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Abstract: In this paper, we explore the tradeoffs involved in designing an adaptive, high-performing
filesystem allocation policy. Through simulation, we examine the performance of typical log-based and
logical allocation strategies. We also present several alternative algorithms, and attempt to gain insight into
why they fail to outperform the (much simpler) traditional algorithms.

Introduction

As technology has advanced, computer components have grown rapidly in terms of speed
and capacity. While processor and memory speeds have increased dramatically, hard disk
throughput has remained relatively constant. As a result, today’s I/O intensive
applications are often disk bound. To address this problem, a great deal of research has
been dedicated to improving the filesystem allocation policies that govern the use
permanent storage, as even the most modern operating systems employ simplistic
algorithms for performing disk layout. Researchers believe that a well-designed
allocation strategy can improve data locality, thus reducing hard drive seek times and
increasing 1/0O throughput.[14]

While the statement of the filesystem allocation problem is quite straightforward, finding
an effective solution is a complex undertaking. The complex interactions between data
layout and usage patterns are difficult to characterize. In this paper, we explore the
tradeoffs involved in designing an adaptive, high-performing filesystem allocation policy.
Through simulation, we examine the performance of typical log-based and logical
allocation strategies, as well as several alternative, adaptive algorithms, none of which
are able to outperform existing methods. Furthermore, we attempt to explain why
existing policies hold up so well.

Background

While hard disk capacity has increased, the basic design of drives has remained the same.
Disks contain (sometimes multiple) platters and heads, and the chief source of latency is
“seek time” --- the time that it takes the disk head to move from one part of the disk to
another in search of a specific data block. File locality can greatly alleviate the seek
problem, and as a result the physical layout of the files on disk can have a tremendous
effect on system performance.[14]



Traditionally, filesytem allocation algorithms have fallen into two main categories. The
first and most commonly deployed family of filesystems is based on the Berkeley Fast
Filesystem (FFS).[6] Past studies have demonstrated that in many workloads, files that
reside within the same logical directory tend to be accessed together. These FFS
filesystem (and its descendents) attempt to exploit this property to increase file locality
on disk.[2] Disk blocks are divided up into several continuous "block groups", typically
100MB or more in size. The FFS allocator attempts to place "sibling files” (files that
reside in the same logical directory) within the same block group, minimizing seek times
when the siblings are accessed together.

Hard disk drives have two basic operations: reading and writing. The FFS paradigm does
not optimize itself for either operation, as it makes the implicit assumption that both reads
and writes are equally correlated with the logical structure of the filesystem hierarchy as
defined by the user. Thus in a sense, the FFS scheme is equally optimized for disk reads
as well as writes, to whatever degree of access locality achieved is dependent on degree
to which files in the same directory are concurrently read from or written to.

The second major category of filesystems is the "log-structured" filesystems (LFS), based
on the work of Rosenblum and Ousterhout.[10,12] The LFS allocation policy is
temporally rather than logically based. In this scheme, all file write operations are
continuously appended to the end of the disk’s “log”. Thus files that are created at the
same point in time are located in close physical proximity, and read locality is eschewed
in favor of write locality (though in practice some amount of read locality is achieved to
the extent that files created at the same time are accessed together in the future). In
addition to creating new files at the frontier of the log, the LFS policy carries out all file
modifications in this manner. Thus, if a 1k chunk of a 100k file is altered, the altered
fragment is written to the end of the log, which may be in a completely different part of
the disk than the rest of the file. Given that most files are read in their entirety, this
willingness to constantly fragment files might seem risky. However, this weakness is
balanced out by the fact that an LFS system virtually eliminates write-based seeks.

There is an additional bit of overhead associated with LFS systems, however. As the disk
fills up, eventually the frontier of the log reaches the end of the disk. Under most
circumstances, the disk may still have much unused space when it reaches this point,
since files that have been removed or modified along the way have orphaned deallocated
(but not reused) blocks in the regions where they were originally stored. In order to
reclaim these "dirty" blocks, the LFS invokes a "cleaner". The cleaner’s job is to identify
segments of the disk (typically 512k in size) that have small proportions of live data in
them. The (hopefully few) blocks of live data are copied to the end of the log in the same
manner as a normal file write, and segment is returned to the system as a continuous
block of free space suitable for log-based writes.

Both paradigms have strengths and weaknesses. Rather than focus solely on which
performs better overall, we attempt to examine the specific situations where each scheme
was able to achieve locality and minimize seeks. The goal of this work is to formulate a
"hybrid" filesystem, similar in spirit to the work by Muller or Salmon et al.[7,11]



Previous attempts to create a "best of both worlds" allocation policy have relied on static
heuristics for determining how to handle different types of files (typically segregating
files into two or more size categories). We believe that a more principled approach,
based on simple probabalistic models of file access patterns can inform allocation and
produce a system that outperforms both FFS and LFS.

Data

The first data set we examined was collected from a single Linux workstation using a file
trace utility written by Jim Cipar at the University of Massachusetts. While the data
collected was high quality, there was simply not enough of it to provide sufficient sample
size for any statistical analysis. Furthermore, the program responsible for collecting
traces relied on functionality implemented in an unstable branch of Linux kernel source
and was deemed unfit for use on a high traffic fileserver or webserver.

As an alternative, we examined a series of NFS traces collected by Margo Seltzer et al. at
Harvard in the fall of 2001.[3] We focused our efforts around the "EECS" data set,
consisting of general usage traffic from computer science and electrical engineering
workstations. Since the traces capture the activity of multiple clients simultaneously
accessing the same fileserver, there is an added layer of complexity added to any
allocation strategy, as the usage patterns of a single client can be effectively randomized
by the server traffic coming from other clients. In order to control for this effect, we
chose to focus on the traffic associated with a single client at a time, and filtered the raw
trace data accordingly.

For the analysis below, we worked with week-long time slices of NFS calls from ten
different workstations (while the aggregated traces contain calls from 117 unique clients,
the ten we analyzed represent over 42% of the total traffic). The distribution of call types
can be seen below in Figure 1. Though NFS lookup and getattr calls were used to infer
the logical filesystem hierarchy from the trace data, for the purposes of analysis only file
read, write, create, and remove calls were considered, as they represent the "core"
functionality inherent to any filesystem.

Since the data were anonymized, we do not know anything more about the clients from
which they were collected. However, as we can from the breakdown of call types found
Figure 1b, the ten clients seem to represent two distinct classes of user. The first type,
represented by bars 1-8, fits the traditional definition of a "typical" user: most operations
are reads (70-80%), with very few create or remove calls. The second class, represented
by bars 9 and 10, depicts a different type of user, characterized by higher volume and
greater proportions of write, create, and remove calls. For the purposes of this
discussion, we will refer to these two classes of users as "read-based" and "write-based",
respectively.
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Figure 1. Distribution of NFS call types over different data sets.

The table in Figure 2 offers a quick characterization of the data for a single typical
specimen of a read-based and write-based client (our analysis has shown that for the most
part, clients are statistically interchangeable within these two classes). While the trace
for the write-based client contains almost double the number of calls for its read-based
counterpart, its activity is centered around far fewer files. From Figure 3, we see that the
distributions of file size are similar for each, with the vast majority being of small size.

read-based write-based
number of files 5302 863
total accesses 217726 438638
Reads 117426 (54%) 148477 (34%)
Writes 57727 (27%) 213049 (49%)
Creates 2461 (1%) 39262 (9%)
Removes 504 (0%) 28478 (6%)
mean file size (kb) 682.1 174.9
median file size (kb) 5.7 2.5
total read volume (Mb) 731.0 750.6
total write volume (Mb) 625.5 466.3

Figure 2. Descriptive attributes from examples of read-based and write-based file traces.

A notable aspect of both traces is the uneven distribution of activity among different files.
In each trace we examined, the majority of traffic was associated with tiny fraction of the
files in the filesystem. In the cases below, the top 1% of files is responsible for 69% and
74% of all NFS calls, respectively. The charts in Figure 4 detail the overall distribution
of activity among individual files, as well as the cumulative density of activity for the top
fifty files in each trace. While the distribution of activity toward a small number of files
(<< 1%!) is more pronounced in the write-based data set, the trend is the same. Of
course, this aspect of the data has important implications on the performance of any
filesystem layout scheme, and will be discussed in more detail later.
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Figure 3. Logarithmic distributions of file size for read-based (a) and write-based (b) file traces.
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Figure 4. Distributions of file access frequency across individual files for read-based (a) and write-
based (b) traces, along with cumulative density distributions for the fifty most active files in each (c,
d).



Finally, Figure 5 depicts a breakdown of read calls and write calls for individual files.
While there seems to be a tendency for files to be “active” (lots or read calls and write
calls) or “inactive”, there seems to be no clearer clusters between the call types.
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Figure 5. Corresponding read and write calls counts for read- and write-based traces.

Standalone Models

Our first goal was to try to find evidence of latent structure within the data than could
potentially guide an adaptable file allocation policy. To this end, we constructed static
models of file access patterns, similar to some of the original work performed on the
EECS traces.[3] These studies assert the usefulness of being able to predict individual
file access attributes for use in hints systems. The goal of our experiments was to
categorize the data and its structure in the hopes of lending insight into allocation
policies. We created several standalone models to predict the probability of future file
access types for individual files based on their “intrinsic” attributes (file size, mode, uid,
gid, and extension).

Figure 6 depicts an example of a decision trees constructed for predicting file activity (in
this case, whether or not a file will be written to). These models were created using the
Weka data mining toolkit’s J48 tree algorithm, which is based on Ross Quinlan’s C4.5
algorithm. Decision trees are “selective” models, meaning that the algorithm determines
which attributes are statistically relevant to determining class value, and arranges them
hierarchical ly according to their predictive ability. By examining which attributes are
used to create splits in the tree (and at what level), we can get a feel for which pieces of
information are the most useful when making predictions. In the example below, the
model first looks at the size of the file being classified (“discsize”). If the file size is
zero, we determine that the file will not be written to. If the size is nonzero, we then
examine the uid of file.
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Figure 6. Example of a decision tree for predicting file writes from file attributes, created with the
Weka data mining software package.

Our simple trees performed moderately well on our data. The file read model produced a
contingency table with a corrected contingency coefficient value of 0.67 (perfect would
be 1.0). Its accuracy was 94.1%, which is actually smaller than the default accuracy
(determined by always predicting the majority class) of 96.0%. We fared better when
predicting file writes; here, our model produced contingency coefficient of 0.91, along
with an accuracy measure of 98.7% (96.3% default). On a general level, we can
conclude that with our simple models, file writes are easier to predict than reads.

In addition, we created a “relational” data set from the data and loaded into Proximity in
an attempt to learn Relational Probability Trees (RPTs).[8] A relational data
representation allows for encoding the statistical dependencies between data instances in
the form of “links”. In our case, links were created to reflect the logical structure within
the file hierarchy. In addition to considering the attributes of each individual file when
determining its class, the RPT learning algorithm is allowed to consider the attributes of
neighboring (linked) files as well. Thus instead of just splitting on attribute values as in
the Weka trees, RPTs search a space of possible aggregations over the groups of
attributes from all connected files. In addition, the RPT has access to purely structural
attributes, such as the size of the neighborhood being considered.

The trees learned for predicting file writes can be seen in Figure 7. In the first tree (a),
the best feature (utilized in several splits) is the proportion of “sibling” files that have
been written to. This confirms the utility of the guiding principle behind FFS --- that is,
the best indicator of file write operations is the accesses patterns of the files in its
directory. The second tree (b) was constructed without supplying the class label (written)
of neighboring files to the algorithm. This model splits first on the uid of the file being
classified (the “core file”), then makes sub-decisions be examining either the number of
siblings the file has (“degree dir_sibling”) or the core file’s extension. The tree below
performed comparably to the standard decision trees, with a predictive accuracy of 97%.
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Figure 7. Relational probability trees learned from the trace data for predicting file writes.

While these preliminary results are encouraging, we must keep in mind the fact that these
models are working offline and with perfect information. Further, it is unclear how to
translate these findings into an online allocation policy. Intuitively, the predictive power
of co-reads/writes within directories would associate a policy that takes the logical
structure into account with better locality based performance; however, as we shall see
this is not necessarily the case.

Simulation

We constructed a filesystem simulator to evaluate the relative performance of different
allocation strategies. The simulator models the behavior of an actual hard disk drive,
given some basic assumptions about physical drive characteristics and operating system
behavior with regard to file cacheing and prefetching. Our disk model itself is heavily
abstracted: the simulator represents disk storage as a single continuous array of blocks of
a fixed size (4096 bytes for our experiments). Filesystem metadata is simplified; while
each file is assigned to an inode that must be updated each time one of its blocks is
modified, we do not simulate indirect blocks or system-wide metedata structures found in
both FFS and LFS systems. To measure seek behavior of the disk under different layout
strategies, we utilize a linear model of seek time based on the physical distance between
disk locations as measured in blocks, added to a "minimum movement time" (MMT)
penalty that is associated with any movement of the disk head. For our experiments
below, we based our simulation on a Seagate Barracuda hard disk drive, as characterized
by Talagala et al.[16] In this case, the MMT is equivalent to traversing approximately
1.8 GB of physical disk space in a seek. Through the course of our experiments, we
found that the MMT was a difficult factor to overcome when choosing a layout strategy,



as the benefits of locality are often trumped by the penalty incurred from moving the disk
head at all.

In addition, our simulator models two separate buffer caches of varying sizes. The first
of the two simulates the physical cache of the drive itself (usually modeled at 64 tracks,
or 2MB). Since the cacheing algorithms for actual hard disks in production are not
publicly available, we were forced to make further assumptions regarding cache
behavior. In our model, when a data block is read from disk, its entire track is loaded
into the buffer cache. It remains there until it is evicted by another incoming file as
determined by a "least recently used" (LRU) policy. In addition, we also modeled an
operating system level file cache (128MB). The file cache operates on a block level
(typically 4k each), and also utilizes an LRU policy. Additionally, the file cache
performs a simple form of prefetching when consecutive blocks in a file are read, in
accordance with the behavior of modern Linux kernals.

In both cases we assume a zero access penalty for reading files resident in the cache.
Thus blocks that are repeatedly accessed incur no seek penalty. While the simplifications
mentioned above may be a bit heavy handed, they do not unfairly favor or penalize one
scheme over another, so it is unlikely that our findings would not be applicable to an
actual deployed system.

Since the traces being used are small slices of time (one week), some additional
assumptions were made concerning the initial state of the disk at the start of a trace.
Using the modification times (mtime) for each file are contained in the trace data, we
were able to "pre-build" the filesystem: for each file with an mtime value that was
previous to the start time of the trace, we created an artificial write call to initialize the
file to the correct size. While this obviously will not accurately represent the true state of
the filesystem at the start of the trace, it will be a much closer approximation of behavior
than working with a disk that is initially empty. We would also like to note that these
“pre-write” calls were not counted in any of the measurements discussed below.

Experimental Results

Our first set of experiments was an attempt to examine the effects of different simulation
parameters on the performance of LFS and FFS systems. By exploring different
scenarios, we hoped to gain insight into how each filesystem functions.

Disk Size

It was previously reported that the FFS algorithm was especially sensitive with regard to
disk size. Given that files are evenly spread across the entirety of the disk, having a
larger disk meant spanning longer distances to seek to files found in different portions of
the disk. Thus, we concluded that having lots of free disk space severely degraded
performance! The effect can be seen in Figure 8a below. However, these conclusions
were drawn from data supplied by a simpler implementation of the simulator;
specifically, the seek model did not include an MMT penalty for each operation, and thus



seek times were based entirely on physical disk address proximity. A revised graph is
shown in Figure 8b. Here, the introduction of a sizeable MMT largely washes out any
differences in aggregate seek times produced by disks of varying sizes.
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Figure 8. (Non-) effects of disk size on FFS performance. Previously reported (and erroneous) results
(as derived from a simplified seek model that did not incorporate MMT are shown in (a), revised
results in (b).

We’ve included the contrast here because it highlights a very important point: compared
to the penalty associated with performing any seek at all, there’s not much difference
between “short seeks” and “long seeks”. Indeed, this fact does not bode well for file
layout optimization. As these results demonstrate, simply improving data locality is not
enough to really improve performance. As a result, new policies must reduce the total
number of seeks, which requires (potentially impossibly) accurate anticipation of file
usage patterns.

Cache Size

The next set of simulations compares the effect of cache size on a file trace. Since read-
based seeks are a performance bottleneck for both FFS and LFS (especially in the case of
the latter), we needed to be sure that increasing the cache size did not trump the utility of
any allocation strategy decisions. As we can see from Figure 9, the larger the cache, the
more overall seek performance is improved; however, the performance curve levels off
pretty quickly for both LFS and FFS. In addition, increasing the size of the hard disk
cache does not seem to have an effect after a minimum size of around 64 tracks is
reached. This would lead us to believe that in terms of seek performance, the hard disc
buffer cache is actually extraneous to the much larger operating system file cache.

10
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Figure 9. Effect of file cache size (a) and hard disk cache size (b) on seek performance under FFS and
LFS policies.

In addition, all of the above figures illustrate some of the key performance tradeoffs
associated with the FFS and LFS paradigms. Clearly, the LFS strategy results in far
fewer seeks than FFS. This is largely due to the amount of seeks incurred while writing
files under FFS. Since files are organized on disk according to their logical directory
structure, the drive must continually seek to write files that are stored in separate
directories, and this dominates performance. In contrast, LFS is able to minimize write
seeks, and while it performs better overall, its main performance bottleneck is related to
reading files (though, as expected, the problem is partially alleviated as the cache gets
larger).

Another notable aspect of these results is the fact that as far as read-based seeks are
concerned, FFS slightly outperforms LFS regardless of cache size. This would suggest
that the FFS notion of locality determined by the logical file structure is sound.

It should be noted that these effects may be exaggerated by the fact that we are largely
ignoring the penalties associated with the cleaner for the LFS, as the cleaner does not get
invoked on the disk filesystem until its free space is limited. Proper cleaning policy is
worthy of an entire study in itself, and beyond the scope of the current work. We use a
the selection criterion described by Seltzer et al in [12], and invoke the cleaner when the
filesystem is over 50% full and more than 10% of the blocks used can be reclaimed. It is
worth mentioning that if we assume that cleaning is performed during idle time, we can
ignore its associated performance penalty entirely.[5] In fact, since by relocating existing
files the cleaner may increase locality our model is missing out on possible optimizations
in the cases where the cleaner does not get invoked.

For the sake of completion, we also tested the effects of altering the “block group” size

for FFS, as well as the “segment size” for LFS. Neither produced any significant
differences in performance.
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Alternative Allocation Policies

The results presented us above led us to believe that for the types of workloads found in
our trace data, an LFS approach is superior to an FFS strategy. The next step was to
construct a new, better policy based on the data produced by the simulator.
Unfortunately, our efforts to create a high performance, adaptable filesystem allocation
policy were largely met with failure. Overall seek performance is depicted in Figure 10
below, and details about each approach are in the sections following.
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Figure 10. Simulated performance of several filesystem allocation policies, broken out by call type.

LFSRewrite

Our first attempt at constructing a better performing filesystem centered around trying to
marry the strengths of the FFS and LFS approaches. While in general, LFS outperforms
FFS by a wide margin. Since the former is optimized to eliminate write-based seeks, we
wanted to see if we could introduce some amount of temporal locality into the placement
of files being read as well. The algorithm hinges on the fact that write operations come
"cheaply" in LFS, and that the main seek penalties are incurred when seeking long
distances to read a block that is scattered on a different part of the disk. The LESRewrite
algorithm reorganizes file locations as files are sent in and out of the file cache. When a
block is cached, it remains in the cache until it is discarded in favor of a more recently
used block. The LFSRewrite algorithm relocates the discarded block to the current
writing frontier of the disk. Since write operations are largely seekless, we hoped that be
relocating recently to the "hot" part of the disc we could improve performance.
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This approach performed the worst of those that we implemented (or, more precisely, the
worst of those that were implemented and being reported). Upon examination of the file
traces, we found that we were being “outdone” by the LRU. It is only useful to relocate a
file that is going to be read again in the near future. Such “hot files” tend to stay in the
cache anyway, and therefore are never candidates for relocation. Therefore, the majority
of the files that were being relocated were never read again --- resulting in lots of extra
writes. Note that in the chart above, seeks incurred from rewriting are categorized as
“readseeks”, as they are triggered by a file read that ejects data blocks from the file cache.

LFSPerm

The next strategy comes out of the analysis of which files are incurring the most seeks.
As we see in Figure 11, the seek penalties are unevenly distributed among files --- in a
typical trace, the top 1% of files account for 70% of all seeks. In theory, if we could
identify these “hot” files, an adaptive system could learn to give them cache priority over
other files whenever possible, cutting down on read seeks. We implemented an offline
version of this algorithm in two variations: LFSPerm37 permanently caches the top 1%
of files (37), while LFSPerm10 only caches the top ten. Our approach is as follows: first
we analyzed the input trace to identify the hot files. The LFESPerm allocator is then
supplied with a list of hot files to permanently cache whenever possible.
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Figure 11. Distribution of seek penalties across individual files for LFS allocation policy (a), along
with cumulative density for the top fifty files (b).

Unfortunately, LFESPerm was the worst performing policy we implemented. A bit of
insight into the effects of this strategy can be seen below in Figure 12. This first chart
plots the seeks incurred by each individual file under both schemes. The only remarkable
deviation in behavior comes from a cluster of files that register higher seek counts under
the new policy. This is due to the fact that even though only a small number of files are
being put in the cache permanently, they are sizeable enough to essentially “take over”
the cache, so as a result the other 99% of the files are never being cached, resulting in
much higher penalties.

13
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Figure 12. Comparison of seeks incurred under LFS and LFSPerm37, plotted for all individual files
(a) and “‘hot” files (b).

LFSPrefetch

Our next approach stems from some analysis performed on the relationships between
different hot files in terms of access patterns. We hoped to exploit concurrent accesses
of hot file pairs by expanding the prefetching functionality of the file cache. Normally,
when consecutive blocks of a file are read, the operating system assumes that the file will
be read further, and actively caches upcoming blocks. Our idea was to extend the
prefetching to “partner” files that are commonly accessed along with the file being read.

First, we calculate the co-access patterns of each pair of files by counting the number of
times they are both read within a sliding window of time (in our case, 30 seconds for a
week-long trace). We then perform a randomization test to calculate which pairs are
linked beyond what we’d expect from random chance. This is a subtle distinction;
without the randomization test, two heavily read files may appear to be linked, when in
reality they are simply both accessed frequently (the “regulars” at a coffee shop may
often be found there at the same time, yet never show up together). Once the list of
statistically valid “hot pairs” is determined, we pass it along to the LFSPrefetch allocator
and rerun the trace.

The effects of the prefetching are shown in Figure 13. The plots depict the amount of
seeks incurred for individual files under the basic LFS strategy and LFSPrefetch. Figure
13a shows the results for all of the files in the trace. Again we can see the tradeoffs
inherent to working with a finite cache. For a subset of files, the prefetch is a win and we
can eliminate seeks related to reading them. However, this comes at the cost of
prematurely evicting other files from the cache, which in turn cost more seeks. As seen
in 13b, the hot files themselves unfortunately perform pretty badly. In most of the cases,
the aggressive prefetching is overkill --- hot files are prefetched when the do not need to
be, and this incurs read seeks. The overall effects can be seen in the histograms in figure
13c. Clearly, we have shifted some of the mass of the distribution to the right, resulting
in an the overall performance hit seen in the bar graph above.
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Figure 13. Comparison of seeks incurred under LFS and LFSPrefetch, plotted for all individual files
(a) and “hot” files found in prefetched pairs (b). Histogram depicting frequency distribution of seeks
across files (c).

LFSClean

The LFSClean allocator is yet another variant on LFS. Like in the case of the
LFSRewrite, this policy attempts to alleviate the penalties incurred when making long
seeks across the disk to read file blocks. The "normal" LFS allocator maintains a frontier
on the disk, where all data is written, allowing the disk to achieve optimal bandwidth
performance when writing. However, a single read call sandwiched between a series of
writes can be quite a disruption --- the disk head must travel all the way to the block
being read, then all the way back to before it can resume writing. The LFSCleaner
attempts to avoid this situation by opportunistically relocating the writing frontier on the
disk as the head is moved about by different reads. Under this policy, whenever a write
request is made, the allocator checks to see where the disk head is in relation to the
current frontier. If it is far away (as a result of a previous read call), it then examines the
contents of the segment where it is currently located. If that segment is fragmented
beyond given threshold, the allocator cleans that segment and relocates the writing
frontier to the current position. This preserves continuous writing while also introducing
an element of locality with recently read blocks.
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Once again, though, our efforts to be clever are met with non-results. The culprit here is
the nature of seek penalties themselves. While this scheme does save write-based seeks
incurred after a distant file read, the act of (possibly prematurely) cleaning a segment
balances out any possible gains. It should be noted that if the MMT of the disk head is
set to 0, this algorithm slightly outperforms LFS, as it alleviates the problem. This
illustrates the main hurdle that improved allocation strategies face: locality, and therefore
decreased seek distance are not enough to show real improvement.
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Figure 14. Comparison of seeks incurred under LFS and LFSClean, plotted for all individual files.

Discussion

So how to explain our lack of success? Certainly, pinpointing the reasons why each
approach failed is simple enough, as exhibited above. Conversely, though, it is very
difficult to pinpoint which facets of an algorithm will make it successful (of course, if we
could do this, we would, and the performance graphs above would look a lot different).
While we do not have definitive answers about what makes this problem so difficult, we
do have some intuitions.

First of all, the problem and solution space are both incredibly complex, and not well
understood, a fact that has left some researchers in the field wondering if the disk
allocation problem is even solvable.[11] Aside from being unable to devise effective
solutions, it is unclear how to gauge how effective the current solutions are. We
currently do not have a method for an optimal layout of data given a trace, and therefore
are unable to see how close a given layout is to optimal (or explore the properties of an
optimal layout in hopes of emulating them). We suspect that we can reduce the much
studied "offline linear access problem" to our optimal layout problem. As the former has
been shown to be NP-hard[ 1], doing so for a trace made up of thousands of data blocks is
computationally infeasible. Approximation may exist, though, and it is probably worthy
of future investigation.

Another inherent difficulty stems from the lack of file attributes on which to base layout
decisions. Figure 15 shows graphical representations of file size, file owner permissions,
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and file extension and how they relate to seek penalties. In each case, there is little or no
correlation between attribute values and resulting seeks. Graphs depiction individual
operation counts or cache behavior are similarly unhelpful, and learned models
incorporating combinations of attributes are unable to perform above default levels of
accuracy.

10 0.6 B
9 0.3
8 0.0 |_| = (=]
w 7 0.6 ]
G
8 6 £ 0.3 i
I o
lltﬂ| 5 q;l 0.0
sy = 06 _
U?I E rW-03
2 3 0, :
2 ° E§ooo 0.0 R [l
1 [e] ° Oﬁw 0.6 M
8 n.. E-‘ﬁ.’.’-‘-‘ ) @ rwx 0.3
0 ' m.(\(num-m : ' flo S—o) ' 'l—l ' ' b ' ' '
0 2 4 6 8 0 2 4 6 8 10 12
o log_size - log_Ifs_seeks
(a) (b)
8 [
0 H o )
3 618 0008 of 0889 YELE oog 088 868 808 60 0899890 oo
b )
w0
1
g; o
=] )
o o o 8
=0/ 8 °8oo o Bos Gg gog o ©006°8880 o é o 8 o
mexu_'—lnn_gm*—-us-gw:‘:_:_z-m—U;_ﬂ_a:ﬂ)_g*‘g:ﬂ.gg—mgqg“—\—mmwg—*‘m.{:ggxn“grg3
84g8 “Eo-lu8Se5” SeER S0Sps I8TE e £a29OR TANISERES SN
@S Qe 5 29 " T8 ®Es © O $9o0on g2 =g
g PSS T E°J 5§ 9RRY 5" 3
5 : E ° 2222 @ =
£ anag
ext
(c)

Figure 15. Graphical depictions of unhelpful attributes: file size (a), owner permissions (b), and file
extension (c).

The skewed distribution of file activity also makes this a difficult environment to perform
learning. The curves in Figures 4 and 11 illustrate the crux of the problem: no matter
what your layout policy, a few dozen files (out of thousands) are going to be associated
with the majority of the disk movement. With the attributes we have, differentiating
these hot files from the masses is a near impossible task.

Figure 16 below depicts the relative rankings of files by seek total under LFS and FFS.
While some files incur a large (or small) number of seeks under both policies, most do
not. This is strong evidence that there is very little about the files themselves that can
indicate access patterns.
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Figure 16. Relative rankings of individual files by seek penalties incurred for FFS and LFS... a bit of
a mess.

Finally, our ability to improve hard drive performance through filesystem layout may be
limited by the physical characteristics of hard disks themselves. Given the minimum
movement time (MMT) of a drive head, in many ways a seek is a seek is a seek,
regardless of the geographic distance covered on disk. Thus an allocation policy that
shortens seek distances will have little actual effect on performance. Rather, to make an
actual impact the layout algorithm must reduce the number of seeks performed.
Unfortunately, doing so requires a high level of predictive precision with regards to user
behavior, and very well may be impossible to achieve in a noisy data environment, as
exemplified by the examples presented above.

References

1. Ambiihl, C. Offline List Update is NP-hard. Proceedings of 8th Annual European
Symposium on Algorithms (ESA), pages 42-51.

2. Card, R. T. Ts'o, and S. Tweedie. Design and Implementation of the Second
Extended Filesystem. In Proceedings of the First Dutch International Symposium
on Linux, number ISBN 90 367 0385 9. Laboratoire MASI - Institut Blaise
Pascal and Massachussets Institute of Technology and University of Edinburgh.

3. Ellard, D., M. Mesnier, and E. Thereska, Gregory R. Ganger, and Margo Seltzer.

Technical Report TR-14-03, Division of Engineering and Applied Sciences,
Harvard University.

18



10.

11.

12.

13.

14.

15.

D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks.
Proc. 12th International Conference on Information and Knowledge Management
(CIKM), 2003.

Lumb, C., J. Schindler, G. Ganger, and D. Nagle. Towards Higher Disk Head
Utilization: Extracting Free Bandwidth From Busy Disk Drives. Proc. Symp.
Operating Systems Design and Implementation, 2000.

McKusick, M., W. Joy, S. Leffler, and R. Fabry, "A Fast File System for UNIX",
ACM Transactions on Computer Systems 2, 3 (August 1984), 181-197.

Muller, K. and J. Pasquale. "A High-performance Multi-structured File System
Design," Proceedings of the 1991 ACM Symposium on Operating System
Principles, Asilomar, CA, October 1991.

Neville, J., D. Jensen, L. Friedland and M. Hay (2003). Learning Relational
Probability Trees. Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Reingold, N., and J. Westbrook: Off-Line Algorithms for the List Update
Problem. Inf. Process. Lett. 60(2): 75-80 (1996)

Rosenblum, M., and J. Ousterhout. The design and implementation of a log-
structured file system. Proceedings of the 13th Symposium on Operating System
Principles, pages 1--15, October 1991.

Salmon, B., E. Thereska, C. Soules, J. Strunk, and G. Ganger. Challenges in
Building a Two-Tiered Learning Architecture for Disk Layout. Carnegie Mellon
University Parallel Data Laboratory Technical Report CMU-PDL-04-109.
August, 2004.

Seltzer, M., K. Bostic, M. McKusick, and C. Staelin. "An Implementation of a
Log-Structured File System for UNIX", Proceedings of the Winter 1993 USENIX
Conference, San Diego, CA, January 1993, 307-326.

Seltzer, M., and M. Stonebraker. Read Optimized File Systems: A Performance
Evaluation Proceedings 7th Annual International Conference on Data
Engineering, Kobe, Japan, April 1991, 602-611.

Smith, K., and M. Seltzer. File Layout and File System Performance. Harvard
University Technical Report TR-35-94, December 1994.

Smith, K., and, M. Seltzer. A Comparison of FFS Disk Allocation Polices.

Proceedings of the 1996 Usenix Technical Conference, San Diego, CA, January
1996.

19



16. Talagala, N., R. Arpaci-Dusseau, and D. Patterson. Microbenchmark-based
Extraction of Local and Global Disk Characteristics. University of California,
Berkeley 1999 number CSD-99-1063.

17. Zhang, Z., and K. Ghose. yFS: A Journaling File System Design for Handling

Large Data Sets with Reduced Seeking., Proceedings of the USENIX Symposium
on File Systems and Storage Technlogies (FAST '03), 2003.

20



