition table P’ is changed in such a way that if the agents are in a control
state, every joint control action leads to a communication state. The same way, if the
agents are in a communication state, every communication action leads to a control
state. In the former case, the probabilities are the same as for state transitions in the
original DEC-POMDP-COM. In the later case, every communication action leads to
a new control state. Thus:

Vs, P/((s',1)](s,0),@) = P(s'|s,q)

and
Vs P'({5,0)[(s,1),3) =1 and Vs #s P'({s,0)(s,1),5) =0

Furthermore, the probabilities for transitions that are not possible are set to 0 (e.g.
a transition from a control state to another control state, or a transtion from a com-
munication state to another communication state, or any transition after executing
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a communication action in a system state where only control actions are possible, or
any transition after executing a control action in a system state where only commu-
nication actions are possible).

e The observation function O’ has to be changed in such a way that after taking the
joint communication action o the probability of observing this particular joint com-
munication message is 1 and the probability of observing any other communication
message is 0. Thus:

1 if édsNoy=4¢
0'(8ld, (s',1)) = 0(d]d@,s") and O'(67|F, (s',0)) = omii=e

0 else
Furthermore, the observation probabilities of observing any impossible observations
are set to 0, analogously to the way described for the transition probabilities.

e The reward function R’ has to be changed to account for the communication costs
as defined by Cyx. lLe., if s’ is the system state after joint communication action
G = (o1, ...0n) was taken, then R'(7,s") = > 1" | Cx(0;). Obviously, the reward for a
joint communication action is negative.

In the resulting DEC-POMDP, the agents start off taking a joint control action. Then they
transition to a communication state. After taking a joint communication action, the agents
transition to a control state. This corresponds exactly to the course of action in the original
DEC-POMDP-COM where the agents also had designated action and communication
phases. Receiving messages is simulated by observations that correspond to the joint
messages. Therefore, the information available to an agent in the DEC-POMDP is the
same as in the original DEC-POMDP-COM. Thus, an optimal policy for the resulting
DEC-POMDP is also an optimal policy for the original DEC-POMDP-COM.

It remains to show that the presented mapping from a DEC-POMDP-COM to a DEC-POMDP
does not increase the size of the problem more than polynomial in the problem description.
This is indeed questionable: All possible joint messages have been added to the observation set,
meaning that an agent observes a tuple of n — 1 messages after taking a communication action.
Thus the observation set’s size is now exponential in the number of agents: {€;} = {Q;}uX"~1.
But for the complexity analysis, the size of the observation set is crucial. In the first step of
the proof that DEC-POMDP € NEXP (see Theorem 4 on page 18), a joint policy is guessed
and written down in exponential time. This is possible, because a joint policy is a mapping
from local observation histories to actions, one mapping for each agent. Because the finite
horizon T is bounded by |S|, all observation histories have at most length |S| and thus the
number of possible observation histories is {Qi}‘sh thus it is bounded exponentially by the
problem description. But with the presented mapping, the new observation sets {{2;} have a
size exponential in the number of agents, thus the number of possible histories of length T
is now: (|X['1)I5l. Fortunately, this number is still exponentially bounded in the size of the
problem, because (|%|/IS1 = (210g(|2|)'u|)‘5| — 2log(I=N11IS1 - A1l other problem variables (state
space S, actions sets {4;}, transition probability table P, observation function O) also do not
grow more than polynomially. Thus, the DEC-POMDP and the DEC-POMDP-COM model
are equivalent. O
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2.2.2 The COM-MTDP Model

Definition 13 (COM-MTDP?!) A communicative multiagent team decision problem
(COM-MTDP) is a tuple (o, S, Ay, P, Qq, Oy, X4, B, R), where

e a,5, A,, P,Q, and O, remain defined as in an MTDP.

e 3, is a set of combined communication messages, which is defined by X, = Il;coX;
where {3;}icq is a set of possible messages for each agent i.

e B, is an extended set of possible combined belief states. Now, each agent i € o forms a
belief state b} € B;, based on its observations and on the messages received from the
other agents. This mapping of observations and messages to belief states is performed by
the state estimator function under the assumption of perfect recall.

e R is an extended reward function, now also representing the cost of communicative acts.
Its is defined by R: S x Ay x 3y — R.

Also for COM-MTDPs, the state estimator function does not add any additional functionality
due to the assumption of perfect recall. However, if this assumption is relaxed, a state estimator
has the potential to model any noise, temporal delays, etc. that might occur in the commu-
nication channel. Furthermore, it could possibly do some preprocessing with the observations
and messages. But so far, nobody has exploited neither possibility. In fact, using the complete
history of observations and messages always leads to the best possible policies.

Definition 14 (Communication Policy for a COM-MTDP) A communication policy for
a COM-MTDP is defined as a mapping from the extended belief state space to communication
messages, i.e. my : B — X;.

Definition 15 (Joint Communication Policy for a COM-MTDP) A joint communication
policy for an MTDP, 7,5 = (miy, ..., Thy), i a tuple of communication policies, one for each
agent.

Definition 16 (Joint Policy for a COM-MTDP) A joint policy for a COM-MTDP is a
pair of a joint domain-level policy and a joint communication policy, (wax, waa)-

Solving a COM-MTDP means finding a joint policy for a COM-MTDP that maximizes the
expected total reward. This can be over an infinite or over a finite horizon.

! Adapted from Pynadath and Tambe [34].
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2.3 Consolidation of 4 Different Formal Models
2.3.1 Equivalence Results

Theorem 3 The DEC-POMDP-COM model and the COM-MTDP model are equivalent under
the perfect recall assumption.

Proof: To show: 1. DEC-POMDP-COM <, COM-MTDP and 2. COM-MTDP <, DEC-
POMDP-COM.

As has been shown in Theorem 1, the DEC-POMDP model and the MTDP model are equivalent.
The extensions of these models introduce/change ¥,Cysx and R for the DEC-POMDP-COM
model and X, B, and R for the COM-MTDP model. For the parts of the models that did
not change, the same mapping as presented in the earlier proof is used.

1. DEC-POMDP-COM <, COM-MTDP
Again there are obvious mappings between:

e The set of communication messages, > = 3.

e The extended reward function, R(d,s’,d) = R'(a,s’,0). The costs of the communi-
cation actions Cy are not explicitly modeled in the COM-MTDP model, but instead
part of the extended reward function.

The possible local histories of observations and communication messages received that
are available to the agent in a DEC-POMDP are mapped to the extended set of possible
combined belief states B, of the COM-MTDP, i.e. b! is simply the sequence of observations
and communication messages received by agent ¢ until time ¢. Finding a policy for a
COM-MTDP means finding a mapping from the extended set of combined belief states
to actions (domain level actions and communication actions). Thus, an optimal policy
for the resulting COM-MTDP then constitutes an optimal policy for the original DEC-
POMDP-COM, where the final policies are mappings from local histories of observations
and communication messages to actions (control actions and communication actions).

2. COM-MTDP <, DEC-POMDP-COM
For ¥ and R the same mapping as in part 1 is used. The only remaining element is the
extended set of possible combined belief states, B,, which again is implicitly existent in
a DEC-POMDP-COM, too. In a COM-MTDP, each agent forms its belief state, b! € B;,
based on its observations and the messages it has received up to time t. Now the extended
state estimator function forms the belief state with the following three operations:

a) At the beginning, it initializes the belief state with an empty history.
b) It appends every new observation agent ¢ receives to its belief state.
c¢) It appends new messages agent i receives to is belief state.
Again, the COM-MTDP model assumes that the agents have perfect recall, i.e. they recall

all of their observations and messages. Thus, the extended state estimator function does
nothing but building up a complete history of observations and messages - the same that
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also happens in a DEC-POMDP-COM, where it is not merged into one belief state, but
hold separate in two different histories. Thus, the history of observations and communica-
tion messages can simply be extracted from the belief state of the COM-MTDP and then
the resulting DEC-POMDP-COM can be solved. This means finding a policy which is
a mapping from histories of observations and communication messages to actions. Thus,
the solution to the DEC-POMDP-COM is also a solution to the original COM-MTDP.

Therefore, the DEC-POMDP-COM model and the COM-MTDP model are equivalent. 0

Corollary 1 All of the aforementioned models, i.e. the DEC-POMDP model, the DEC-
POMDP-COM model, the MTDP model and the COM-MTDP model are equivalent.

Proof: The proof follows immediately from theorems 1,2 and 3. O

As explained in Section 2.1, we consider the DEC-POMDP model to be somewhat cleaner
and more compact than the MTDP model. Obviously, the same holds true for DEC-POMDP-
COMs vs. COM-MTDPs. Whether one uses the model with or without explicit communication
messages depends on the specific purpose. The models are equivalent, but for a specific research
analysis one of the models might be superior. For example, when analyzing the effects of
different types of communication, the DEC-POMDP-COM model is more suitable than the
DEC-POMDP model (see for example Goldman and Zilberstein [19]). If communication actions
shall be considered as any other action, the DEC-POMDP model is more compact and thus
preferable over the DEC-POMDP-COM model.

2.3.2 Complexity Results

The first complexity results for Markov decision processes go back to Papadimitriou and Tsit-
siklis [31] (1987) where they showed that the MDP problem is P-complete and that the POMDP
problem is PSPACE-complete for the finite-horizon case. For a long time, no tight complexity
results for decentralized processes were known. In 1986, Papadimitriou and Tsitsiklis [30] could
show that decentralized control of MDPs must be at least NP-hard. But a complete complexity
analysis also giving tight upper bounds was still missing.

In 2000, Bernstein et al. [6] were the first to prove that DEC-POMDPs as well as DEC-MDPs
with a finite horizon are NEXP-complete. This was a breakthrough in terms of understanding
the complexity of decentralized control of multiple agents. In particular, due to the fact that
it has been proven that P and EXP are distinct, this shows that optimal decentralized control
of multiple agents is infeasible in pratice. Moreover, it is strongly believed by most complexity
theorists that EXP # NEXP and that accordingly the problem needs double exponential time to
be solved in the worst case. Note that this has not been proven formally but for the remainder
of this paper it is assumed that it is true. Accordingly, when saying that any algorithm that
solves finite-horizon DEC-POMDPs optimally needs double exponential time in the worst case,
this is always under the assumption that EXP # NEXP.

Below, a sketch of the original proof is presented. Obviously, due to the equivalence results
from Corollary 1, all complexity results that can be shown for DEC-POMDPs are at the same
time also true for DEC-POMDP-COMs, MTDPs and COM-MTDPs. The complexity proof
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only deals with two agents as this is already sufficient to show the NEXP-completeness. Let
DEC-POMDP,, denote a DEC-POMDP with n agents and accordingly DEC-POMDP, denotes
a 2-agent problem.

As explained in Section 2.1.3, when analyzing the complexity of a model, the decision prob-
lem is considered. Thus, the original optimization problem (finding the best policy for a given
DEC-POMDP) has to be turned into a decision problem with a “yes/no” answer. For all
presented models this can be done by adding a parameter K to denote a threshold value.
The decision problem for a DEC-POMDP,, is then stated as follows: Given a DEC-POMDP,,
(I1,5,{A4;},P,{Q;},0,R, T, K), is there a joint policy for which the value of the initial state sg
exceeds K7 Obviously, actually finding the optimal policy for a DEC-POMDP problem can be no
easier than the threshold problem (important for the hardness proof). Here, the finite-horizon
version of the DEC-POMDP model with the convention that 7' < |S| is analyzed. All following
theorems and proofs in this section are taken from Bernstein et al. [7].

Theorem 4 For all n > 2 a finite-horizon DEC-POMDP,, € NEXP.

Proof: Toshow: A non-deterministic Turing machine can solve any instance of a DEC-POMDP,,
in at most exponential time.

1. Guess a joint policy and write it down in exponential time. This is possible, because a
joint policy consists of n mappings from observation histories to actions. Since T' < |S],
the number of possible histories is exponentially bounded by the problem description.

2. The DEC-POMDP together with the guessed joint policy can be viewed as an exponen-
tially bigger POMDP using n-tuples of observations and actions.

3. In exponential time, convert each of the exponentially many observation sequences into a
belief state.

4. In exponential time, compute transition probabilities and expected rewards for an expo-
nentially bigger belief state MDP.

5. This MDP can be solved in polynomial time, which is exponential in the original problem
description.

Thus, there is an accepting computation path in the non-deterministic machine if and only if
there is a joint policy that can achieve reward K. O

Because the original proof of the DEC-POMDP hardness problem proves the NEXP-hardness
for a sub-class of the DEC-POMDP model, namely the decentralized Markov decision process
(DEC-MDP), first some more definitions are needed. Note that different synonyms for the same
definitions are used in the DEC-POMDP and in the MTP framework. Thus, in the following
definitions, both notations are listed, but only the first one listed in each definition is used.

18



Models and Algorithms for Decentralized Control of Multiple Agents S. Seuken, S. Zilberstein

Definition 17 (Joint full observability = Collective observability) A DEC-POMDP is
jointly fully observable, if the n-tuple of observations made by the agents together fully determine
the current global state. That is, if O(0]d, s’) > 0 then P(s|0) = 1.

Definition 18 (DEC-MDP) A decentralized Markov decision process (DEC-MDP) is a DEC-
POMDP with joint full observability.

Theorem 5 For all n > 2 a finite-horizon DEC-MDP,, is NEXP-hard.

Proof sketch: The detailed proof of this lower bound is quite involved and can be found in
Bernstein et al. [7]. Here, only a proof sketch is presented to explain the general idea.

For this proof it is sufficient to reduce any NEXP-complete problem to DEC-MDP,,. For
the following reduction, an NEXP-complete problem called TILING is used, which is described
as follows: A board size n (represented compactly in binary) is given, a set of tile types L =
{tile-0, ..., tile-k}, and a set of binary horizontal and vertical compatibility relations H,V C Lx L.
A tiling is a mapping f : {0,...,n—1} x{0,...,n—1} — L. A tiling f is consistent if and only
if (a) £(0,0) =tile—0 and (b) for all z,y(f(x,y), f(x+1,y)) € H, and (f(x,y), f(z,y+1)) € V.
The decision problem is to determine, given L, H,V, and n, whether a consistent tiling exists.
Figure 5 shows an example of a tiling instance and a corresponding consistent tiling.

n=4
L= [o]
H=[o]1] [of2] [4]o] [1]1] [1]2] [2]0]

-ABEEE
1] [2] [o] [2] [0

a consistent tiling

NO|N|O|©e
NfO|=|O|N
alalolalw

OIN|O|—~|—

w N =~ o

Given n, L, H and V, is there a consistent tiling?

Figure 5: The Tiling Problem (Courtesy of Daniel Bernstein).

For the following reduction, a fixed but arbitrarily chosen instance of the tiling problem is
assumed, i.e. L, H,V and n are fixed. Then a DEC-MDP is constructed, with the requirement
that it is solvable (i.e. there is a joint policy for which the value of the initial state sp exceeds
K) if and only if the selected tiling instance is solvable. The basic idea is to create a DEC-MDP
where the agents are given tile positions from the environment in each step and then select
tiles to fill the pair of positions in each step. The environment then checks, if this leads to a
consistent tiling.
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A naive approach would lead to the idea of creating a state for every pair of tile positions for
the DEC-MDP. Unfortunately, this would result in an exponential blow-up, but a polynomial
time reduction is required. Thus, the environment itself cannot remember all information about
the process. But it turns out that it is sufficient to only remember information about the relative
position of two tiles to each other (the same?, horizontally adjacent?, vertically adjacent?). The
agent’s local policies are based on their observation histories, thus if they observe a tile position
given from the environment, they can select an action in the next step based on this observation.
Figure 6 illustrates how this process can be subdivided into the following five phases:

1. Select Phase: Select two bit indices and values, each identifying a bit position and the
value at that position in the location given to one of the agents.

2. Generate Phase: Generate two tile locations at random, revealing one to each agent.

3. Query Phase: Query each agent for a tile type to place in the location that was specified
to that agent.

4. Echo Phase: Require the agents to echo the tile locations they received in the generate
phase bit by bit.

5. Test Phase: Check whether the tile types provided in the query phase come from a single
consistent tiling.

®

Process randomly
chooses two tile positions

Agent | observes Agent 2 observes
tile position 1 | 2 tile position 2

Agent 1 chooses Agent 2 chooses
atile type t! a tile type 2
1

In u

REWARD
=0

Process checks that tile choices
come from one consistent tiling

3 policy with expected reward 0 < 3 consistent tiling

Figure 6: Reduction from the Tiling Problem (Courtesy of Daniel Bernstein).

Note that because the tiling problem is reduced to a DEC-MDP, joint-observability must be
maintained throughout the whole process. lL.e., all aspects off the DEC-MDP must be available
to the agents through their observations. This is achieved by making all information observable
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to both agents, except for the indices and values selected in the select phase and the tile types
that are chosen by the agents during the query phase.

Because the environment has the information about the relative position of the tiles, it can
generate a reward depending on the chosen actions (the tile types) after each step. Only if the
tiling conditions hold, the agents receive a non-negative reward. Thus, for the whole problem,
the agents can expect a non-negative reward (exceeding the threshold value K) if and only if the
tiling conditions can be met for all pairs of positions, i.e. there exists a consistent tiling. Thus,
a solution for the DEC-POMDP,, at the same time constitutes a solution to the tiling problem.
Accordingly, as the tiling problem is NEXP-complete, solving a finite-horizon DEC-POMDP,,
is NEXP-hard. O

Corollary 2 For alln > 2 DEC-POMDP,, is NEXP-hard.

Proof: Because a DEC-POMDP is a true super class of a DEC-MDP, and as has been shown in
Theorem 5 that DEC-MDPs are NEXP-hard, the same follows immediately for DEC-POMDPs.
O

Because all four formal models for optimal multi-agent planning are equivalent, the last com-
plexity result also holds true for DEC-POMDP-COMs, MTDPs and COM-MTDPs. Thus, for
following research work, either one of the models can be used for theoretical analysis purposes
as well as for the development of algorithms. It will always apply to the other models as well.
In the following section, a completely different approach to formalize the multi-agent planning
problem is presented. It turns out that it is different from the models presented in this section
in terms of expressiveness as well as in terms of complexity.

2.4 Models with Explicit Belief Representation

Single agent planning is known to be P-complete for MDPs and PSPACE-complete for POMDPs.
The unfortunate jump in complexity to NEXP when going from 1 to 2 agents is due to the fact
that in the DEC-MDP /DEC-POMDP model there is probably no way of compactly representing
a policy (see also Section 2.5.2 for a more detailed discussion of this topic). The agents have to
remember their complete history of observations which results in exponentially large policies.

If there were a way to build up a compact belief state about the whole decentralized process,
one would hope to get a lower complexity than NEXP. For one agent, this would include not
only expressing the belief about its own local state but also its belief about the other agents
(their states, their policies, etc.). Exactly this idea is central for the approach pursued by the I-
POMDP model first introduced by Piotr Gmytrasiewicz and Prashant Doshi in 2004 and refined
in 2005 [16]. They propose a framework for sequential planning in partially observable multi-
agent settings. Their model is even more expressive than the DEC-POMDP model as it allows
for cooperative as well as for non-cooperative settings. Thus, it is closely related to partially
observable stochastic games (POSGs). But in contrast to classical game theory, this approach
does not search for equilibria or care about stability. Instead it focuses on finding the best
response action for one single agent with respect to the belief about the other agents. Thereby,
it avoids the problems of equilibria-based approaches, namely the non-uniqueness (multiple
equilibria) and that they only describe the agent’s optimal action, if an equilibrium has been
reached.
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The formal I-POMDP model and corresponding solution techniques are presented below.
Following some complexity results are discussed and unfortunately, as one expected (because the
expressiveness of this model is even larger then the DEC-POMDP model), the new framework
does not result in a lower worst case complexity than the DEC-POMDP model. In fact, a model
that only allows for approximate solutions already needs double exponential time to be solved.
Finally, the applicability of this model and its relationship to DEC-POMDPs is examined.

2.4.1 The I-POMDP Model

I-POMDPs extend the POMDP model to the multi-agent case. Now, in addition to a belief
over the underlying system state, a belief over the other agents is also maintained. To model
this richer belief a so-called interactive state space is used. A belief over an interactive
state subsumes the belief over the underlying state of the environment as well as the belief
over the other agents. Notice that - even if just two agents are considered - expressing a belief
over another agent might include a belief over the other agent’s belief. As the second agent’s
belief might also include a belief over the first agent’s belief, this technique leads to a nesting
of believes which makes finding optimal solutions within this model problematic. This topic is
discussed later in Sections 2.4.3 and 2.4.4.

To capture the different notions of believes formally, some definitions have to be introduced,
before the I-POMDP model can be defined. The nesting of believes then leads to the definition
of finitely nested I-POMDPs in the next section.

Definition 19 (Frame) A frame of an agent 1 is, 0, = (A, Q;,T;, 04, R;, OCy), where:
e A; is a set of actions agent ¢ can execute.
e (); is the set of observations the agent ¢ can make.
e T; is a transition function defined as T; : S x 4; x S — [0,1].
e O; is the agent’s observation function defined as O; : S x 4; x ; — [0, 1].

e R; is the reward function representing the agent i’s preferences defined as
R;:Sx A, — R

e OCj; is the agent’s optimality criterion. This specifies how rewards acquired over time are
handled. For a finite horizon, the expected value of the sum is commonly used. For an
infinite horizon, the expected value of the discounted sum of rewards is commonly used.

Definition 20 (Type = Intentional Model?) A type of an agent i is 6; = (b;, 6;), where:

e b; is agent i’s state of belief, an element of A(S), where S is the state space.

e 0; is agent 7’s frame.

Assuming that the agent is Bayesian-rational, given its type 6;, one can compute the set of
optimal actions denoted OPT'(6;).

2The term “model” is used in connection with the definition of the state space (see following Definition of
I-POMDP). The term type is used in connection with everything else.
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Definition 21 (Models of an agent) The set of possible models of agent j, M; consists of
the subintentional models, SM;, and the intentional models IM;. Thus, M; = SM; U IM;.
Each model, m; € M; corresponds to a possible belief about the agent, i.e. how agent j maps
possible histories of observations to distributions of actions.

e Subintentional models SM; are relatively simple as they do not imply any
assumptions about the agent’s beliefs. Common examples are no-information models and
fictitious play models, both of which are history independent. A more powerful example
for a subintentional model is a finite state controller.

e Intentional models I Mj are more advanced, because they take into account the
agent’s beliefs, preferences and rationality in action selection. Intentional models are
equivalent with types.

An I-POMDP is a generalization of POMDPs to handle presence of and interaction with other
agents. This is done by including the types of the other agents into the state space and then
expressing a belief about the other agents’ beliefs. For simplicity of notation, just two agents
are considered, i.e. agent ¢ interacting with one other agent j. But the formalism is easily
extendable to any number of agents.

Definition 22 (I-POMDP) An interactive POMDP of agent i, -POMDP;, is a tuple
(1S5, A, T;, Q4, O4, R;), where:

e IS; is a set of interactive states defined as 1.S; = S x M; where S is the set of states of
the physical environment, and M is the set of possible models of agent j. Thus agent 